Wed 317

- midferm prodlems
- Graphs SP repicsurtation of DP (J.Astani)
- Hash Tables - Recap Dalastmotirs (indir. $\left.\begin{array}{c}\text { in } \\ \text { strdy }\end{array}\right)$
- Red Black Trees
- Skiplists

Midter $d^{2} x^{\prime}$
$\binom{p_{k}}{d} \tau(a)=T(n-1)+T(n-2)+1$
assume $T(n)=\theta\left(a^{n}\right) \exp$

$$
\begin{aligned}
& 4 a^{n}=4 a^{n-1}+\Varangle a^{n-2}+\infty ? \\
& a^{2}=a+1 \text { Fibonacci }
\end{aligned}
$$

$$
\begin{aligned}
& a^{n}=a^{n-1}+a^{n-2}+1 \\
& a^{2}=a+1+\frac{1}{a^{n-2}} ? ? ?
\end{aligned}
$$

lower Bound $T(n)=\Omega($ Fibonacci $)$ Upper bound Tin) $\leqslant c \varphi^{n} ?$?

Rod Cuts

OBS: wax Π (lengths)
Greedy choice int " 3 " as much as possible

$$
\frac{\sqrt[3]{3 \cdot 3 \cdot 2} \cdot 2}{3 \cdot 3 \cdot 3 \cdot \sqrt{3 \times 1}}
$$

e any $k \geqslant 5 \Rightarrow 3 \cdot(k-3)$

- $4 \rightarrow 2.2$
left $3.33 .3 \cdot 3,2-200200$

$$
\begin{aligned}
& t \geqslant 3 \quad 2.2 .2 \rightarrow 3.3 \\
& t \in\{1,2\}
\end{aligned}
$$

Answer $33.3,3 \cdot 2_{t \in\{2,2,0\}}^{t}$.

$$
\left.A=\operatorname{set} 01 \text { numbers } \dot{a}_{1}, a_{2}, a_{n}\right\}
$$

portion, indices $B \cup C=\{1,2, n\}$

$$
\begin{gathered}
B \cap C=\varnothing \\
\left|\sum_{i \in B} a_{i}-\sum_{j \in C} a_{j}\right|=\operatorname{unn}(B A \operatorname{ANCE})
\end{gathered}
$$

Luapiade $W=\frac{\sum a i}{2}$

$$
\begin{aligned}
& \text { Values }=\text { (ai ? ? ? } \\
& \text { weights }=\text { ? }
\end{aligned}
$$

** Same pb $|B|=|C|=n / 2 \quad u$ seven
$D P=$ shortest path in a DAG

DP table ${ }^{C=}$ edge weight $=$ add cost of fromintion
(1) DAG \Rightarrow Flattened on a line (topolgical) $\left.\begin{array}{c}\text { sort }\end{array}\right)$ sosice
(2) topological sorled $D A G \Longrightarrow S^{\prime} P^{\text {(}}$ (uodge nejh left

$$
\theta(V+E)
$$

in prache $\theta(E)$

Datastuchures Recap

- Arrays direct Access A[k] continues clunce in memory

- Linked Lists ha cd
- various locations in memory pointers in betweam
- requires traversal.
- stacles Filo

Push (a): put a on stack

$\operatorname{Pop}(k)$: take ort top Kelenents

$$
(\text { or } s \text { if } s \leq k)
$$

- Queue. Firo

(first module after the midterm)

Datastructures 1

 Hash TablesRed Black Trees

Week 8 Objectives

- Hash Tables, Hashing functions
- Red-Black Trees

Arrays VS Hash Tables

typical computer storage is (key,value) pair

- arrays must have keys as integers
- keys=indices=positions
- due to how they work in computer's memory
- have to be continuos
- Example $A[1]=2 ; A[2]=-1 ; A[3]=0$
- Hash Table also stores (key,value) pairs
- keys can be anything, like peoples names
- H[Alice]=1; H[Bob]=-1; H[Charlie]=3
- keys cannot be used as positions/indices

arrays are very nice, but keys have to be integers
- keys from 0 to $\mathrm{N}-1$
- hashes very useful when keys are not integers
- names, words, addresses, phone numbers etc
- even if key=integer (like phone \#) they are not the integers we want as indices
- text processing : natural keys are words/n-grams/ phrases
- databases: natural keys can be anything

Range of indices: 0 - HASHMAX]

Hashing for integer keys

$$
\begin{aligned}
\text { hashf }(\text { key rep }) & =\text { calculation on reprssutation } \\
& = \\
& =\text { integor. }
\end{aligned}
$$

- Even if the keys are integers, they might be inappropriate for storage indices.
- typically the case of few keys in a very large range.
- Example : phone numbers.
- Might have to use about 10,000 phone numbers as keys
- if each is used as a index, the resulting array must allocate 9Billion locations (U.S. phone numbers have 10 digits)

