CS5800: Algorithms — Spring 21 — Virgil Pavlu

Homework 7 and 8
Submit via Gradescope

Name:
Collaborators:

Instructions:

¢ Make sure to put your name on the first page. If you are using the IATEX template we provided,
then you can make sure it appears by filling in the yourname command.

¢ Please review the grading policy outlined in the course information page.

* You must also write down with whom you worked on the assignment. If this changes from
problem to problem, then you should write down this information separately with each
problem.

e Problem numbers (like Exercise 3.1-1) are corresponding to CLRS 3" edition. While the 2"
edition has similar problems with similar numbers, the actual exercises and their solutions
are different, so make sure you are using the 3" edition.


https://www.gradescope.com/courses/232127

1. (50 points)

Implement a hash for text. Given a string as input, construct a hash with words as keys, and word
counts as values. Your implementation should include:

¢ a hash function that has good properties for text
¢ storage and collision management using linked lists

¢ operations: insert(key,value), delete(key), increase(key), find(key), list-all-keys

Output the list of words together with their counts on an output file. For this problem,you cannot
use built-in-language datastuctures that can index by strings (like hashtables). Use a language that
easily implements linked lists, like C/C++.

You can test your code on “Alice in Wonderland” by Lewis Carroll, at link

The test file used by TA will probably be shorter.

(Extra Credit) Find a way to record not only word counts, but also the positions in text. For each
word, besides the count value, build a linked list with positions in the given text. Output this list
together with the count.

2. (50 points)

Implement a red-black tree, including binary-search-tree operations sort, search, min, max, successor,
predecessor and specific red-black procedures rotation, insert, delete. The delete implementation is
Extra Credit (but highly recommended).

Your code should take the input array of numbers from a file and build a red-black tree with this
input by sequence of “inserts”. Then interactively ask the user for an operational command like
“insert x” or “sort” or “search x” etc, on each of which your code rearranges the tree and if needed
produces an output. After each operation also print out the height of the tree.

You can use any mechanism to implement the tree, for example with pointers and struct objects in
C++, or with arrays of indices that represent links between parent and children. You cannot use
any tree built-in structure in any language.

3. (50 points)

Implement Skiplists 50 points. Study the skiplist data structure and operations. They are used for
sorting values, but in a datastructure more effficient than lists or arrays, and more guaranteed than
binary search trees.


http://www.ccs.neu.edu/home/vip/teach/Algorithms/7_hash_RBtree_simpleDS/hw_hash_RBtree/alice_in_wonderland.txt

