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Objectives

• Amortized Analysis
- potential method

• Fibonacci Heaps 
- construction
- operations



running time analysis

• typical: Algorithm uses data-structure and operations
- structures: table, array, hash, heap, list, stack
- operations: insert, delete, search, min, max, push, pop

• measure running time by analyzing 
- the sequence of operations, 
- their frequency
- each operation running time (computation cost) 



Running Time Analysis

• determine the c = costliest/longest  iteration
- usually an outer loop of n iterations
- overall n* (longest cost per iteration) = n*c

• Thats not very accurate!
- not all iterations have the longest cost
- perhaps some average technique can work, but how to prove?

• “compensate” : show that for every costly iteration, 
there must be other “cheap” iterations 



Example : binary counter

• each row is a binary representation of the counter
- increasing by one
- right side: cost = how many bits require changes

• naive running time to increment from 0 to n : 
- each row may cost up to O(log n)
- n iterations/increments would be O(n*logn)

bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 1

0 0 0 1 1 0

0 0 0 1 1 1

0 0 1 0 0 0

cost (bits changed)

N/A

1

2

1

3

1

2

1

4



Example : binary counter

• true cost for n iterations: 1+2+1+3+1+2+1+4+... = 2n = 
O(n)

• reason: the iteration cost very rarely is O(log n)
- O(logn) means changing a good number of bits
- for one iteration of cost O(logn), there must be many “cheap” 

iterations

bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 1

0 0 0 1 1 0

0 0 0 1 1 1

0 0 1 0 0 0

cost (bits changed)

N/A

1

2

1

3

1

2

1

4



binary counter amortization

• Aggregation method: consider all n 
iterations
- bit 0 changes every iteration => cost n 
- bit 1 changes for half of iterations => cost n/2
- bit 2 changes quarter of iterations => cost n/4
- bit 3 changes 1/8 of iterations => cost n/8
- ... etc

• total cost : add up the cost per bit
- n + n/2 + n/4+ n/8 + ... = 2n

• Aggregation method impractical, only 
works on toy examples like this

bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 1

0 0 0 1 1 0

0 0 0 1 1 1

0 0 1 0 0 0



Amortized Analysis

• ci = true cost of i-th operation/iteration

•    = amortized cost of i-th operation/iteration
- we have to come up with di

• the cumulative amortized cant be smaller than the 
true cumulative cost, up to any iteration k  



Accounting Method

• assign the di amortized cost

• if overcharge some operation (di>ci) use the excess 
as “prepaid credit” , 

• use the prepaid credit later for an expensive 
operation



Potential method

• associate a potential function ɸ with datastructure T

- ɸ(Ti) = “potential” (or risk for cost) associated with datastructure 
after i-th operation

- typically a measure of complexity/risk/size of the datastructure

• require                              for all i

•    = amortized cost (up to us to define)

• ci = true cost for operation i

• ɸ = potential function
• Ti = datastructure after ith operation



Accounting Method for binary counter

• assign amortized cost of di=2  for each operation

• verify the amortized condition

bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 1

0 0 0 1 1 0

0 0 0 1 1 1

0 0 1 0 0 0

true cost (ci) amortized  cost 

N/A N/A

1 2

2 2

1 2

3 2

1 2

2 2

1 2

4 2



Accounting Method for binary counter

• assign amortized cost of di=2  for each operation

• verify the amortized condition

bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 1

0 0 0 1 1 0

0 0 0 1 1 1

0 0 1 0 0 0

true cost (ci) amortized  cost 

N/A N/A

1 2

2 2

1 2

3 2

1 2

2 2

1 2

4 2

cum true cost cum amortized  cost

N/A N/A

1 2

3 4

4 6

7 8

8 10

10 12

11 14

15 16



Potential method for binary count 
• define the potential ɸ(Ti) = the number of “1” bits

• verify                             for each operation
- there is only one operation: “increment”
- di=2 , amortized cost defined by us
- before the operation i, at Ti-1, say there are k trailing 1 ones, before 

i-th increment
- ci= true cost  = k+1 bit changes: k of “1” bits made “0” (from right 

to left up to the first “0”); plus the first “0” made “1”
- ɸ(Ti) - ɸ(Ti-1) = “1” gained  -  “1” lost = 1-k

- equation becomes 2⩾k+1 + 1-k, it checks out! di = 2 is good

... ... 0 1 0 1 1 1 1
k+1



Stack operations - review
• stack is an array with LAST-IN-FIRST-OUT operations

• push(value) : put the new value on the stack (at the top)

• pop(n): take the top n values, return the, delete them 
from stack

• naive analysis for n operations : n*O(n) = O(n2)

• better: for pop() to extract many elements, many push() 
must have happened before, each push is O(1)

z
c c d
b b b b b
a a a a a

push(z) pop(2) push(d) pop(1)



Accounting method for Stack

• account each push(x) with $2: 
- $1 for the actual push(x) operation, to add x to the stack
- $1 credit for the possible later pop() operation that extracts x

• each pop(k) also $2, for any k

• so each operation is accounted with $2, 

• total running time for n operations is 2*n = O(n)

• when pop(k) is called, each one of the popped 
elements have stored $1 to account for their 
extraction, O(k) time  



Potential method for Stack

• define the potential ɸ(stack) = size(stack) 
- ɸ(T) = |T| ; T = the stack; Ti = stack after i operations

• define the amortized costs: dpush=2 ; dpop=2

• consider the true costs cpush=1 ; cpop(k)=k

• prove that for each operation the potential satisfies 
the fundamental property (exercise)

• which means the amortized cost d=2 is valid. 


