
Skip Lists
CMSC 420

Linked Lists Benefits & Drawbacks

• Benefits:

- Easy to insert & delete in O(1) time

- Don’t need to estimate total memory needed

• Drawbacks:

- Hard to search in less than O(n) time
(binary search doesn’t work, eg.)

- Hard to jump to the middle

• Skip Lists:

- fix these drawbacks

- good data structure for a dictionary ADT

Skip Lists

• Invented around 1990 by Bill Pugh

• Generalization of sorted linked lists – so simple to
implement

• Expected search time is O(log n)

• Randomized data structure:

- use random coin flips to build the data structure

Perfect Skip Lists

2 10 15 16 31 71 96

header sentinel

2 31

31

2 15 31 96

Perfect Skip Lists

• Keys in sorted order.

• O(log n) levels

• Each higher level contains 1/2 the elements of the
level below it.

• Header & sentinel nodes are in every level

2 10 15 16 31 71 96

2 31

31

2 15 31 962
15

31

96

Perfect Skip Lists, continued

• Nodes are of variable size:

- contain between 1 and O(log n) pointers

• Pointers point to the start of each node
(picture draws pointers horizontally for visual clarity)

• Called skip lists because higher level lists let you skip over
many items

2 10 15 16 31 71 96

2 31

31

2 15 31 962
15

31

96

2 10 15 16 31 71 96

2 31

31

2 15 31 962
15

31

76
87 91 96

91

91

91

Perfect Skip Lists, continued

Find 71

71 < Inf?

71 < 91?

71 < 96?

Comparison

71 < 31?

Change
current
location

When search for k:
 If k = key, done!
 If k < next key, go down a level
 If k ≥ next key, go right

In other words,

• To find an item, we scan along the shortest list until
we would “pass” the desired item.

• At that point, we drop down to a slightly more
complete list at one level lower.

• Remember: sorted sequential searching...

for(i = 0; i < n; i++)
 if(X[i] >= K) break;
if(X[i] != K) return FAIL;

2 10 15 16 31 71 96

2 31

31

2 15 31 962
15

31

76
87 91 96

91

91

91

Perfect Skip Lists, continued

Find 96

96 < Inf?

96 < 91? 96 < Inf?

Comparison

96 < 31?

Change
current
location

When search for k:
 If k = key, done!
 If k < next key, go down a level
 If k ≥ next key, go right

96 < Inf?

96 ≤ 96?

Search Time:

• O(log n) levels --- because you cut the # of items in
half at each level

• Will visit at most 2 nodes per level:
If you visit more, then you could have done it on
one level higher up.

• Therefore, search time is O(log n).

Insert & Delete

• Insert & delete might need to rearrange the entire
list

• Like Perfect Binary Search Trees, Perfect Skip Lists
are too structured to support efficient updates.

• Idea:

- Relax the requirement that each level have exactly half
the items of the previous level

- Instead: design structure so that we expect 1/2 the items
to be carried up to the next level

- Skip Lists are a randomized data structure: the same
sequence of inserts / deletes may produce different
structures depending on the outcome of random coin
flips.

Randomization

• Allows for some imbalance (like the +1 -1 in AVL trees)

• Expected behavior (over the random choices) remains
the same as with perfect skip lists.

• Idea: Each node is promoted to the next higher level
with probability 1/2

- Expect 1/2 the nodes at level 1

- Expect 1/4 the nodes at level 2

- ...

• Therefore, expect # of nodes at each level is the same as
with perfect skip lists.

• Also: expect the promoted nodes will be well
distributed across the list

Randomized Skip List:

2 10 15 16 31 71 86

2

31

31

2

31

96
16

71

87 91 96

91

91

9115
2 89

Insertion:

Insert 87

2 10 15 16 31 71 86

2

31

31

2

31

96
16

71

87 91 96

91

91

9115
2 89

Insertion:

Insert 87

2 10 15 16 31 71 86

2

31

31

2

31

96
16

71

87 91 96

91

91

9115
2 89

87

87

87

Find k
Insert node in level 0
let i = 1
while FLIP() == “heads”:
 insert node into level i
 i++

Just insertion into
a linked list after
last visited node in
level i

Deletion:

Delete 87

2 10 15 16 31 71 86

2

31

31

2

31

96
16

71

87 91 96

91

91

9115
2 89

87

87

87

Deletion:

Delete 87

2 10 15 16 31 71 86

2

31

31

2

31

96
16

71

87 91 96

91

91

9115
2 89

There are no “bad” sequences:

• We expect a randomized skip list to perform about
as well as a perfect skip list.

• With some very small probability,

- the skip list will just be a linked list, or

- the skip list will have every node at every level

- These degenerate skip lists are very unlikely!

• Level structure of a skip list is independent of the
keys you insert.

• Therefore, there are no “bad” key sequences that
will lead to degenerate skip lists

Skip List Analysis

• Expected number of levels = O(log n)

- E[# nodes at level 1] = n/2

- E[# nodes at level 2] = n/4

- ...

- E[# nodes at level log n] = 1

• Still need to prove that # of steps at each level is
small.

Backwards Analysis

2 10 15 16 31 71 86

2

31

31

2

31

96
16

71

87 91 96

91

91

9115
2 89

Consider the reverse of the path you took to find k:

Note that you always move up if you can.
(because you always enter a node from its topmost
level when doing a find)

Analysis, continued...

• What’s the probability that you can move up at a
give step of the reverse walk?

0.5

C(j) = 1 + 0.5C(j-1) + 0.5C(j)
• Expected # of steps to walk up j levels is:

Steps to go up j levels =
 Make one step, then make either
 C(j-1) steps if this step went up [Prob = 0.5]
 C(j) steps if this step went left [Prob = 0.5]

•

Analysis Continue, 2

C(j) = 1 + 0.5C(j-1) + 0.5C(j)
• Expected # of steps to walk up j levels is:

2C(j) = 2 + C(j-1) + C(j)

C(j) = 2 + C(j-1)

So:

Expected # of steps at each level = 2

•Expanding C(j) above gives us: C(j) = 2j

•Since O(log n) levels, we have O(log n) steps, expected

Implementation Notes

• Node structures are of variable size

• But once a node is created, its size won’t change

• It’s often convenient to assume that you know the
maximum number of levels in advance
(but this is not a requirement).

