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B-tree
Type Tree (data structure)

Invented 1970[1]

Invented by Rudolf Bayer, Edward M. McCreight
Time complexity in big O notation

Algorithm Average Worst case
Space O(n) O(n)
Search O(log n) O(log n)
Insert O(log n) O(log n)
Delete O(log n) O(log n)

In computer science, a B-tree is a self-balancing tree data structure that
maintains sorted data and allows searches, sequential access, insertions, and
deletions in logarithmic time. The B-tree generalizes the binary search tree,
allowing for nodes with more than two children.[2] Unlike other self-balancing
binary search trees, the B-tree is well suited for storage systems that read and
write relatively large blocks of data, such as databases and file systems.

History[edit]
B-trees were invented by Rudolf Bayer and Edward M. McCreight while
working at Boeing Research Labs, for the purpose of efficiently managing
index pages for large random-access files. The basic assumption was that
indices would be so voluminous that only small chunks of the tree could fit in
main memory. Bayer and McCreight's paper, Organization and maintenance
of large ordered indices,[1] was first circulated in July 1970 and later published
in Acta Informatica.[3]
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Bayer and McCreight never explained what, if anything, the B stands for:
Boeing, balanced, between, broad, bushy, and Bayer have been suggested.[4]
[5][6] McCreight has said that "the more you think about what the B in B-trees
means, the better you understand B-trees."[5]

In 2011 Google developed the C++ B-Tree, reporting a 50-80% reduction in
memory use for small data types and improved performance for large data
sets when compared to a Red-Black tree.[7]

Definition[edit]
According to Knuth's definition, a B-tree of order m is a tree which satisfies the
following properties:[8]

1. Every node has at most m children.
2. Every internal node has at least ⌈m/2⌉ children.
3. Every non-leaf node has at least two children.
4. All leaves appear on the same level.
5. A non-leaf node with k children contains k−1 keys.

Each internal node's keys act as separation values which divide its subtrees.
For example, if an internal node has 3 child nodes (or subtrees) then it must
have 2 keys: a1 and a2. All values in the leftmost subtree will be less than a1,
all values in the middle subtree will be between a1 and a2, and all values in
the rightmost subtree will be greater than a2.

Internal nodes
Internal nodes (also known as inner nodes) are all nodes except for leaf
nodes and the root node. They are usually represented as an ordered set
of elements and child pointers. Every internal node contains a maximum
of U children and a minimum of L children. Thus, the number of
elements is always 1 less than the number of child pointers (the number
of elements is between L−1 and U−1). U must be either 2L or 2L−1;
therefore each internal node is at least half full. The relationship between
U and L implies that two half-full nodes can be joined to make a legal
node, and one full node can be split into two legal nodes (if there's room
to push one element up into the parent). These properties make it
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possible to delete and insert new values into a B-tree and adjust the tree
to preserve the B-tree properties.

The root node
The root node's number of children has the same upper limit as internal
nodes, but has no lower limit. For example, when there are fewer than
L−1 elements in the entire tree, the root will be the only node in the tree
with no children at all.

Leaf nodes
In Knuth's terminology, the "leaf" nodes are the actual data objects /
chunks. The internal nodes that are one level above these leaves are
what would be called the "leaves" by other authors: these nodes only
store keys (at most m-1, and at least m/2-1 if they are not the root) and
pointers (one for each key) to nodes carrying the data objects / chunks.

A B-tree of depth n+1 can hold about U times as many items as a B-tree of
depth n, but the cost of search, insert, and delete operations grows with the
depth of the tree. As with any balanced tree, the cost grows much more slowly
than the number of elements.

Some balanced trees store values only at leaf nodes, and use different kinds
of nodes for leaf nodes and internal nodes. B-trees keep values in every node
in the tree except leaf nodes.

