
Princeton University • COS 423 • Theory of Algorithms • Spring 2001 • Kevin Wayne

Amortized Analysis

2

Beyond Worst Case Analysis

Worst-case analysis.

■ Analyze running time as function of worst input of a given size.

Average case analysis.

■ Analyze average running time over some distribution of inputs.

■ Ex: quicksort.

Amortized analysis.

■ Worst-case bound on sequence of operations.

■ Ex: splay trees, union-find.

Competitive analysis.

■ Make quantitative statements about online algorithms.

■ Ex: paging, load balancing.

3

Amortized Analysis

Amortized analysis.

■ Worst-case bound on sequence of operations.
– no probability involved

■ Ex: union-find.
– sequence of m union and find operations starting with n

singleton sets takes O((m+n) α(n)) time.
– single union or find operation might be expensive, but only α(n)

on average

4

Dynamic Table

Dynamic tables.

■ Store items in a table (e.g., for open-address hash table, heap).

■ Items are inserted and deleted.

– too many items inserted ⇒ copy all items to larger table
– too many items deleted ⇒ copy all items to smaller table

Amortized analysis.

■ Any sequence of n insert / delete operations take O(n) time.

■ Space used is proportional to space required.

■ Note: actual cost of a single insert / delete can be proportional to n
if it triggers a table expansion or contraction.

Bottleneck operation.

■ We count insertions (or re-insertions) and deletions.

■ Overhead of memory management is dominated by (or
proportional to) cost of transferring items.

5

Aggregate method.

■ Sequence of n insert ops takes O(n) time.

■ Let ci = cost of ith insert.

Initialize table size m = 1.

INSERT(x)
IF (number of elements in table = m)

Generate new table of size 2m.
Re-insert m old elements into new table.
m ← 2m

Insert x into table.

Dynamic Table Insert

Dynamic Table: Insert



=

otherwise1

2 of powerexact an is 1 if -ii
ci n

nn

nc
n

j

jn

i
i

3

)12(

2
2log

01

<
−+=

∑+≤∑
==

6

Dynamic Table: Insert

Accounting method.

■ Charge each insert operation $3 (amortized cost).
– use $1 to perform immediate insert
– store $2 in with new item

■ When table doubles:
– $1 re-inserts item
– $1 re-inserts another old item

7

Dynamic Table: Insert and Delete

Insert and delete.

■ Table overflows ⇒ double table size.

■ Table ≤ ½ full ⇒ halve table size.

! Bad idea: can cause thrashing.

1

2

3

4

5

1

2

3

4

1

2

3

4

5

1

2

3

4

8

Initialize table size m = 1.

DELETE(x)
IF (number of elements in table ≤ m / 4)

Generate new table of size m / 2.
m ← m / 2
Reinsert old elements into new table.

Delete x from table.

Dynamic Table Delete

Dynamic Table: Insert and Delete

Insert and delete.

■ Table overflows ⇒ double table size.

■ Table ≤ ¼ full ⇒ halve table size.

9

Dynamic Table: Insert and Delete

Accounting analysis.

■ Charge each insert operation $3 (amortized cost).
– use $1 to perform immediate insert
– store $2 with new item

■ When table doubles:
– $1 re-inserts item
– $1 re-inserts another old item

■ Charge each delete operation $2 (amortized cost).
– use $1 to perform delete
– store $1 in emptied slot

■ When table halves:
– $1 in emptied slot pays to re-insert a remaining item into new

half-size table

10

Dynamic Table: Delete

6 7 81 2 3 4 5

6 71 2 3 4 5

61 2 3 4 5

1 2 3 4 5

1 2 3 4

1 2 3 4 Contract table

11

Dynamic Table: Insert and Delete

Theorem. Sequence of n inserts and deletes takes O(n) time.

■ Amortized cost of insert = $3.

■ Amortized cost of delete = $2.

12

Binary Search Tree

Binary tree in "sorted" order.

