Amortized Analysis

Princeton University « COS 423 « Theory of Algorithms « Spring 2001 < Kevin Wayne

Beyond Worst Case Analysis

Amortized analysis.
. Worst-case bound on sequence of operations.
Ex: splay trees, union-find.

Amortized Analysis

Amortized analysis.
. Worst-case bound on sequence of operations.
- no probability involved
. Ex: union-find.

- sequence of m union and find operations starting with n
singleton sets takes O((m+n) a(n)) time.

- single union or find operation might be expensive, but only a(n)
on average

Dynamic Table

Dynamic tables.
. Storeitems in atable (e.g., for open-address hash table, heap).
Items are inserted and deleted.

-too many items inserted [0 copy all items to larger table
- too many items deleted [0 copy all items to smaller table

Amortized analysis.
. Any sequence of n insert / delete operations take O(n) time.
. Space used is proportional to space required.

Note: actual cost of a single insert / delete can be proportional to n
if it triggers a table expansion or contraction.

Bottleneck operation.
. We count insertions (or re-insertions) and deletions.

. Overhead of memory management is dominated by (or
proportional to) cost of transferring items.

Dynamic Table: Insert

Dynamic Table Insert

Initialize table size m= 1.

| NSERT(x)
I F (number of elenents in table = m
Cenerate new table of size 2m
Re-insert mold elenents into new table.
m < 2m

Insert x into table.

Aggregate method.

. Sequence of n insert ops takes O(n) time. i log,

n .
j
. Letc;=cost of ithinsert. |§1Ci < n+j=202
. = n+(2n-1)
O/ if i -1is anexact power of 2
Cj = < 3n

- El otherwise

Dynamic Table: Insert

Accounting method.
. Charge each insert operation $3 (amortized cost).
- use $1 to perform immediate insert
- store $2 in with new item
. When table doubles: E
- $1 re-inserts item
- $1 re-inserts another old item

Dynamic Table: Insert and Delete

Insert and delete.
. Table overflows O double table size.
. Table <Y full O halve table size.

Bad idea: can cause thrashing.

) ;.)

AW |IN|PF

A |w(N|F
AIW|IN|F

gl |w(N|F

Dynamic Table: Insert and Delete

Insert and delete.
. Table overflows O double table size.
. Table < Y full O halve table size.

Dynamic Table Delete

Initialize table size m= 1.

DELETE(x)
I F (nunber of elements in table < m/ 4)
Cenerate new table of size m/ 2.
me< m/ 2
Reinsert old elenents into new table.

Delete x fromtable.

Dynamic Table: Insert and Delete

Accounting analysis.

. Charge each delete operation $2 (amortized cost).
- use $1 to perform delete
- store $1 in emptied slot

. When table halves:

- $1in emptied slot pays to re-insert a remaining item into new
half-size table

Dynamic Table: Delete

1f2fafals]e]7]8f

(1l2fafals]e]7[]

Contract table

Dynamic Table: Insert and Delete

Theorem. Sequence of n inserts and deletes takes O(n) time.
. Amortized cost of insert = $3.
. Amortized cost of delete = $2.

Binary Search Tree

Binary tree in "sorted" order.
. Maintain ordering property for ALL sub-trees.

root (middle value)

left subtree right subtree

(larger values) (smaller values)

Binary Search Tree

Binary tree in "sorted" order.
Maintain ordering property for ALL sub-trees.

Binary Search Tree

Binary tree in "sorted" order.
Maintain ordering property for ALL sub-trees.

Binary Search Tree

Insert, delete, find (symbol table).

. Amount of work proportional to height of tree.
. O(N)in "unbalanced" search tree.

. O(log N) in "balanced" search tree.

=1
=1

Types of BSTs.
. AVL trees, 2-3-4 trees, red-black trees.
. Treaps, skip lists, splay trees.

BST vs. hash tables.

. Guaranteed vs. expected performance.

. Growing and shrinking.

. Augmented data structures: order statistic trees, interval trees.

Search

Insert

Splay Trees

Splay trees (Sleator-Tarjan, 1983a). Self-adjusting BST.
Most frequently accessed items are close to root.
. Tree automatically reorganizes itself after each operation.
- no balance information is explicitly maintained
. Tree remains "nicely" balanced, but height can potentially be n - 1.
. Sequence of m ops involving n inserts takes O(m log n) time.

Theorem (Sleator-Tarjan, 1983a). Splay trees are as efficient (in
amortized sense) as static optimal BST.

Theorem (Sleator-Tarjan, 1983b). Shortest augmenting path algorithm
for max flow can be implemented in O(mn log n) time.

. Sequence of mn augmentations takes O(mn log n) time!
. Splay trees used to implement dynamic trees (link-cut trees).

Splay

Find(x, S): Determine whether element x is in splay tree S.
Insert(x, S): Insert x into S if it is not already there.

Delete(x, S): Delete x from S if it is there.

Join(s, S): Join S and S’ into a single splay tree, assuming that

x<yforallxOS,andyOS.