Differences in terminology[edit]

The literature on B-trees is not uniform in its terminology.[9]

Bayer and McCreight (1972),[3] Comer (1979),[2] and others define the order
of B-tree as the minimum number of keys in a non-root node. Folk and
Zoellick [10] points out that terminology is ambiguous because the maximum
number of keys is not clear. An order 3 B-tree might hold a maximum of 6
keys or a maximum of 7 keys. Knuth (1998) avoids the problem by defining
the order to be the maximum number of children (which is one more than the
maximum number of keys).[8]

The term leaf is also inconsistent. Bayer and McCreight (1972)[3] considered
the leaf level to be the lowest level of keys, but Knuth considered the leaf level
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to be one level below the lowest keys.[11] There are many possible
implementation choices. In some designs, the leaves may hold the entire data
record; in other designs, the leaves may only hold pointers to the data record.
Those choices are not fundamental to the idea of a B-tree.[12]

For simplicity, most authors assume there are a fixed number of keys that fit in
a node. The basic assumption is the key size is fixed and the node size is
fixed. In practice, variable length keys may be employed.[13]

Informal description[edit]

A B-tree (Bayer & McCreight 1972) of order 5 (Knuth 1998).

In B-trees, internal (non-leaf) nodes can have a variable number of child
nodes within some pre-defined range. When data is inserted or removed from
a node, its number of child nodes changes. In order to maintain the pre-
defined range, internal nodes may be joined or split. Because a range of child
nodes is permitted, B-trees do not need re-balancing as frequently as other
self-balancing search trees, but may waste some space, since nodes are not
entirely full. The lower and upper bounds on the number of child nodes are
typically fixed for a particular implementation. For example, in a 2–3 tree
(sometimes referred to as a 2–3 B-tree), each internal node may have only 2
or 3 child nodes.

Each internal node of a B-tree contains a number of keys. The keys act as
separation values which divide its subtrees. For example, if an internal node
has 3 child nodes (or subtrees) then it must have 2 keys:  and . All values
in the leftmost subtree will be less than , all values in the middle subtree will
be between  and , and all values in the rightmost subtree will be greater
than .

Usually, the number of keys is chosen to vary between  and , where  is the
minimum number of keys, and  is the minimum degree or branching factor
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of the tree. In practice, the keys take up the most space in a node. The factor
of 2 will guarantee that nodes can be split or combined. If an internal node has

 keys, then adding a key to that node can be accomplished by splitting the
hypothetical  key node into two  key nodes and moving the key that
would have been in the middle to the parent node. Each split node has the
required minimum number of keys. Similarly, if an internal node and its
neighbor each have  keys, then a key may be deleted from the internal node
by combining it with its neighbor. Deleting the key would make the internal
node have  keys; joining the neighbor would add  keys plus one more
key brought down from the neighbor's parent. The result is an entirely full
node of  keys.

The number of branches (or child nodes) from a node will be one more than
the number of keys stored in the node. In a 2–3 B-tree, the internal nodes will
store either one key (with two child nodes) or two keys (with three child
nodes). A B-tree is sometimes described with the parameters —
or simply with the highest branching order, .

A B-tree is kept balanced after insertion by splitting a would-be overfilled
node, of  keys, into two -key siblings and inserting the mid-value key
into the parent. Depth only increases when the root is split, maintaining
balance. Similarly, a B-tree is kept balanced after deletion by merging or
redistributing keys among siblings to maintain the -key minimum for non-root
nodes. A merger reduces the number of keys in the parent potentially forcing it
to merge or redistribute keys with its siblings, and so on. The only change in
depth occurs when the root has two children, of  and (transitionally) 
keys, in which case the two siblings and parent are merged, reducing the
depth by one.

This depth will increase slowly as elements are added to the tree, but an
increase in the overall depth is infrequent, and results in all leaf nodes being
one more node farther away from the root.

B-trees have substantial advantages over alternative implementations when
the time to access the data of a node greatly exceeds the time spent
processing that data, because then the cost of accessing the node may be
amortized over multiple operations within the node. This usually occurs when
the node data are in secondary storage such as disk drives. By maximizing
the number of keys within each internal node, the height of the tree decreases
and the number of expensive node accesses is reduced. In addition,
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rebalancing of the tree occurs less often. The maximum number of child
nodes depends on the information that must be stored for each child node and
the size of a full disk block or an analogous size in secondary storage. While
2–3 B-trees are easier to explain, practical B-trees using secondary storage
need a large number of child nodes to improve performance.

