

Med, 2| F
@ sd e Q%kw'i

¢ Cughs SP epesetbon LP (s.«&&%}
T B g Seches (3

@ Q&é\ QKQC\Q mh’\eei

o %f L&JCS

—

W\A&fﬁ% (o) = T(w) T a) +\

0G5ume Ul | = o P
n vwz @ D,
ftﬁ NSouwncced

a\r\ :&v»\ AV Q\pl. + L
R 1)

Lower bowd Tl = T2 (Rlonce)
\ sl T T) & T *@ﬁ;??

A= sebol walce BuGL - @

?M&\“L\bvu l\'\&“&m LU C= >)'\rL y) MS
BN C =&
. SAUNG,
> oy — 20 | T e (¥,

4

\L\L&,&)QKCQ \/\/m N
Valueg = ‘) 77
W%NS

S O SR

| / chaga (/L&;\HS
(D) woploged srdd e = 0f (wesk- ekt
b allofer

) Kﬂm«;@\% %}

S L/Q\L\‘e QLC%(
Mmé\i“ C ed Acees AL
] {\a\(: Crnbuao® ke MMV
L \ ()

UQQC)\ .
Alld Lils () =0—-O—=0. —0O
~ Juaeous locchows G soowery

QQ\\I\L"\FQ AN (,LM
— (reﬁU(\fQ& M\KGCL/Q -

[_) Q
f \ C»ﬂ\w:M—\ P V C & > : 2 (0\(“" /\3?
o —S e = K-e M

| OF S il cek)

. Q}\L@ wue . a0
O

DAL -

e A

%ﬁw A—jQﬁu@%

¢ %KW o {\(oeg 5V+ W@W@Q(ﬁé 2 \nndde_
\QWL«(’ gu&@u@@mé N

(first module after the midterm)

Datastructures 1

Hash Tables
Red Black Trees

Week 8 Objectives

@® Hash Tables, Hashing functions
@® Red-Black Trees

Arrays VS Hash Tables

@ typical computer storage is (key,value) pair
QR/rrays must have keys as m’regers\\

— keys=indices=positions

— due to how they work in computers memory

— have to be continuos
— Example All]=2; A[2]=-1; A[3]=0

@® Hash Table also stores (key,value) pairs
— Kkeys can be anything, like peoples names

— H[Alice]=1; H[Bob]=-1; H[Charlie]=3
— keys cannot be used as positions/indices

e, .. Basic hashing | %g@‘ﬂ@j@w

\/\ud/\ ML&\OV\/W@{

Aoy
\/\ﬁ /\ea/ — QV\LQQEF@
@ arrays are very nice, but keys have fo be integers

— keys from O to N-1

@® hashes very useful when keys are not integers
— names, words, addresses, phone numbers efc

— even if key=integer (like phone
want as indices

) they are not the integers we

@ text processing : natural keys are words/n-grams/

phrases

@ databases: natural keys can be anything

/(Zowg@o«@ l\/\&JQCﬂS -

C@ — Ay MM:&

Hashing for integer keys

\A&Qi\/c (Wﬁﬁ.‘ inSd :&> — @lwﬁcﬁ\\w N &@%&ﬁw

E—

—

— L\M%QQF
@® Even if the keys are integers, they might be
inappropriate for storage indices.

@® typically the case of few keys in a very large range.

@ Example : phone numbers.
— Might have to use about 10,000 phone numbers as keys

— if each is used as a index, the resulting array must allocate 98Billion
locations (U.S. phone numbers have 10 digits)

Hash Tables

® key -> index -> use arrayl[index] = value

hash
keys function buckets
00
. 01 | 521-8976
John Smith
02 | 521-1234
: ; 03
Lisa Smith . :

13
Sandra Dee
. T— 14| 521-9655

15

Hash Tables - Collisions

@® when several keys (words) map to the same key

(index)

@® have to store the actual keys in a list

- |list head stored at the index

® key -> index -> list_head -> search for that key

overflow

keys

John Srrth

Lsa Smith

Sam Doe

Sandra Dee -

Ted Baker

buckets

LUsa Smith

521-8976

X|®

John Srmth

521-1234

entries

Ted Baker

418-4165

Sandra Dee

521-9655

* .. x ® ’ x ..