Hash Tables

- key \rightarrow index \rightarrow use array[index] = value
hash

Hash Tables - Collisions

- when several keys (words) map to the same key (index)
- have to store the actual keys in a list
- list head stored at the index
- key \rightarrow index \rightarrow list_head \rightarrow search for that key

Hash Tables- Collisions with chaining

- when several keys (words) map to the same key (index)
- have to store the actual keys in a list
- list head stored at the index
- key \rightarrow index \rightarrow list_head \rightarrow search for that key

Hash Tables- Collisions with chaining

- $n=n u m b e r$ of keys: $m=$ MAXHASH; $\quad \alpha=n / m$ hiked collisions
- simple uniform hashing: any key k equally likely to be mapped on any of the indices [0...m)
- If collisions are handled with chaining linked lists, assuming simple uniform hashing:
- unsuccessful search for a key takes $\Theta(1+\alpha)$
- successful search for a key also takes $\Theta(1+\alpha)$
- proof in the book

$$
\begin{aligned}
& \text { in the book } \\
& \theta(1+\alpha)=\theta(\alpha) \stackrel{\text { if }}{\alpha \geqslant 1}=A v g \# \text { collisions } \text { ind il }
\end{aligned}
$$

proof cher

$$
m=M A X H A S H
$$

un-successtul search.

$$
\begin{aligned}
& \operatorname{prob}(h(k)=i)=\frac{1}{m}-\text { uniform } \\
& E[\text { tine }]=E[\text { search in } i \text { lest }]= \\
& =E[\text { size of list }]=\alpha=\frac{n}{m}
\end{aligned}
$$

successful search $k \in H$ lash

- new keys (collisions) are added in front of

$x_{i j}=1 / 0$ collision of x_{i} with x_{j}

$$
E\left[x_{y} y\right]=\frac{1}{m}
$$

$$
\begin{aligned}
& \mathbb{E}^{\text {search true }}\left[\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} x_{i j}\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} E\left[x_{i j}\right]\right) \rightarrow \text { of keys } \text { rafter }^{n} x_{i} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \frac{1}{m}\right) \quad \alpha=\frac{n}{m} \\
& 1 * \frac{1}{n m} \sum_{i=1}^{n}(n-i)=1+\frac{1}{n m} \frac{(n-1) \cdot k /}{2} \\
& =\theta(1+\alpha)
\end{aligned}
$$

Hash Function

- Easy for humans to use such a hash table
- but not easy for a computer
- need integer memory locations
- we have to map keys (names, colors etc) into integers
- hash function h: take input any key, returns an index (int) $h($ key $)=$ index
- basic operations: INSERT, DELETE, SEARCH; all use the mapped value h (key)

Hash Function

- Usually two stages
- convert key to a [large] integer (not necessary if keys are already large integers like phone numbers)
- map the integer in interval [0, MAXHASH)

Simple hash function for words

- return a simple combination of characters, modulo MAXHASH
- int MAXHASH=100000;
- Example hashing word "Virgil" based on ASCII codes

V	i	r	g	i	l
$86^{*} 1^{2}$	$105^{*} 2^{2}$	$114^{*} 3^{2}$	$103^{*} 4^{2}$	$105^{*} 5^{2}$	$108^{*} 6^{2}$

- int hash_function(char[]) // returns integers between O-and MAXHASH
- int sum=0,i=0;
- while(char[i]>0) \{sum+=char[i] * ++i*i;\}
- return sum \% MAXHASH;

Hash function: two qualities

- quality ONE: one-to-one (injection). Different inputs result in different outputs
- collision: having many keys map to same index
- collisions eventually will happen, need to be solved
- collisions should be balanced (uniformly distributed) per output indices; same as saying simple uniform hashing (approx) is desirable, even if not exact.
- quality TWO: the set of returned indices must be manageable
- for example returns integers from 1 to 100000
- or returns integers in range (0, MAXHASH)

Hash Function - division method

- map key to integer k (key=k if key is already integer)
- $h(k)=k \bmod m(m=M A X H A S H)$
- this equation guarantees that $h(k)$ is one of $\{0,1,2, \ldots$, MAXHASH-1 $\}$
- bad choices for m : close to powers of 2
- m=2P
- $m=2^{P-1}$
- good choice for m : prime numbers far away from powers of 2
- example: $m=701$

Hash Function - multiplication method

- fractional $(x)=$ fractional part of x, or $x-\lfloor x\rfloor$
- example fractional(3.1472) $=0.1472$
- $h(k)=\left\lfloor m^{*}\right.$ fractional (kA) \rfloor
- typically m is a power of 2
- A is a fractional of form $s / 2^{w}$ where $s<2^{w}$
- for example $A=2654435769 / 2^{32}$