Variants[edit]

The term B-tree may refer to a specific design or it may refer to a general
class of designs. In the narrow sense, a B-tree stores keys in its internal
nodes but need not store those keys in the records at the leaves. The general
class includes variations such as the B+ tree, the B* tree and the B*+ tree.

In the B+ tree, copies of the keys are stored in the internal nodes; the
keys and records are stored in leaves; in addition, a leaf node may
include a pointer to the next leaf node to speed sequential access.[2]

The B* tree balances more neighboring internal nodes to keep the
internal nodes more densely packed.[2] This variant ensures non-root
nodes are at least 2/3 full instead of 1/2.[14] As the most costly part of
operation of inserting the node in B-tree is splitting the node, B*-trees are
created to postpone splitting operation as long as they can.[15] To
maintain this, instead of immediately splitting up a node when it gets full,
its keys are shared with a node next to it. This spill operation is less costly
to do than split, because it requires only shifting the keys between
existing nodes, not allocating memory for a new one.[15] For inserting,
first it is checked whether the node has some free space in it, and if so,
the new key is just inserted in the node. However, if the node is full (it has
m − 1 keys, where m is the order of the tree as maximum number of
pointers to subtrees from one node), it needs to be checked whether the
right sibling exists and has some free space. If the right sibling has j < m
− 1 keys, then keys are redistributed between the two sibling nodes as
evenly as possible. For this purpose, m - 1 keys from the current node,
the new key inserted, one key from the parent node and j keys from the
sibling node are seen as an ordered array of m + j + 1 keys. The array
becomes split by half, so that ⌊(m + j + 1)/2⌋ lowest keys stay in the
current node, the next (middle) key is inserted in the parent and the rest
go to the right sibling.[15] (The newly inserted key might end up in any of
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the three places.) The situation when right sibling is full, and left isn't is
analogous.[15] When both the sibling nodes are full, then the two nodes
(current node and a sibling) are split into three and one more key is
shifted up the tree, to the parent node.[15] If the parent is full, then
spill/split operation propagates towards the root node.[15] Deleting nodes
is somewhat more complex than inserting however.
The B*+ tree combines the main B+ tree and B* tree features together.[16]

B-trees can be turned into order statistic trees to allow rapid searches for
the Nth record in key order, or counting the number of records between
any two records, and various other related operations.[17]

B-tree usage in databases[edit]
Time to search a sorted file[edit]

Usually, sorting and searching algorithms have been characterized by the
number of comparison operations that must be performed using order
notation. A binary search of a sorted table with N records, for example, can be
done in roughly ⌈ log2 N ⌉ comparisons. If the table had 1,000,000 records,
then a specific record could be located with at most 20 comparisons: ⌈ log2
(1,000,000) ⌉ = 20.

Large databases have historically been kept on disk drives. The time to read a
record on a disk drive far exceeds the time needed to compare keys once the
record is available. The time to read a record from a disk drive involves a seek
time and a rotational delay. The seek time may be 0 to 20 or more
milliseconds, and the rotational delay averages about half the rotation period.
For a 7200 RPM drive, the rotation period is 8.33 milliseconds. For a drive
such as the Seagate ST3500320NS, the track-to-track seek time is 0.8
milliseconds and the average reading seek time is 8.5 milliseconds.[18] For
simplicity, assume reading from disk takes about 10 milliseconds.

Naively, then, the time to locate one record out of a million would take 20 disk
reads times 10 milliseconds per disk read, which is 0.2 seconds.

The time won't be that bad because individual records are grouped together in
a disk block. A disk block might be 16 kilobytes. If each record is 160 bytes,
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then 100 records could be stored in each block. The disk read time above was
actually for an entire block. Once the disk head is in position, one or more disk
blocks can be read with little delay. With 100 records per block, the last 6 or
so comparisons don't need to do any disk reads—the comparisons are all
within the last disk block read.

To speed the search further, the first 13 to 14 comparisons (which each
required a disk access) must be sped up.

