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Linked Lists Benefits & Drawbacks

• Benefits:

- Easy to insert & delete in O(1) time

- Don’t need to estimate total memory needed

• Drawbacks:

- Hard to search in less than O(n) time 
(binary search doesn’t work, eg.)

- Hard to jump to the middle

• Skip Lists: 

- fix these drawbacks

- good data structure for a dictionary ADT



Skip Lists

• Invented around 1990 by Bill Pugh

• Generalization of sorted linked lists – so simple to 
implement

• Expected search time is O(log n)

• Randomized data structure:

- use random coin flips to build the data structure



Perfect Skip Lists
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Perfect Skip Lists

• Keys in sorted order.

• O(log n) levels

• Each higher level contains 1/2 the elements of the 
level below it.

• Header & sentinel nodes are in every level
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Perfect Skip Lists, continued

• Nodes are of variable size: 

- contain between 1 and O(log n) pointers

• Pointers point to the start of each node
(picture draws pointers horizontally for visual clarity)

• Called skip lists because higher level lists let you skip over 
many items
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Perfect Skip Lists, continued

Find 71

71 < Inf?

71 < 91?

71 < 96?

Comparison

71 < 31?

Change 
current 
location

When search for k:
   If k = key, done!
   If k < next key, go down a level
   If k ≥ next key, go right



In other words,

• To find an item, we scan along the shortest list until 
we would “pass” the desired item.

• At that point, we drop down to a slightly more 
complete list at one level lower.

• Remember: sorted sequential searching...

for(i = 0; i < n; i++)
    if(X[i] >= K) break;
if(X[i] != K) return FAIL;
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Perfect Skip Lists, continued

Find 96

96 < Inf?

96 < 91? 96 < Inf?

Comparison

96 < 31?

Change 
current 
location

When search for k:
   If k = key, done!
   If k < next key, go down a level
   If k ≥ next key, go right

96 < Inf?

96 ≤ 96?



Search Time:

• O(log n) levels --- because you cut the # of items in 
half at each level

• Will visit at most 2 nodes per level:
If you visit more, then you could have done it on 
one level higher up.

• Therefore, search time is O(log n).



Insert & Delete

• Insert & delete might need to rearrange the entire 
list

• Like Perfect Binary Search Trees, Perfect Skip Lists 
are too structured to support efficient updates.

• Idea:

- Relax the requirement that each level have exactly half 
the items of the previous level

- Instead: design structure so that we expect 1/2 the items 
to be carried up to the next level

- Skip Lists are a randomized data structure: the same 
sequence of inserts / deletes may produce different 
structures depending on the outcome of random coin 
flips.



Randomization

• Allows for some imbalance (like the +1 -1 in AVL trees)

• Expected behavior (over the random choices) remains 
the same as with perfect skip lists.

• Idea: Each node is promoted to the next higher level 
with probability 1/2

- Expect 1/2 the nodes at level 1

- Expect 1/4 the nodes at level 2

- ...

• Therefore, expect # of nodes at each level is the same as 
with perfect skip lists.

• Also: expect the promoted nodes will be well 
distributed across the list



Randomized Skip List:
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Insertion:

Insert 87 
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Insertion:

Insert 87 
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Find k
Insert node in level 0
let i = 1
while FLIP() == “heads”:
    insert node into level i
    i++

Just insertion into 
a linked list after 
last visited node in 
level i



Deletion:

Delete 87
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Deletion:

Delete 87
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There are no “bad” sequences:

• We expect a randomized skip list to perform about 
as well as a perfect skip list.

• With some very small probability, 

- the skip list will just be a linked list, or

- the skip list will have every node at every level

- These degenerate skip lists are very unlikely!

• Level structure of a skip list is independent of the 
keys you insert.

• Therefore, there are no “bad” key sequences that 
will lead to degenerate skip lists



Skip List Analysis

• Expected number of levels = O(log n)

- E[# nodes at level 1] = n/2

- E[# nodes at level 2] = n/4

- ...

- E[# nodes at level log n] = 1

• Still need to prove that # of steps at each level is 
small.



Backwards Analysis
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Consider the reverse of the path you took to find k:

Note that you always move up if you can.
(because you always enter a node from its topmost 
level when doing a find)



Analysis, continued...

• What’s the probability that you can move up at a 
give step of the reverse walk?

0.5

C(j) = 1 + 0.5C(j-1) + 0.5C(j)
• Expected # of steps to walk up j levels is:

Steps to go up j levels =
   Make one step, then make either
       C(j-1) steps if this step went up [Prob = 0.5]
       C(j) steps if this step went left [Prob = 0.5]

•  



Analysis Continue, 2

C(j) = 1 + 0.5C(j-1) + 0.5C(j)
• Expected # of steps to walk up j levels is:

2C(j) = 2 + C(j-1) + C(j)

C(j) = 2 + C(j-1)

So:

Expected # of steps at each level = 2

•Expanding C(j) above gives us: C(j) = 2j

•Since O(log n) levels, we have O(log n) steps, expected



Implementation Notes

• Node structures are of variable size

• But once a node is created, its size won’t change

• It’s often convenient to assume that you know the 
maximum number of levels in advance 
(but this is not a requirement).