■ Maintain ordering property for ALL sub-trees.

left subtree
(larger values)

right subtree
(smaller values)

root (middle value)

13

Binary Search Tree

Binary tree in "sorted" order.

■ Maintain ordering property for ALL sub-trees.

51

14 72

06 33 53 97

6425 4313 9984

14

Binary Search Tree

Binary tree in "sorted" order.

■ Maintain ordering property for ALL sub-trees.

51

14 72

06 33 53 97

6425 4313 9984

15

Binary Search Tree

Insert, delete, find (symbol table).

■ Amount of work proportional to height of tree.

■ O(N) in "unbalanced" search tree.

■ O(log N) in "balanced" search tree.

Types of BSTs.

■ AVL trees, 2-3-4 trees, red-black trees.

■ Treaps, skip lists, splay trees.

BST vs. hash tables.

■ Guaranteed vs. expected performance.

■ Growing and shrinking.

■ Augmented data structures: order statistic trees, interval trees.

Insert

Search

16

Splay Trees

Splay trees (Sleator-Tarjan, 1983a). Self-adjusting BST.

■ Most frequently accessed items are close to root.

■ Tree automatically reorganizes itself after each operation.
– no balance information is explicitly maintained

■ Tree remains "nicely" balanced, but height can potentially be n - 1.

■ Sequence of m ops involving n inserts takes O(m log n) time.

Theorem (Sleator-Tarjan, 1983a). Splay trees are as efficient (in
amortized sense) as static optimal BST.

Theorem (Sleator-Tarjan, 1983b). Shortest augmenting path algorithm
for max flow can be implemented in O(mn log n) time.

■ Sequence of mn augmentations takes O(mn log n) time!

■ Splay trees used to implement dynamic trees (link-cut trees).

17

Splay

Find(x, S): Determine whether element x is in splay tree S.
Insert(x, S): Insert x into S if it is not already there.
Delete(x, S): Delete x from S if it is there.
Join(S, S’): Join S and S’ into a single splay tree, assuming that

x < y for all x ∈ S, and y ∈ S’.

All operations are implemented in terms of basic operation:

Splay(x, S): Reorganize splay tree S so that element x is at the
root if x ∈ S; otherwise the new root is either
max { k ∈ S : k < x} or min { k ∈ S : k > x} .

Implementing Find(x, S).

■ Call Splay(x, S).

■ If x is root, then return x; otherwise return NO.

18

Splay

Implementing Join(S, S’).

■ Call Splay(+∞, S) so that largest element of S is at root and all
other elements are in left subtree.

■ Make S’ the right subtree of the root of S.

Implementing Delete(x, S).

■ Call Splay(x, S) to bring x to the root if it is there.

■ Remove x: let S’ and S’’ be the resulting subtrees.

■ Call Join(S’, S’’).

Implementing Insert(x, S).

■ Call Splay(x, S) and break tree at root to form S’ and S’’.

■ Call Join(Join(S’, {x}), S’’).

19

Implementing Splay(x, S)

Splay(x, S): do following operations until x is root.

■ ZIG: If x has a parent but no grandparent, then rotate(x).

■ ZIG-ZIG: If x has a parent y and a grandparent, and if both x and y
are either both left children or both right children.

■ ZIG-ZAG: If x has a parent y and a grandparent, and if one of x, y
is a left child and the other is a right child.

A B

x
C

y

CB

y
A

x

ZIG(x)

ZAG(y)

root

20

Implementing Splay(x, S)

Splay(x, S): do following operations until x is root.

■ ZIG: If x has a parent but no grandparent.

■ ZIG-ZIG: If x has a parent y and a grandparent, and if both x and y
are either both left children or both right children.

■ ZIG-ZAG: If x has a parent y and a grandparent, and if one of x, y
is a left child and the other is a right child.

ZIG-ZIG

A B

x
C

y
D

z

DC

z
B

y
A

x

21

Implementing Splay(x, S)

Splay(x, S): do following operations until x is root.