An index speeds the search[edit]

A significant improvement in performance can be made with a B-tree index. A
B-tree index creates a multi-level tree structure that breaks a database down
into fixed-size blocks or pages. Each level of this tree can be used to link
those pages via an address location, allowing one page (known as a node, or
internal page) to refer to another with leaf pages at the lowest level. One page
is typically the starting point of the tree, or the "root". This is where the search
for a particular key would begin, traversing a path that terminates in a leaf.
Most pages in this structure will be leaf pages which ultimately refer to specific
table rows.

Because each node (or internal page) can have more than two children, a B-
tree index will usually have a shorter height (the distance from the root to the
farthest leaf) than a Binary Search Tree. In the example above, initial disk
reads narrowed the search range by a factor of two. That can be improved
substantially by creating an auxiliary index that contains the first record in
each disk block (sometimes called a sparse index). This auxiliary index would
be 1% of the size of the original database, but it can be searched more
quickly. Finding an entry in the auxiliary index would tell us which block to
search in the main database; after searching the auxiliary index, we would
have to search only that one block of the main database—at a cost of one
more disk read. The index would hold 10,000 entries, so it would take at most
14 comparisons. Like the main database, the last six or so comparisons in the
auxiliary index would be on the same disk block. The index could be searched
in about eight disk reads, and the desired record could be accessed in 9 disk
reads.

The trick of creating an auxiliary index can be repeated to make an auxiliary
index to the auxiliary index. That would make an aux-aux index that would
need only 100 entries and would fit in one disk block.
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Instead of reading 14 disk blocks to find the desired record, we only need to
read 3 blocks. This blocking is the core idea behind the creation of the B-tree,
where the disk blocks fill-out a hierarchy of levels to make up the index.
Reading and searching the first (and only) block of the aux-aux index which is
the root of the tree identifies the relevant block in aux-index in the level below.
Reading and searching that aux-index block identifies the relevant block to
read, until the final level, known as the leaf level, identifies a record in the
main database. Instead of 150 milliseconds, we need only 30 milliseconds to
get the record.

The auxiliary indices have turned the search problem from a binary search
requiring roughly log2 N disk reads to one requiring only logb N disk reads
where b is the blocking factor (the number of entries per block: b = 100 entries
per block in our example; log100 1,000,000 = 3 reads).

In practice, if the main database is being frequently searched, the aux-aux
index and much of the aux index may reside in a disk cache, so they would
not incur a disk read. The B-tree remains the standard index implementation
in almost all relational databases, and many nonrelational databases use
them too.[19]

Insertions and deletions[edit]

If the database does not change, then compiling the index is simple to do, and
the index need never be changed. If there are changes, then managing the
database and its index becomes more complicated.

Deleting records from a database is relatively easy. The index can stay the
same, and the record can just be marked as deleted. The database remains in
sorted order. If there are a large number of lazy deletions, then searching and
storage become less efficient.[20]

Insertions can be very slow in a sorted sequential file because room for the
inserted record must be made. Inserting a record before the first record
requires shifting all of the records down one. Such an operation is just too
expensive to be practical. One solution is to leave some spaces. Instead of
densely packing all the records in a block, the block can have some free
space to allow for subsequent insertions. Those spaces would be marked as if
they were "deleted" records.
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Both insertions and deletions are fast as long as space is available on a block.
If an insertion won't fit on the block, then some free space on some nearby
block must be found and the auxiliary indices adjusted. The hope is that
enough space is available nearby, such that a lot of blocks do not need to be
reorganized. Alternatively, some out-of-sequence disk blocks may be used.[19]

Advantages of B-tree usage for databases[edit]

The B-tree uses all of the ideas described above. In particular, a B-tree:

keeps keys in sorted order for sequential traversing
uses a hierarchical index to minimize the number of disk reads
uses partially full blocks to speed up insertions and deletions
keeps the index balanced with a recursive algorithm

In addition, a B-tree minimizes waste by making sure the interior nodes are at
least half full. A B-tree can handle an arbitrary number of insertions and
deletions.[19]

Best case and worst case heights[edit]
Let h ≥ –1 be the height of the classic B-tree (see Tree (data structure)
§ Terminology for the tree height definition). Let n ≥ 0 be the number of entries
in the tree. Let m be the maximum number of children a node can have. Each
node can have at most m−1 keys.

