Amortized Analysis
Fibonacci Heaps

thanks MIT slides
thanks “Amortized Analysis™ by Rebecca Fiebrink

thanks Jay Aslam’s notes

Objectives

® Amortized Analysis

— potential method

@ Fibonacci Heaps
— construction

— operations

running time analysis

@ fypical: Algorithm uses data-structure and operations
— structures: table, array, hash, heap, list, stack
— operations: insert, delefe, search, min, max, push, pop

@ measure running time by analyzing
— the sequence of operations,
— their frequency

— each operation running time (computation cost)

Running Time Analysis

@ determine the c = costliest/longest iteration

— usually an outer loop of n iterations
— overall n* (longest cost per iteration) = n*c

® Thats not very accurate!
— not all iterations have the longest cost

— perhaps some average technique can work, but how to prove?

® “compensate” : show that for every costly iteration,
there must be other "cheap” iterations

Example : binary counter

bit 5 | bit 4 | bit 3 | bit 2 | bit | | bit O cost (bits changed)
0 0 0 0 0 0 N/A
0 0 0 0 0 I I
0 0 0 0 I 0 2
0 0 0 0 I I I
0 0 0 I 0 0 3
0 0 0 I 0 I I
0 0 0 I I 0 2
0 0 0 I I I I
0 0 I 0 0 0 4

@® each row is a binary representation of the counter
— increasing by one
— right side: cost = how many bits require changes

@® naive running time to increment from O to n :
— each row may cost up to O(log n)
— n iterations/increments would be O(n*logn)

Example : binary counter

bit 5 | bit 4 | bit 3 | bit 2 | bit | | bit O cost (bits changed)
0 0 0 0 0 0 N/A

O|OC]J]OoO|OCO]|]OC]|]O|O|O
O|OC]J]O|OC]|]OC]|O|O|O
— O |OC]|]O|OC]|]O|O]|O

0 0 I I
0 I 0 2
0 I I I
I 0 0 3
I 0 I I
I I 0 2
I I I I
0 0 0 4

@® true cost for n iterations: 1+2+1+3+1+2+1+4+.. = 2n =
O(n)
@ reason: the iteration cost very rarely is O(log n)

— Of(logn) means changing a good number of bits

— for one iteration of cost O(logn), there must be many “cheap”
iterations

binary counter amortization

@ Aggregation method: consider all n
iterations

— bit O changes every iteration => cost n

— bit 1 changes for half of iterations => cost n/2
— bit 2 changes quarter of iterations => cost n/4
— bit 3 changes 1/8 of iterations => cost n/8

- ..efc

@ fotal cost : add up the cost per bit
— n+n/2+n/s+n/8 + ..=2n

@® Aggregation method impractical, only
works on toy examples like this

bit 5

bit 4

bit 3

bit |

bit 0

0

0

0

ol Noll Noll Noll No R K= E=2 K=

O|OC]J]O|OCO]|]OC]|]O|O|O

0
0
0
0
0
0
0
I

oO|l—|]—|©C|O|—]|]—]|O

o|l—|]|OCS|—|OC]|—|OC]|—

Amortized Analysis

® c = true cost of i-th operation/iteration

® C; = amortized cost of i-th operation/iteration

— we have to come up with d

® the cumulative amortized cant be smaller than the
true cumulative cost, up to any iteration k

1=1:k 1=1:k

Accounting Method

@ assign the di amortized cost

® if overcharge some operation (di>ci) use the excess
as "prepaid credit”,

@® use the prepaid credit later for an expensive
operation

Potential method

@ associate a potfential function ¢ with datastructure T

— §(Ti) ="potential” (or risk for cost) associated with datastructure
after i-th operation

— typically a measure of complexity/risk/size of the datastructure
® require ¢, > ¢, + ¢(T;) — H(T;_,) for all |
® ¢ = amortized cost (up fo us to define)
@® ci = true cost for operation i

® ¢} = potential function

® Ti = datastructure after ith operation

Accounting Method for binary counter

bit 5 | bit 4 | bit 3 | bit 2 | bit | | bit 0 true cost (ci) amortized costC;
0 0 0 0 0 0 N/A N/A
0 0 0 0 0 | | 2
0 0 0 0 | 0 2 2
0 0 0 0 | | | 2
0 0 0 | 0 0 3 2
0 0 0 | 0 | | 2
0 0 0 | | 0 2 2
0 0 0 | | | | 2
0 0 | 0 0 0 4 2

E i E Ci
i=1:k

@® assign amortized cost of di=2 for each operation

® verify the amortized condition

1=1:k 1=1:k

Accounting Method for binary counter

bit 5 | bit 4 | bit 3 | bit 2 | bit | | bit O true cost (i) amortized costC;|[cum true cost » ¢ |cum amortized cost »_ é
o[ofo]of|o]fo N/A N/A N/A NA
0 0 0 0 0 I I 2 I 2
0 0 0 0 I 0 2 2 3 4
0 0 0 0 I I I 2 4 6
0 0 0 I 0 0 3 2 7 8
0 0 0 I 0 I I 2 8 10
0 0 0 I I 0 2 2 10 12
0 0 0 I I I I 2 |l 14
0 0 I 0 0 0 4 2 15 16

@® assign amortized cost of di=2 for each operation

® verify the amortized condition

1=1:k

1=1:k

Potential method for binary count

@ define the potential ¢(Ti) = the number of 1" bits

® verify ¢; > ¢; + ¢(T;) — ¢(T;-1)for each operation
— there is only one operation: “increment”
— di=2 , amortized cost defined by us

— before the operation i, at Ti.;, say there are k trailing 1 ones, before
I-th increment

— ci= frue cost = k+l bit changes: k of "1” bits made "0” (from right
to left up to the first "0”); plus the first "0” made “1”

- O(Ti) - P(Ti-) ="1" gained - "1” lost = 1-k

— equation becomes 2=k+1 + 1-K, it checks out! di = 2 is good

O|1|0[|1]|1]1]1
K+1

Stack operations - review

@® stack is an array with LAST-IN-FIRST-OUT operations
® push(value) : put the new value on the stack (at the top)

® pop(n): take the top n values, return the, delete them
from stack

@® naive analysis for n operations : n*O(n) = O(n?)

@® better: for pop() to extract many elements, many push()
must have happened before, each push is O(1)

Z
C C d
b b b b b
d d | | d
push(z) | pop(2) | push(d) | pop(l)

Accounting method for Stack

@® account each push(x) with $2:
— $1 for the actual push(x) operation, to add x to the stack
— $1 credit for the possible later pop() operation that extracts x

® each pop(K) also $2, for any k
@ so each operation is accounted with $2,
@ total running time for n operations is 2*n = O(n)

@® when pop(k) is called, each one of the popped
elements have stored $1 to account for their
extraction, O(k) time

Potential method for Stack

@ define the potential {(stack) = size(stack)

— §(T) =Tl ; T = the stack; Ti = stack after i operations

@® define the amortized costs: dpush=2 ; dpop=2
@® consider the true costs Cpush=l ; Cpop(=K

® prove that for each operation the potential satisfies
the fundamental property (exercise)

¢i > ¢+ o(T;) — o(Ti-1)

® which means the amortized cost d=2 is valid.