■ ZIG: If x has a parent but no grandparent.

■ ZIG-ZIG: If x has a parent y and a grandparent, and if both x and y
are either both left children or both right children.

■ ZIG-ZAG: If x has a parent y and a grandparent, and if one of x, y
is a left child and the other is a right child.

ZIG-ZAG

B C

x
D

y

z

DC

y

x

A

BA

z

22

Splay Example

Apply Splay(1, S) to tree S:
10

9

8

7

6

5

4

3

2

1

ZIG-ZIG

23

Splay Example

Apply Splay(1, S) to tree S:

ZIG-ZIG

10

9

8

7

6

5

4

1

2

3

24

Splay Example

Apply Splay(1, S) to tree S:

ZIG-ZIG

10

9

8

7

6

1

2

3

4

5

25

Splay Example

Apply Splay(1, S) to tree S:

ZIG-ZIG

10

9

8

1

6

7

2

3

4

5

26

Splay Example

Apply Splay(1, S) to tree S:

ZIG

10

1

8

96

7

2

3

4

5

27

Splay Example

Apply Splay(1, S) to tree S:
1

10

8

96

7

2

3

4

5

28

Splay Example

Apply Splay(2, S) to tree S:

1

10

8

96

7

2

3

4

5

2

8

4

63

10

1

9

5 7

Splay(2)

29

Splay Tree Analysis

Definitions.

■ Let S(x) denote subtree of S rooted at x.

■ |S| = number of nodes in tree S.

■ µ(S) = rank =  log |S| .
■ µ(x) = µ (S(x)). 2

8

4

63

10

1

9

5 7

|S| = 10
µ(2) = 3
µ(8) = 3
µ(4) = 2
µ(6) = 1
µ(5) = 0

S(8)

30

Splay Tree Analysis

Splay invariant: node x always has at least µ(x) credits on deposit.

Splay lemma: each splay(x, S) operation requires ≤ 3(µ(S) - µ(x)) + 1
credits to perform the splay operation and maintain the invariant.

Theorem: A sequence of m operations involving n inserts takes
O(m log n) time.
Proof:

■ µ(x) ≤  log n  ⇒ at most 3  log n  + 1 credits are needed for
each splay operation.

■ Find, insert, delete, join all take constant number of splays plus
low-level operations (pointer manipulations, comparisons).

■ Inserting x requires ≤  log n  credits to be deposited to maintain
invariant for new node x.

■ Joining two trees requires ≤  log n  credits to be deposited to
maintain invariant for new root.

31

Splay Tree Analysis

Splay invariant: node x always has at least µ(x) credits on deposit.

Splay lemma: each splay(x, S) operation requires ≤ 3(µ(S) - µ(x)) + 1
credits to perform the splay operation and maintain the invariant.

Proof of splay lemma: Let µ(x) and µ’(x) be rank before and single
ZIG, ZIG-ZIG, or ZIG-ZAG operation on tree S.

■ We show invariant is maintained (after paying for low-level
operations) using at most:

– 3(µ(S) - µ(x)) + 1 credits for each ZIG operation.
– 3(µ’(x) - µ(x)) credits for each ZIG-ZIG operation.
– 3(µ’(x) - µ(x)) credits for each ZIG-ZAG operation.

■ Thus, if a sequence of of these are done to move x up the tree, we
get a telescoping sum ⇒ total credits ≤ 3(µ(S) - µ(x)) + 1.

32

Splay Tree Analysis

Proof of splay lemma (ZIG): It takes ≤ 3(µ(S) - µ(x)) + 1 credits to
perform a ZIG operation and maintain the splay invariant.

■ In order to maintain invariant, we must pay:

■ Use extra credit to pay for
low-level operations.