All operations are implemented in terms of basic operation:

Splay(x, S): Reorganize splay tree S so that element x is at the

root if x O S; otherwise the new root is either
max{kOS:k<x}ormin{kOS:k>x}.

Implementing Find(x, S).
. Call Splay(x, S).
. If xis root, then return x; otherwise return NO.

=1

Splay

Implementing Join(S, S).
. Call Splay(+», S) so that largest element of S is at root and all
other elements are in left subtree.
. Make S’ the right subtree of the root of S.

Implementing Delete(x, S).

. Call Splay(x, S) to bring x to the root if it is there.

. Remove x: let S’ and S” be the resulting subtrees.
. Call Join(s’, S").

Implementing Insert(x, S).
. Call Splay(x, S) and break tree at root to form S’ and S".
. Call Join(Join(S’, {x}), S").

Implementing Splay(x, S)

Splay(x, S): do following operations until x is root.
ZIG: If x has a parent but no grandparent, then rotate(x).

ZIG(x)

v

ZAG(y)

A

Implementing Splay(x, S)
Splay(x, S): do following operations until x is root.

ZIG-ZIG: If x has a parent y and a grandparent, and if both x and y
are either both left children or both right children.

ZIG-ZIG

v

Implementing Splay(x, S)

Splay(x, S): do following operations until x is root.

ZIG-ZAG: If x has a parent y and a grandparent, and if one of x, y
is aleft child and the other is a right child.

ZIG-ZAG

v

A

Splay Example

Apply Splay(1, S) to tree S:

ZIG-ZIG

Splay Example

Apply Splay(1, S) to tree S:

ZIG-ZIG

Splay Example

Apply Splay(1, S) to tree S:

ZIG-ZIG

Splay Example

Apply Splay(1, S) to tree S:

ZIG-ZIG

Splay Example

Apply Splay(1, S) to tree S:

Splay Example

Apply Splay(1, S) to tree S:

Splay Example

Apply Splay(2, S) to tree S:

Splay(2)

Splay Tree Analysis

Definitions.
. Let S(x) denote subtree of S rooted at x.
. |S| =number of nodes in tree S.
. U(S)=rank =0log |S| O
- H(X) = [(S(x)).

|S| = 10
H2)=3
u® =3
H(4) =2
M) =1
uod)=0

Splay Tree Analysis

Splay invariant: node x always has at least p(x) credits on deposit.

Splay lemma: each splay(x, S) operation requires < 3(u(S) - p(x)) +1
credits to perform the splay operation and maintain the invariant.

Theorem: A sequence of m operations involving n inserts takes
O(m log n) time.
Proof:
. U(X) < Ologn OO at most 3 0og n O+ 1 credits are needed for
each splay operation.
. Find, insert, delete, join all take constant number of splays plus
low-level operations (pointer manipulations, comparisons).
. Inserting x requires < [log n O credits to be deposited to maintain
invariant for new node x.
. Joining two trees requires < [log n O credits to be deposited to
maintain invariant for new root.

Splay Tree Analysis

Proof of splay lemma: Let u(x) and p’(x) be rank before and single
ZIG, ZIG-ZIG, or ZIG-ZAG operation on tree S.

. We show invariant is maintained (after paying for low-level
operations) using at most:
- 3((S) - u(x)) + 1 credits for each ZIG operation.
- 3('(X) - u(x)) credits for each ZIG-ZIG operation.
- 3('(X) - u(x)) credits for each ZIG-ZAG operation.

. Thus, if a sequence of of these are done to move x up the tree, we
get atelescoping sum O total credits < 3(u(S) - u(x)) + 1.

Splay Tree Analysis

Proof of splay lemma (ZIG): It takes < 3((S) - u(x)) + 1 credits to
perform a ZIG operation and maintain the splay invariant.

- root -

ZIG

. In order to maintain invariant, we must pay:
H ()= ()

(X)) = 1 (x)
(U ()= p(x))

-0

)+ (y)-p(x)-uy)

N IN

. Use extra credit to pay for
low-level operations.

Splay Tree Analysis

Proof of splay lemma (ZIG-ZIG): It takes < 3(W'(x) - K(x)) credits to
perform a ZIG-ZIG operation and maintain the splay invariant.

)+)+ (2)-pu(x)-p(y)-u(2))+ (2)-pu(x)—uy)
W)—pE)+W (2)-u))
(1 (x) = (X)) + (1 (x) = 1 (x))

2(¢' (x) = p(x))

NI

. If W(X) > u(x), then can afford to
pay for constant number of low-level
operations and maintain invariant using < 3(K'(x) - u(x)) credits.

Splay Tree Analysis

Proof of splay lemma (ZIG-ZIG): It takes < 3(W'(x) - K(x)) credits to
perform a ZIG-ZIG operation and maintain the splay invariant.