Hash Function -Universal

- if the hash function is known, an adversary can attack the hashing schema by using many keys that all collide to the same index
- h(key1)=h(key2)=h(key3)...
- to prevent this, we can can use set H of hash functions
- universal set H : for each pair of keys (k, l) the number of hash functions $h \in H$ that collide k and $\mid h(k)=h(l)$ is no more than $|H| / m$
- each time we build a hash (run the code), a random hash function is selected from the set
- building a universal set H of hash functions relies on number theory - see book

Red-Black Trees

further reading necessary from textbook

Binary Search Trees - Recap

- each node has at most two children
- any node value is
- not smaller than any value in the left subtree
- not larger than than any value in the right subtree
- $h=$ height of tree

- Operations:
- search, min, max, successor, predecessor, insert, delete
- runtime $O(h)$

Binary Search Trees - Recap

- each node has at most two children
- any node value is
- not smaller than any value" in the left subtree
- not larger than than any value in the right subtree
- $h=$ height of tree
- Operations:
- search, min, max, successor, predecessor, insert, delete
- runtime $O(h)$

Binary Search Trees - Recap

right subtree

- each node has at most two children
- any node value is
- not smaller than any value" in the left subtree
- not larger than than anyl value in the right subtree
- $h=$ height of tree
- Operations:
- search, min, max, successor, predecessor, insert, delete
- runtime $O(h)$

Balanced Trees

- a) balanced tree: depth is about $\log (n)$ - logarithmic - b) unbalanced tree : depth is about n - linear

Red-Black Trees

- binary search tree
- want to enforce balancing of the tree
- height logarithmic in $n=n u m b e r$ of nodes in the tree
- height = longest path root->leaf
extra: each node stores a color
- color can be either red or black
- color can change during operations

- red-black properties
- root is black
- leafs (terminals) are black
- if a node is red, then both children are black
- for any given node, all paths to leaves (node->leaf) have the same number of black nodes

$$
\Rightarrow \text { balanced }
$$

on black nodes.

Red-Black Trees

- Theorem: a red-black tree with n nodes has height at most $2^{*} \log (n+1)$
- or logarithmic height
- thus enforcing the balancing of the tree
- and so the all operations can be implemented in $O(\log n)$ time.

Tree operations

- insert, delete - need to account for colors
- rest of the lecture: insert and delete in red-black trees
- search, min, max, successor, predecessor - same as for regular binary search trees

Red-Black Trees - Rotation

Rotation is a utility operation that facilitates maintenance of red-black properties

- during insert and delete, the tree might temporarily violate the red-black properties
- using rotation we can fix the tree so it satisfies red-black.
- Rotate-left at node x
- x is replaced by its right child y
- $\beta=$ left subtree of y becomes right subtree of x
- x becomes the left child of y

Rotate-right at y symmetric

Red-Black Trees - Rotation

- Example

Red-Black Trees - Insertion

- add node " z " as a leaf
- like usual in a binary search tree

Color z red, add terminal "NIL" nodes
check red-black conditions

- most conditions are still satisfied or easy to fix
* the real problem might be the condition that requires children of red nodes to be black.
- start fixing at the new node z, and as we proceed more fixes might be necessary
- three "fixing cases"
- overall still $O(\log n)$ time.
- RB-INSERT-FIXUP procedure in the textbook

Fixing insertion case 1

11

Fixing insertion case 2

- z.p is red, y is black, z is the right child

14
fix:

- rotate left at z.p
- z advances to its old parent (now his left child)

14

Fixing insertion case 3

- z.p red, y black, z is left child
- fix:
- rotate right at z.p.p
- color Z.p black
- color old z.p.p (now
 z brother) red

Red-Black Trees - Deletion

- delete " z " as we usually delete from a binary search tree
- maintain search property: left values \leqslant node value \leqslant right values
- additionally keep track of
- $y=$ the node to replace z
- y original color (its color might change in the process)
- Fix-up the tree red-black properties, if they are violated
- a procedure with 4 cases
- RB-DELETE-FIXUP procedure in the textbook

Fixing deletion case 1

- case 1: x is black, brother w red
- fix :
- rotate left at x.p;
- color x.p red;
- color w (now x.p.p) black

Fixing deletion case 2

- case2: brother w is black, and w children also black - fix:
- color w red
- advance x to its parent

Fixing deletion case 3

- case3: brother w is black; w's left child is red; w's right child is black
- fix:
- rotate right at w
- color the new brother from red to black
- color the old brother from black to red

Fixing deletion case 4

- case4: brother w is black, w's right child is red
- fix:
- rotate left at x.p
- color old ws right child from red to black
- color x.p from red to black
- color old w from black to red

Running time

- most BST operations same running time as BST trees
- search, min, max, successor, predecessor
- these dont affect RB colors
- Insertion including fixup $O(\log n)$
- Deletion including fixup $O(\log n)$

