Amortized Analysis Fibonacci Heaps

thanks MIT slides thanks "Amortized Analysis" by Rebecca Fiebrink thanks Jay Aslam's notes

Objectives

- Amortized Analysis
 - potential method
- Fibonacci Heaps
 - construction
 - operations

running time analysis

- typical: Algorithm uses data-structure and operations
 - structures: table, array, hash, heap, list, stack
 - operations: insert, delete, search, min, max, push, pop
- measure running time by analyzing
 - the sequence of operations,
 - their frequency
 - each operation running time (computation cost)

Running Time Analysis

- determine the c = costliest/longest iteration
 - usually an outer loop of n iterations
 - overall n* (longest cost per iteration) = n*c
- Thats not very accurate!
 - not all iterations have the longest cost
 - perhaps some average technique can work, but how to prove?
- "compensate": show that for every costly iteration, there must be other "cheap" iterations

Example: binary counter

bit 5	bit 4	bit 3	bit 2	bit I	bit 0
0	0	0	0	0	0
0	0	0	0	0	Т
0	0	0	0	- 1	0
0	0	0	0	I	_
0	0	0	Τ	0	0
0	0	0	I	0	Τ
0	0	0	I	- 1	0
0	0	0	I	I	Ι
0	0	I	0	0	0

cost (bits changed)
N/A
I
2
I
3
I
2
4

- each row is a binary representation of the counter
 - increasing by one
 - right side: cost = how many bits require changes
- naive running time to increment from 0 to n:
 - each row may cost up to O(log n)
 - n iterations/increments would be O(n*logn)

Example: binary counter

bit 5	bit 4	bit 3	bit 2	bit I	bit 0
0	0	0	0	0	0
0	0	0	0	0	I
0	0	0	0	- 1	0
0	0	0	0	I	- 1
0	0	0	_	0	0
0	0	0	I	0	- 1
0	0	0	I	- 1	0
0	0	0		I	I
0	0	I	0	0	0

cost (bits changed)
N/A
I
2
I
3
I
2
I
4

- true cost for n iterations: 1+2+1+3+1+2+1+4+... = 2n = O(n)
- reason: the iteration cost very rarely is O(log n)
 - O(logn) means changing a good number of bits
 - for one iteration of cost O(logn), there must be many "cheap" iterations

binary counter amortization

- Aggregation method: consider all n iterations
 - bit 0 changes every iteration => cost n
 - bit 1 changes for half of iterations => cost n/2
 - bit 2 changes quarter of iterations => cost n/4
 - bit 3 changes 1/8 of iterations => cost n/8
 - ... etc
- total cost: add up the cost per bit
 - n + n/2 + n/4+ n/8 + ... = 2n
- Aggregation method impractical, only works on toy examples like this

bit 5	bit 4	bit 3	bit 2	bit I	bit 0
0	0	0	0	0	0
0	0	0	0	0	I
0	0	0	0	ı	0
0	0	0	0	I	ı
0	0	0	Т	0	0
0	0	0	I	0	ı
0	0	0	I	_	0
0	0	0	I	I	I
0	0	I	0	0	0

Amortized Analysis

- $c_i = true cost of i-th operation/iteration$
- ullet $\hat{c_i}$ = amortized cost of i-th operation/iteration
 - we have to come up with di
- the cumulative amortized cant be smaller than the true cumulative cost, up to any iteration k

$$\forall k: \sum_{i=1:k} c_i \le \sum_{i=1:k} \hat{c_i}$$

Accounting Method

- assign the di amortized cost
- if overcharge some operation (di>ci) use the excess as "prepaid credit",
- use the prepaid credit later for an expensive operation

Potential method

- lacktriangle associate a potential function Φ with datastructure T
 - $\Phi(Ti)$ = "potential" (or risk for cost) associated with datastructure after i-th operation
 - typically a measure of complexity/risk/size of the datastructure
- require $\hat{c_i} \geq c_i + \phi(T_i) \phi(T_{i-1})$ for all i
- \bullet $\hat{c_i}$ = amortized cost (up to us to define)
- ci = true cost for operation i
- Ti = datastructure after ith operation