SamDoe

521-5030

Hash Tables- Collisions with chaining

@® when several keys (words) map to the same key
(index)

@® have to store the actual keys in a list
— list head stored at the index

@® key -> index -> list_head -> search for that key
T mf*’*(wbg Lhlesd &6F

_h

o\l £ || &
(universg of keys) Z’—{ / k| T k]S
y A oy il
i |4 O o
K § ‘ /| O - (e % Z;}L_/—}ﬂ adlox U
F =
(aCtual k4 k7& k5 \ —; b%')(\ ks _Z_ k2 _z__ k7 7
keys) : 3 / A
2 A A
i L \/ k8 _:_ k6 / K
Hisual LY © —

Hash Tables- Collisions with chaining

© " M\WQ"A Ccic'iA 1\:@%/°°§
/7707000 &ij@”’“& | \bj(l:jaﬁ o (6 &l;x
- | e ¢ o s
® | n=number of keﬂ@ MAXHASH;! [="n/m SCD((i;v\j
|) Kf()LLCULCL o,\\' C.»((Lkﬁb\,(g
® simple uni&:rmhgshfiggilny key k equally likely to
%‘e’r%apped on any of The indices [O...r?m) hack fuchon

awn do—neog

@® If collisions are handled with chaining linked lists,
assuming simple uniform hashing:)

ol

— unsuccessful search for a key fakes O(l+a w
— successful search for a key also fakes ©(1+) o i ICQTg
o= (b

— proof in the book Loots
P (\Agbceg |

QMD=B) s = kg 4lons

?WOX og W= MAY HAsY

i — guccﬁsgN cencchn \@ Wﬁlﬂl

OP\T

N B A aw\j elr (3
E ST QA\N“(y ([, &{7

pes U\(w\ - o) T -&\Av\@

U(qu EEW{CX/\ TRy Q}SJV]
e (e b U] = =

o= levded by
\ A X = }11 Ly =h &)

O L et
743\8: [/o cp(kdw O/Q <L m&}ﬁ

Hash Function

@® Easy for humans to use such a hash table

@® but not easy for a computer
— need integer memory locations
— we have to map keys (names, colors efc) into integers

@® hash function h: take input , returns an
(int) h(key)=index

@ basic operations: INSERT, DELETE, SEARCH; all use
the mapped value h(key)

Hash Function

@ Usually two stages

— convert key to a [large] integer (not necessary if keys are already
large integers like phone numbers)

— map the integer in interval [0, MAXHASH)

Simple hash function for words

@® return a simple combination of characters, modulo
MAXHASH

® int MAXHASH=100000;
@® Example hashing word “Virgil” based on ASCII codes

V i r g i I
8612 |105* 22| 114* 32|103* 42|105* 52|108* 62

® int hash function(char]])

— int sum=0,1i=0;
— while(char[i]>0) {sumt+=char[i] * ++i*i;}

— return sum % MAXHASH;

Hash function: two qualities

@® quality ONE: one-to-one (injection). Different inputs
result in different outputs

— collision: having many keys map to same index

@ collisions eventually will happen, need fo be solved

— collisions should be balanced (uniformly distributed) per output indices;
same)r as saying simple uniform hashing (approx) is desirable, even if not
exact.

@® quality TWO: the set of returned indices must be
manageable

— for example returns integers from 1 to 100000
— or returns integers in range (0, MAXHASH)

Hash Function - division method

® map key to integer k (key=k if key is already integer)

® h(k) = k mod m (m=MAXHASH)
— this equation guarantees that h(k) is one of {0,1,2,.., MAXHASH-1}

@® bad choices for m : close to powers of 2
- m=2p
- m=2P-1

@® good choice for m : prime numbers far away from
powers of 2

— example: m=701

Hash Function - multiplication method

® fractional(x)= fractional part of x, or x - X

— example fractional(3.1472) = 0.1472
® h(k)= | m* fractional(ka) |

@® typically m is a power of 2

® A is a fractional of form s/2% where s<2%
— for example A = 2654435769 / 232

Hash Function -Universal

® if the hash function is known, an adversary can
attack the hashing schema by using many keys that
all collide to the same index

— h(keyl)=h(key2)=h(key3)...

@ to prevent this, we can can use set H of hash
functions

— universal set H: for each pair of keys (k,l? the number of hash
functions heH that collide k and | h(k)=h(l) is no more than [H|/m

— each time we build a hash (run the code), a random hash function is
selected from the set

@® building a universal set H of hash functions relies on
number theory - see book

Red-Black Trees

further reading necessary from textbook

Binary Search Trees - Recap

® cach node has at @ 6
most two children P
® any node value is (6% 18
— not smaller than any value S
N the left subtree c &) 17

— not larger than than any

value ift the right subtree (2) (4) (©s) &

— h = height of tree 0
@ Operations:

— Search, min, max,
successor, predecessor,
insert, delete

— runtime O(h)

Binary Search Trees - Recap

® cach node has at
most two children

@ any node value is

— not smaller than any valug
in the left subtree ;

— not larger than than any"
value in the right sub‘rree“

— h = height of tree .
@ Operations:

— Search, min, max,
successor, predecessor, left subtree

insert, deletfe values<15
— runtime O(h)

Binary Search Trees - Recap

right subtree

® cach node has at values=15

most two children

@ any node value is '

