
CS5800: Algorithms Instructor: Virgil Pavlu
Homework 8

Problems

1. (50 pts) Implement a hash for text. Given a string as input, construct a hash with
words as keys, and word counts as values. Your implementation should include:

� a hash function that has good properties for text

� storage and collision management using linked lists

� operations: insert(key,value), delete(key), increase(key), find(key), list-all-keys

� each word (key) can only appear once in the datastructure

Output the list of words together with their counts on an output file. For this problem,
you cannot use built-in-language datastuctures that can index by strings (like hash
tables or dictionaries). Use a language that easily implements linked lists.

You can test your code on “Alice in Wonderland” by Lewis Carroll, at
http://www.ccs.neu.edu/home/vip/teach/Algorithms/\7_hash_RBtree_simpleDS/

hw_hash_RBtree/alice_in_wonderland.txt.
The test file used by TA, if different, might be shorter.
Try these three values for m =MAXHASH : 30, 300, 1000. For each of these m values,
produce a histogram over the lengths of collision lists. You can also calculate variance
of these lengths.
If your hash is close to uniform in collisions, you should get variance close to zero, and
almost all list-lengths around α = n/m
If your hash has long lists, we want to know how many and how long, for example
print the lengths of the longest 10% of the lists.

(Extra Credit) Find a way to record not only word counts, but also the positions in
text. For each word, besides the count value, built a linked list with positions in the
given text. Output this list together with the count.

2. (50points) Implement a red-black tree, including binary-search-tree operations sort,
search, min, max, successor, predecessor and specific red-black procedures rotation,
insert, delete.
The delete implementation is Extra Credit for RB-trees (including fixup procedure),
but it is mandatory for regular BST (without fixup procedure).

Your code should take the input array of numbers from a file and build a red-black
tree with this input by sequence of “inserts”. Then interactively ask the user for an

1

http://www.ccs.neu.edu/home/vip/teach/Algorithms/\7_hash_RBtree_simpleDS/hw_hash_RBtree/alice_in_wonderland.txt
http://www.ccs.neu.edu/home/vip/teach/Algorithms/\7_hash_RBtree_simpleDS/hw_hash_RBtree/alice_in_wonderland.txt

operational command like “insert x” or “sort” or “search x” etc, on each of which your
code rearranges the tree and if needed produces an output. After each operation also
print out the height of the tree.

You can use any mechanism to implement the tree, for example with pointers and
struct objects in C++, or with arrays of indices that represent links between parent
and children. You cannot use any tree built-in structure in any language.

3. (Implement Skiplists 50 points). Study the skiplist data structure and operations.
They are used for sorting values, but in a datastructure more effficient than lists or
arrays, and more guaranteed than binary search trees. Review Slides skiplists.pdf
and Visualizer https://people.ok.ubc.ca/ylucet/DS/SkipList.html. The demo
will be a sequence of operations (asked by TA) such as for example
insert 20, insert 40, insert 10, insert 20, insert 5, insert 80, delete 20, insert 100, insert
20, insert 30, delete 5, insert 50, lookup 80, etc

4. (DP problem; Extra credit 50 pts) The int[] bag describes a bag of non-negative
integers. A bag is the same thing as a set, only it may contain repeated elements. The
order of elements in a bag does not matter. Given two bags A and B, we say that
A is a sub-bag of B if A can be obtained by erasing zero or more elements from B.
The weight of a bag is the sum of its elements. Examples: The bags (1, 2, 1, 3, 1) and
(3, 1, 1, 1, 2) are the same, but different from the bag (1, 2, 3, 3). Bags (1, 2) and (3, 1, 1)
are sub-bags of the bag (1, 2, 1, 3, 1), but bag (1, 2, 2) is not. The weight of the bag
(1, 2, 1, 3, 1) is 1 + 2 + 1 + 3 + 1 = 8. The bag will contain less than 50 elements, and
each element will be less than 10,000. Write a method that will compute how many
sub-bags of bag have a prime weight. Your program should not use more than 3M
memory, and should pass the following testing cases (the running time of each testing
case should be within 3 seconds).

Input 1: {1,1,1,1,1,1,1,1,1,1}
Return 1: 4

Input 2: {4,6,8,10,12,14}
Return 2: 0

Input 3: {1,2,4,8,16,32,64,128}
Return 3: 54

Input 4: {9947, 9948, 9949, 9950, 9951, 9952, 9953, 9954, 9955, 9956, 9957, 9958, 9959,
9960, 9961, 9962, 9963, 9964, 9965, 9966, 9967, 9968, 9969, 9970, 9971, 9972, 9973,

2

skiplists.pdf
https://people.ok.ubc.ca/ylucet/DS/SkipList.html

9974, 9975, 9976, 9977, 9978, 9979, 9980, 9981, 9982, 9983, 9984, 9985, 9986, 9987,
9988, 9989, 9990, 9991, 9992, 9993, 9994, 9995, 9996}
Return 4: 91378169764810

Input 5: {9947, 9947, 9947, 9947, 9947, 9947, 9947, 9947, 9947, 9947, 9947, 9947, 9947,
9947, 9947, 9947, 9947, 9947, 9947, 9947, 9947, 9947, 9947, 9947, 9947, 9934, 9934,
9934, 9934, 9934, 9934, 9934, 9934, 9934, 9934, 9934, 9934, 9934, 9934, 9934, 9934,
9934, 9934, 9934, 9934, 9934, 9934, 9934, 9934, 9934}
Return 5: 54

Input 6: {1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024,
1024, 2048, 2048, 4096, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256,
512, 512, 1024, 1024, 2048, 2048, 4096}
Return 6: 62648678

Input 7: {10000, 9999, 9998, 9997, 9996, 9995, 9994, 9993, 9992, 9991, 9990, 9989,
9988, 9987, 9986, 9985, 9984, 9983, 9982, 9981, 9980, 9979, 9978, 9977, 9976, 9975,
9974, 9973, 9972, 9971, 9970, 9969, 9968, 9967, 9966, 9965, 9964, 9963, 9962, 9961,
9960, 9959, 9958, 9957, 9956, 9955, 9954, 9953, 9952, 9951}
Return 7: 89655114688016

Input 8: {9990, 9991, 9992, 9993, 9994, 9995, 9996, 9997, 9998, 9999, 9990, 9991, 9992,
9993, 9994, 9995, 9996, 9997, 9998, 9999, 9990, 9991, 9992, 9993, 9994, 9995, 9996,
9997, 9998, 9999, 9990, 9991, 9992, 9993, 9994, 9995, 9996, 9997, 9998, 9999, 9990,
9991, 9992, 9993, 9994, 9995, 9996, 9997, 9998, 9999}
Return 8: 4814999

Input 9: {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 10000, 10000, 10000, 10000, 10000,
10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000,
10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000,
10000, 10000, 10000, 10000, 10000, 10000, 10000}
Return 9: 6555

3

