Skip Lists

CMSC 420



Linked Lists Benefits & Drawbacks

® Benefits:
- Easy to insert & delete in O(1) time

- Don’t need to estimate total memory needed

e Drawbacks:

- Hard to search in less than O(n) time
(binary search doesn’t work, eg.)

- Hard to jump to the middle

® Skip Lists:
- fix these drawbacks

- good data structure for a dictionary ADT



Skip Lists

e Invented around 1990 by Bill Pugh

® Generalization of sorted linked lists — so simple to
implement

e Expected search time is O(log n)

e Randomized data structure:

- use random coin flips to build the data structure



Perfect Skip Lists
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Perfect Skip Lists

e Keysin sorted order.

e Of(log n) levels

e FEach higher level contains 1/2 the elements of the

level below it.

e Header & sentinel nodes are in every level
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Perfect Skip Lists, continued

® Nodes are of variable size:

e Pointers point to the start of each node

contain between 1 and O(log n) pointers

(picture draws pointers horizontally for visual clarity)

o (alled skip lists because higher level lists let you skip over
many 1tems
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Perfect Skip Lists, continued
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When search for k:

If k = key, done!

If k < next key, go down a level
If k > next key, go right




In other words,

e To find an item, we scan along the shortest list until
we would “pass” the desired item.

e At that point, we drop down to a slightly more
complete list at one level lower.

¢ Remember: sorted sequential searching...

for(i = 0; 1 < n; 1i++)
i1f(X[1] >= K) break;
if(X[1] != K) return FAIL;



Perfect Skip Lists, continued
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When search for k:

If k = key, done!

If k < next key, go down a level
If k > next key, go right




Search Time:

¢ O(logn) levels --- because you cut the # of items in
half at each level

e Will visit at most 2 nodes per level:
If you visit more, then you could have done it on
one level higher up.

® Therefore, search time is O(log n).



Insert & Delete

e Insert & delete might need to rearrange the entire
list

e Like Perfect Binary Search Trees, Perfect Skip Lists
are foo structured to support efficient updates.

® |dea:

- Relax the requirement that each level have exactly half
the items of the previous level

- Instead: design structure so that we expect 1/2 the items
to be carried up to the next level

— Skip Lists are a randomized data structure: the same
sequence of inserts / deletes may produce different
structures depending on the outcome of random coin

flips.




Randomization

e Allows for some imbalance (like the +!

| -1 in AVL trees)

e Expected behavior (over the random c
the same as with perfect skip lists.

noices) remains

e Idea: Each node is promoted to the next higher level

with probability 1/2
- Expect 1/2 the nodes at level 1

- Expect 1/4 the nodes at level 2

e Therefore, expect # of nodes at each level is the same as

with perfect skip lists.

e Also: expect the promoted nodes will be well

distributed across the list



Randomized Skip List:
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Insertion:
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Insertion:

Insert 87
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Find k
Insert node in level 0 Just insertion into
let i =1 a linked list after
while FLIP() == “heads”: last visited node in

insert node into level 1

i++

level 1




Deletion:
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Deletion:
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There are no “bad” sequences:

o We expect a randomized skip list to perform about
as well as a pertect skip list.

e With some very small probabi

the skip list will just |

1ty,

be a linkec

| list, or

the skip list will have every node at every level

These degenerate skip lists are very unlikely!

e [evel structure of a skip list is independent of the
keys you insert.

e Therefore, there are no “bad” key sequences that
will lead to degenerate skip lists



Skip List Analysis

e Expected number of levels = O(log n)
- E[# nodes atlevel 1] =n/2
- E[# nodes atlevel 2] =n/4

- E[# nodes atlevel logn] =1

e Still need to prove that # of steps at each level is
small.



Backwards Analysis

Consider the reverse of the path you took to find k:
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Note that you glways move up if you can.

(because you always enter a node from its topmost
level when doing a find)




Analysis, continued...

¢ What's the probability that you can move up at a
give step of the reverse walk?

0.5

e Steps to goupjlevels =
Make one step, then make either
C(j-1) steps if this step went up [Prob = 0.5]
C(j) steps if this step went left [Prob = 0.5]

e FExpected # of steps to walk up j levels is:
C(j) =1+ 0.5C(j-1) + 0.5C())



Analysis Continue, 2

e Expected # of steps to walk up j levels is:
C(j) =1+ 0.5C(j-1) + 0.5C(j)

So:
2C() =2 + C(j-1) + C(j)

C(j) =2 + C(j-1)

Expected # of steps at each level =2

¢ Expanding C(j) above gives us: C(j) = 2j

¢ Since O(log n) levels, we have O(log n) steps, expected



Implementation Notes

® Node structures are of variable size

e But once a node is created, its size won’t change

e [t's often convenient to assume that you know the
maximum number of levels in advance
(but this is not a requirement).