))()((3

))()((3

)()(

)()()()()()(

xS
xx

xx
xyyxyx

µµ
µµ

µµ
µµµµµµ

−=
−′≤

−′≤
−′=−−′+′

A B

x
C

y

CB

y
A

xS S’

µ(y) = µ’(x)

ZIG

root

µ’(x) = µ(S)

33

Splay Tree Analysis

Proof of splay lemma (ZIG-ZIG): It takes ≤ 3(µ’(x) - µ(x)) credits to
perform a ZIG-ZIG operation and maintain the splay invariant.

■ If µ’(x) > µ(x), then can afford to
pay for constant number of low-level
operations and maintain invariant using ≤ 3(µ’(x) - µ(x)) credits.

))()((2

))()(())()((

))()(())()((

)()()()()()()()()()(

xx
xxxx
yzxy

yxzyzyxzyx

µµ
µµµµ
µµµµ

µµµµµµµµµµ

−′=
−′+−′≤
−′+−′=

−−′+′=−−−′+′+′

S

A B

x
C

y
D

z

DC

z
B

y
A

x S’

ZIG-ZIG

34

Splay Tree Analysis

Proof of splay lemma (ZIG-ZIG): It takes ≤ 3(µ’(x) - µ(x)) credits to
perform a ZIG-ZIG operation and maintain the splay invariant.

■ Nasty case: µ(x) = µ’(x).

■ We show in this case µ’(x) + µ’(y) + µ’(z) < µ(x) + µ(y) + µ(z).
– don’t need any credit to pay for invariant
– 1 credit left to pay for low-level operations

so, for contradiction, suppose µ’(x) + µ’(y) + µ’(z) ≥ µ(x) + µ(y) + µ(z).

■ Since µ(x) = µ’(x) = µ(z), by monotonicity µ(x) = µ(y) = µ(z).

■ After some algebra, it follows that µ(x) = µ’(z) = µ(z).

■ Let a = 1 + |A| + |B|, b = 1 + |C| + |D|, then
 log a  =  log b  =  log (a+b+1) 

■ WLOG assume b ≥ a.
S

A B

x
C

y
D

z

DC

z
B

y
A

xS’

   
 

 a

a

aba

log

log1

)2log()1log(

>
+=

≥++

ZIG-ZIG

35

Splay Tree Analysis

Proof of splay lemma (ZIG-ZAG): It takes ≤ 3(µ’(x) - µ(x)) credits to
perform a ZIG-ZAG operation and maintain the splay invariant.

■ Argument similar to ZIG-ZIG.

ZIG-ZAG

B C

x
D

y

z

DC

y

x

A

BA

z

Princeton University • COS 423 • Theory of Algorithms • Spring 2001 • Kevin Wayne

Augmented Search Trees

37

Support following operations.

Interval-Insert(i, S): Insert interval i = (li, ri) into tree S.
Interval-Delete(i, S): Delete interval i = (li, ri) from tree S.
Interval-Find(i, S): Return an interval x that overlaps i, or

report that no such interval exists.

Interval Trees

(7, 10)

(5, 11)

(4, 8) (21, 23)

(15, 18)

(17, 19)

38

(4, 8)

Key ideas:

■ Tree nodes contain interval.

■ BST keyed on left endpoint.

Interval Trees

(7, 10)

(5, 11)

(4, 8) (21, 23)

(15, 18)

(17, 19)

(17, 19)

Key Interval

(5, 11) (21, 23)

(15, 18)

(7, 10)

39

(4, 8)

Key ideas:

■ Tree nodes contain interval.

■ BST keyed on left endpoint.

■ Additional info: store max
endpoint in subtree rooted
at node.

Interval Trees

(7, 10)

(5, 11)

(4, 8) (21, 23)

(15, 18)

(17, 19)

(17, 19)

max in
subtree

(5, 11) 18 (21, 23) 23

8 (15, 18) 18

(7, 10) 10

23

40

x ← root(S)

WHILE (x != NULL)
IF (x overlaps i)

RETURN t
IF (left[x] = NULL OR

max[left[x]] < li)
x ← right[x]

ELSE
x ← left[x]

RETURN NO

Splay last node on path
traversed.