— not smaller than any valuq'

in the left subtree ;

— not larger than than any"
value it the right sub’rreye“ 2 @

— h = height of tree .
. R
@® Operations: Yoo e
~ Ny m
— Search, min, max,
successor, predecessor, left subtree
insert, delete values<15

— runtime O(h)

Balanced Trees

(3 -'

- / \ | \ \!’7\.
~ - 2 7))
'\E/" \>/ /“ <

/"""{\‘ X— o
':\ 5_/2' '.__8._/.'
G5
N2

® a) balanced tree: depth is about log(n) - logarithmic

@® b) unbalanced tree : depth is about n - linear

Red-Black Trees

@® binary search tree

® want to enforce balancing of the tree
— height logarithmic in n=number of nodes in the tree

— height = longest path root->leaf

@® extra: each node stores a color

— color can be either red or black /-

— color can change during operations (,UCLCQJ K%QL\
® red-black properties

— root is black

— W(’rermin@are black
—{—Hmﬁe—rfred, fhen Both children are black)

— for any given node, all paths to leaves (node->leaf) have the same

number of black nodes
=) gﬁ«w on Llacl acdos |

Red-Black Trees

@ Theorem: a red-black tree with n nodes has height
at most 2*log(n+1)

— or logarithmic height
— thus enforcing the balancing of the tree

— and so the all operations can be implemented in O(log n) time.

Tree operations

® insert delete - need to account for colors
— rest of the lecture: insert and delete in red-black trees

@® search, min, max, successor, predecessor - same as
for regular binary search trees

Red-Black Trees - Rotation

® Rotation is a ufility _
operation that facllitates @ Rotate-left at node x
maintenance of red-black — X is replaced by its right child y
Properhes — B = left subtree of y becomes right

— during insert and delefe, the subtree of x
tree mcljgh’r temporarily violate

the red-black properties — X becomes the left child of y

— using rotation we can fix the : :
frec'so it satisfies red-black. @ Rotate-right at y symmetric

| @/\g

EFT-ROTATE(T, x)
&) (

p /\Z‘i& IACGE NG ﬁfzﬁﬁi\ Jﬁ

B N aesaaaasia
= RIGHT-ROTATE(T, y)

Jel B N = B

Red-Black Trees - Rotation

@ Example

Red-Black Trees - Insertion

® add node s a leaf

— like usual in a binary search tree

@® <olor z red, add terminal "NIL' nodes

@® check red-black conditions
— most conditions are still satisfied or easy to fix

% the real problem might be the condition that requires children of
red nodes to be black.

— start fixing at the new node z, and as we proceed more fixes might
be necessary

— three “fixing cases”
— overadll still O(log n) time.

® RB-INSERT-FIXUP procedure in the textbook

Fixing insertion case 1

@ z.p = z.parent and
y=z.uncle are red

® fix:

— make z.p and y black

— make z.p.p red

—GM

k\Q@A Kp(p&(“) ol U (

Fixing Insertion case 2

@ zpis red, v is black,
z is the right child

® fix:
— rotate left at z.p

— z advances fto its old

parent (now his left
chid) —

Fixing Insertion case 3

20 f

=0
2(2] / é\ @
O O
(;Y

: Case 3

@® z.p red, vy black,
z is left child

® fix: “ -‘G R
~ Trofate right of zpp

— color z.p black

— color old zp.p (now
Z brother) red

Red-Black Trees - Deletion

® delete "z” as we usuadlly delete from a binary search
tree

— maintain search property: left values< node value < right values

@® additionally keep track of
— Y= the node to replace z
— y original color (its color might change in the process)

@® Fix-up the tree red-black properties, if they are
violated

— a procedure with 4 cases
— RB-DELETE-FIXUP procedure in the textbook

Fixing deletion case 1

ﬂ

® case 1: x is black, brother w red
® fix:

— rotfate left at x.p;
— color x.p red;
— color w (now x.p.p) black

Fixing deletion case 2

® case?2: brother w is black, and w children also black
® fix:

— color w red
— advance x to its parent

Fixing deletion case 3

@® case3: brother w is black; ws left child is red; ws
right child is black

® fix:
— rofate right at w
— color the new brother from red to black
— color the old brother from black to red

Fixing deletion case 4

///\-— ¢ el - /.:\ ?/3(’-\
x A w
a0 N
; | C (E63)
A=A A
Y 0 € o ¥y)

@ case4: brother w is black, ws right child is red
® fix:

— rotate left at xp
— color old ws right child from red to black
— color x.p from red to black

— color old w from black to red

Running time

@ most BST operations same running time as BST trees

— Search, min, max, successor, predecessor
— these dont affect RB colors

® Insertion including fixup O(log n)
® Deletion including fixup O(log n)