It can be shown (by induction for example) that a B-tree of height h with all its
nodes completely filled has n = mh+1–1 entries. Hence, the best case height
(i.e. the minimum height) of a B-tree is:

Let  be the minimum number of children an internal (non-root) node must
have. For an ordinary B-tree, 

Comer (1979) and Cormen et al. (2001) give the worst case height (the
maximum height) of a B-tree as[21]
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Algorithms[edit]
Search[edit]

Searching is similar to searching a binary search tree. Starting at the root, the
tree is recursively traversed from top to bottom. At each level, the search
reduces its field of view to the child pointer (subtree) whose range includes
the search value. A subtree's range is defined by the values, or keys,
contained in its parent node. These limiting values are also known as
separation values.

Binary search is typically (but not necessarily) used within nodes to find the
separation values and child tree of interest.

Insertion[edit]

A B-tree insertion example with each iteration. The nodes of this B-
tree have at most 3 children (Knuth order 3).
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All insertions start at a leaf node. To insert a new element, search the tree to
find the leaf node where the new element should be added. Insert the new
element into that node with the following steps:

1. If the node contains fewer than the maximum allowed number of
elements, then there is room for the new element. Insert the new element
in the node, keeping the node's elements ordered.

2. Otherwise the node is full, evenly split it into two nodes so:
1. A single median is chosen from among the leaf's elements and the

new element that is being inserted.
2. Values less than the median are put in the new left node and values

greater than the median are put in the new right node, with the
median acting as a separation value.

3. The separation value is inserted in the node's parent, which may
cause it to be split, and so on. If the node has no parent (i.e., the
node was the root), create a new root above this node (increasing
the height of the tree).

If the splitting goes all the way up to the root, it creates a new root with a
single separator value and two children, which is why the lower bound on the
size of internal nodes does not apply to the root. The maximum number of
elements per node is U−1. When a node is split, one element moves to the
parent, but one element is added. So, it must be possible to divide the
maximum number U−1 of elements into two legal nodes. If this number is odd,
then U=2L and one of the new nodes contains (U−2)/2 = L−1 elements, and
hence is a legal node, and the other contains one more element, and hence it
is legal too. If U−1 is even, then U=2L−1, so there are 2L−2 elements in the
node. Half of this number is L−1, which is the minimum number of elements
allowed per node.

An alternative algorithm supports a single pass down the tree from the root to
the node where the insertion will take place, splitting any full nodes
encountered on the way preemptively. This prevents the need to recall the
parent nodes into memory, which may be expensive if the nodes are on
secondary storage. However, to use this algorithm, we must be able to send
one element to the parent and split the remaining U−2 elements into two legal
nodes, without adding a new element. This requires U = 2L rather than U =
2L−1, which accounts for why some[which?] textbooks impose this requirement
in defining B-trees.

https://en.wikipedia.org/wiki/Wikipedia:Avoid_weasel_words
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Deletion[edit]

There are two popular strategies for deletion from a B-tree.

1. Locate and delete the item, then restructure the tree to retain its
invariants, OR

2. Do a single pass down the tree, but before entering (visiting) a node,
restructure the tree so that once the key to be deleted is encountered, it
can be deleted without triggering the need for any further restructuring

The algorithm below uses the former strategy.

There are two special cases to consider when deleting an element:

1. The element in an internal node is a separator for its child nodes
2. Deleting an element may put its node under the minimum number of

elements and children

The procedures for these cases are in order below.

Deletion from a leaf node[edit]

1. Search for the value to delete.
2. If the value is in a leaf node, simply delete it from the node.
3. If underflow happens, rebalance the tree as described in section

"Rebalancing after deletion" below.

Deletion from an internal node[edit]

Each element in an internal node acts as a separation value for two subtrees,
therefore we need to find a replacement for separation. Note that the largest
element in the left subtree is still less than the separator. Likewise, the
smallest element in the right subtree is still greater than the separator. Both of
those elements are in leaf nodes, and either one can be the new separator for
the two subtrees. Algorithmically described below:

1. Choose a new separator (either the largest element in the left subtree or
the smallest element in the right subtree), remove it from the leaf node it
is in, and replace the element to be deleted with the new separator.

https://en.wikipedia.org/w/index.php?title=B-tree&action=edit&section=15
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2. The previous step deleted an element (the new separator) from a leaf
node. If that leaf node is now deficient (has fewer than the required
number of nodes), then rebalance the tree starting from the leaf node.