. Nasty case: pu(x) = '(x).
. We show in this case p'(x) + '(y) + W'(z2) < pu(x) + ply) + u(2).
- don’t need any credit to pay for invariant
-1 credit left to pay for low-level operations
so, for contradiction, suppose W'(x) + W (y) + '(z) = pux) + ply) + p(2).
. Since p(x) = W (x) = u(z), by monotonicity p(x) = p(y) = u(2).
. After some algebra, it follows that p(x) = p'(z2) = u(2).
. Leta=1+|A|+|B|,b=1+|C|+|D|, then
Olog a 0= 0log b O =Olog (atb+1) O
. WLOG assume b = a.

dog(a+b+1)J = [og(2a)]
1+Joga[]
doga[]

A\

Z1G-ZIG
—_—

Splay Tree Analysis

Proof of splay lemma (ZIG-ZAG): It takes < 3(M'(X) - u(x)) credits to
perform a ZIG-ZAG operation and maintain the splay invariant.

. Argument similar to ZIG-ZIG.

ZIG-ZAG

Princeton University ¢« COS 423 « Theory of Algorithms « Spring 2001 < Kevin Wayne

Interval Trees

G519
R

v

Support following operations.

Interval-Insert(i, S):
Interval-Delete(i, S):
Interval-Find(i, S):

Insert interval i = (¢, r;) into tree S.

Delete interval i = (¢, r;) from tree S.
Return an interval x that overlaps i, or

report that no such interval exists.

Interval Trees

G519
R

v

Key ideas:
. Tree nodes contain interval.
. BST keyed on left endpoint.

4, 8)

/‘

Key Interval

(15, 18)

Interval Trees

G519
R

v

Key ideas:

(17, 19)

. Additional info: store max | (5,11) | 18 |

endpoint in subtree rooted
at node.

[@8 |s]|[a@s18]18] maxin
subtree

| @1,23) | 23|

Finding an Overlapping Interval

Interval-Find(i, S): return an interval x that overlaps i = (¢;, r;), or

report that no such interval exists.
Interval-Find (i, S)

X < root(S)

(17, 19)
WHI LE (x !'= NULL)
IF (x overlaps i)

|(5, 11)|18| |(21, 23) |23| RETURN t
IF (left[x] = NULL OR
/\ max[left[x]] < £4)
< righ
| @8 |8 || @518 18] s 7 IR

X < left[x]
RETURN NO
(7, 10) Spl ay | ast node on path
traversed.

40

Finding an Overlapping Interval

Interval-Find(i, S): return an interval x that overlaps i = (¢, r;), or

report that no such interval exists.
Interval-Find (i, S)

X < root(S)

Case 1 (right). If search goes right,
then there exists an overlap in right
subtree or no overlap in either.
WHI LE (x !'= NULL)
IF (x overlaps i)
RETURN t
IF (left[x] = NULL OR
max[left[x]] < ¢4)

Proof. Suppose no overlap in right.
. left[x] = NULL O
no overlap in left.

. mex[left[x]] < ¢ O X « right[x]
no overlap in left. ELSE
X « left[x]
RETURN NO

Spl ay | ast node on path

traversed.

L]

41

Finding an Overlapping Interval

Interval-Find(i, S): return an interval x that overlaps i = (¢;, r;), or

report that no such interval exists.

Case 2 (left). If search goes left,
then there exists an overlap in left
subtree or no overlap in either.

Proof. Suppose no overlap in left.

- 4 < max[left[x]] =r; for

some interval j in left subtree.

. Sinceiandjdon’t overlap, we have

. Treesorted by ¢ O for any interval

kinright subtree: r; < ¢, < ¢4 O

i j

no overlap in right subtree.

Interval-Find (i, S)

X < root(S)

WHI LE (x !'= NULL)
IF (x overlaps i)
RETURN x
IF (left[x] = NULL OR
max[left[x]] < ¢4)

X < right[x]
ELSE
X < left[x]
RETURN NO

Spl ay | ast node on path

traversed.

42

Interval Trees: Running Time

Need to maintain augmented data structure during tree-modifying ops.
. Rotate: can fix sizes in O(1) time by looking at children:

0 max[left[x]]
max[x] =max O max[right[x]]
H .

35

43

VLSI Database Problem

VLSI database problem.

. Input: integrated circuit represented as a list of rectangles.
. Goal: decide whether any two rectangles overlap.

Algorithm idea.

. Move a vertical "sweep line" from left to right.

. Store set of rectangles that intersect the sweep line in an interval
search tree (using y interval of rectangle).

>
>

a4

VLSI Database Problem

VLSI(ry, 1y 1)

Sort rectangle by x coordinate (keep two copies of
rectangl e, one for left endpoint and one for right).

FORi =1 to 2N
IF (r; is "left" copy of rectangle)
I'F (Interval -Find(r;,, S))
RETURN YES
ELSE
Interval -Insert(r;, S)
ELSE (r; is "right" copy of rectangle)
I nterval -Del ete(r;, S)

45

Order Statistic Trees

Add following two operations to BST.
Select(i, S): Return ith smallest key in tree S.
Rank(i, S): Return rank of x in linear order of tree S.

Key idea: store size of subtrees in nodes.

Key Subtree size

46

Order Statistic Trees

Need to ensure augmented data structure can be maintained during
tree-modifying ops.

. Rotate: can fix sizes in O(1) time by looking at children.

ZIG

ZAG

47