Interval-Find (i, S)

Finding an Overlapping Interval

Interval-Find(i, S): return an interval x that overlaps i = (li, ri), or
report that no such interval exists.

(4, 8)

(17, 19)

(5, 11) 18 (21, 23) 23

8 (15, 18) 18

(7, 10) 10

23

41

Finding an Overlapping Interval

Interval-Find(i, S): return an interval x that overlaps i = (li, ri), or
report that no such interval exists.

Case 1 (right). If search goes right,
then there exists an overlap in right
subtree or no overlap in either.

Proof. Suppose no overlap in right.
■ left[x] = NULL ⇒

no overlap in left.

■ max[left[x]] < li ⇒
no overlap in left.

x ← root(S)

WHILE (x != NULL)
IF (x overlaps i)

RETURN t
IF (left[x] = NULL OR

max[left[x]] < li)
x ← right[x]

ELSE
x ← left[x]

RETURN NO

Splay last node on path
traversed.

Interval-Find (i, S)

i = (li, ri)left[x]

max

42

Interval-Find(i, S): return an interval x that overlaps i = (li, ri), or
report that no such interval exists.

Case 2 (left). If search goes left,
then there exists an overlap in left
subtree or no overlap in either.

Proof. Suppose no overlap in left.
■ li ≤ max[left[x]] = rj for

some interval j in left subtree.

■ Since i and j don’t overlap, we have
li ≤ ri ≤ lj ≤ rj.

■ Tree sorted by l ⇒ for any interval
k in right subtree: ri ≤ lj ≤ lk ⇒
no overlap in right subtree.

Finding an Overlapping Interval

x ← root(S)

WHILE (x != NULL)
IF (x overlaps i)

RETURN x
IF (left[x] = NULL OR

max[left[x]] < li)
x ← right[x]

ELSE
x ← left[x]

RETURN NO

Splay last node on path
traversed.

Interval-Find (i, S)

i = (li, ri) j = (lj, rj)

k = (lk, rk)

43

Interval Trees: Running Time

Need to maintain augmented data structure during tree-modifying ops.

■ Rotate: can fix sizes in O(1) time by looking at children:

A
14

B
19

C
30

ZIG

ZAG

(11, 35) 35

(6, 20) 20

C
30

B
19

A
14

(6, 20) ?

(11, 35) ?

35

35







=

xr
xright

xleft
x]][max[

]][max[

max]max[

44

VLSI Database Problem

VLSI database problem.

■ Input: integrated circuit represented as a list of rectangles.

■ Goal: decide whether any two rectangles overlap.

Algorithm idea.

■ Move a vertical "sweep line" from left to right.

■ Store set of rectangles that intersect the sweep line in an interval
search tree (using y interval of rectangle).

45

Sort rectangle by x coordinate (keep two copies of
rectangle, one for left endpoint and one for right).

FOR i = 1 to 2N
IF (ri is "left" copy of rectangle)

IF (Interval-Find(ri, S))
RETURN YES

ELSE
Interval-Insert(ri, S)

ELSE (ri is "right" copy of rectangle)
Interval-Delete(ri, S)

VLSI (r1, r2 ,..., rN)

VLSI Database Problem

46

Order Statistic Trees

Add following two operations to BST.
Select(i, S): Return ith smallest key in tree S.
Rank(i, S): Return rank of x in linear order of tree S.

Key idea: store size of subtrees in nodes.

m 8

c 5 P 2

b 1 f 2

d 1 h 1

q 1

Key Subtree size

47

Order Statistic Trees

Need to ensure augmented data structure can be maintained during
tree-modifying ops.

■ Rotate: can fix sizes in O(1) time by looking at children.

V
6

X
4

Z
17

ZIG

ZAG

y 29

w 11

Z
17

X
4

V
6

w29

y22