Accounting Method for binary counter

bit 5	bit 4	bit 3	bit 2	bit I	bit 0	true cost (c _i)	amortized cost $\hat{c_i}$
0	0	0	0	0	0	N/A	N/A
0	0	0	0	0	I	I	2
0	0	0	0	I	0	2	2
0	0	0	0	I	- 1	I	2
0	0	0	Ι	0	0	3	2
0	0	0	I	0	I	I	2
0	0	0	I	I	0	2	2
0	0	0	I	I	I	I	2
0	0	I	0	0	0	4	2

$$\sum c$$

$$\sum_{i=1:k} \hat{c_i}$$

- assign amortized cost of di=2 for each operation
- $lackbox{ verify the amortized condition } \forall k: \sum c_i \leq \sum \hat{c_i}$

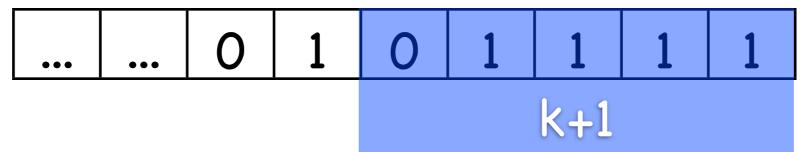
Accounting Method for binary counter

bit 5	bit 4	bit 3	bit 2	bit I	bit 0	true cost (c _i)	amortized $\hat{c_i}$	cum true cost $\sum c_i$	cum amortized cost $\sum_{i} \hat{c_i}$
0	0	0	0	0	0	N/A	N/A	N/A	N/A
0	0	0	0	0	I	I	2	I	2
0	0	0	0	Τ	0	2	2	3	4
0	0	0	0	Ι	- 1	I	2	4	6
0	0	0	I	0	0	3	2	7	8
0	0	0	I	0	- 1	ı	2	8	10
0	0	0	ı	- 1	0	2	2	10	12
0	0	0	I	I	I	I	2	11	14
0	0	I	0	0	0	4	2	15	16

- assign amortized cost of di=2 for each operation
- verify the amortized condition $\forall k: \sum_{i=1:k} c_i \leq \sum_{i=1:k} \hat{c_i}$

Potential method for binary count

- lacktriangle define the potential $\Phi(Ti)$ = the number of "1" bits
- verify $\hat{c_i} \geq c_i + \phi(T_i) \phi(T_{i-1})$ for each operation
 - there is only one operation: "increment"
 - di=2, amortized cost defined by us
 - before the operation i, at T_{i-1} , say there are k trailing 1 ones, before i-th increment
 - ci= true cost = k+1 bit changes: k of "1" bits made "0" (from right to left up to the first "0"); plus the first "0" made "1"
 - $\phi(T_i) \phi(T_{i-1}) = 1''$ gained 1'' lost = 1-k
 - equation becomes 2≥k+1 + 1-k, it checks out! di = 2 is good



Stack operations - review

- stack is an array with LAST-IN-FIRST-OUT operations
- push(value): put the new value on the stack (at the top)
- pop(n): take the top n values, return the, delete them from stack
- naive analysis for n operations: $n*O(n) = O(n^2)$
- better: for pop() to extract many elements, many push() must have happened before, each push is O(1)

	Z			
С	С		В	
Ь	Ь	Ь	Ь	Ь
a	a	a	a	a
	push(z)	pop(2)	push(d)	pop(I)

Accounting method for Stack

- account each push(x) with \$2:
 - \$1 for the actual push(x) operation, to add x to the stack
 - \$1 credit for the possible later pop() operation that extracts x
- each pop(k) also \$2, for any k
- so each operation is accounted with \$2,
- total running time for n operations is 2*n = O(n)
- when pop(k) is called, each one of the popped elements have stored \$1 to account for their extraction, O(k) time

Potential method for Stack

- lacksquare define the potential Φ (stack) = size(stack)
 - $\Phi(T) = |T|$; T = the stack; T_i = stack after i operations
- define the amortized costs: dpush=2; dpop=2
- consider the true costs c_{push}=1; c_{pop(k)}=k
- prove that for each operation the potential satisfies the fundamental property (exercise)

$$\hat{c_i} \ge c_i + \phi(T_i) - \phi(T_{i-1})$$

which means the amortized cost d=2 is valid.