Rebalancing after deletion[edit]

Rebalancing starts from a leaf and proceeds toward the root until the tree is
balanced. If deleting an element from a node has brought it under the
minimum size, then some elements must be redistributed to bring all nodes up
to the minimum. Usually, the redistribution involves moving an element from a
sibling node that has more than the minimum number of nodes. That
redistribution operation is called a rotation. If no sibling can spare an
element, then the deficient node must be merged with a sibling. The merge
causes the parent to lose a separator element, so the parent may become
deficient and need rebalancing. The merging and rebalancing may continue
all the way to the root. Since the minimum element count doesn't apply to the
root, making the root be the only deficient node is not a problem. The
algorithm to rebalance the tree is as follows:

If the deficient node's right sibling exists and has more than the minimum
number of elements, then rotate left

1. Copy the separator from the parent to the end of the deficient node
(the separator moves down; the deficient node now has the minimum
number of elements)

2. Replace the separator in the parent with the first element of the right
sibling (right sibling loses one node but still has at least the minimum
number of elements)

3. The tree is now balanced
Otherwise, if the deficient node's left sibling exists and has more than the
minimum number of elements, then rotate right

1. Copy the separator from the parent to the start of the deficient node
(the separator moves down; deficient node now has the minimum
number of elements)

2. Replace the separator in the parent with the last element of the left
sibling (left sibling loses one node but still has at least the minimum
number of elements)

3. The tree is now balanced
Otherwise, if both immediate siblings have only the minimum number of
elements, then merge with a sibling sandwiching their separator taken off

https://en.wikipedia.org/w/index.php?title=B-tree&action=edit&section=18
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from their parent
1. Copy the separator to the end of the left node (the left node may be

the deficient node or it may be the sibling with the minimum number
of elements)

2. Move all elements from the right node to the left node (the left node
now has the maximum number of elements, and the right node –
empty)

3. Remove the separator from the parent along with its empty right child
(the parent loses an element)

If the parent is the root and now has no elements, then free it
and make the merged node the new root (tree becomes
shallower)
Otherwise, if the parent has fewer than the required number of
elements, then rebalance the parent[22]

Note: The rebalancing operations are different for B+ trees (e.g., rotation is different
because parent has copy of the key) and B*-tree (e.g., three siblings are merged into
two siblings).

Sequential access[edit]

While freshly loaded databases tend to have good sequential behavior, this
behavior becomes increasingly difficult to maintain as a database grows,
resulting in more random I/O and performance challenges.[23]

Initial construction[edit]

A common special case is adding a large amount of pre-sorted data into an
initially empty B-tree. While it is quite possible to simply perform a series of
successive inserts, inserting sorted data results in a tree composed almost
entirely of half-full nodes. Instead, a special "bulk loading" algorithm can be
used to produce a more efficient tree with a higher branching factor.

When the input is sorted, all insertions are at the rightmost edge of the tree,
and in particular any time a node is split, we are guaranteed that no more
insertions will take place in the left half. When bulk loading, we take
advantage of this, and instead of splitting overfull nodes evenly, split them as
unevenly as possible: leave the left node completely full and create a right
node with zero keys and one child (in violation of the usual B-tree rules).

https://en.wikipedia.org/w/index.php?title=B-tree&action=edit&section=19
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At the end of bulk loading, the tree is composed almost entirely of completely
full nodes; only the rightmost node on each level may be less than full.
Because those nodes may also be less than half full, to re-establish the
normal B-tree rules, combine such nodes with their (guaranteed full) left
siblings and divide the keys to produce two nodes at least half full. The only
node which lacks a full left sibling is the root, which is permitted to be less
than half full.

In filesystems[edit]
In addition to its use in databases, the B-tree (or § Variants) is also used in
filesystems to allow quick random access to an arbitrary block in a particular
file. The basic problem is turning the file block  address into a disk block
address.

Some operating systems require the user to allocate the maximum size of the
file when the file is created. The file can then be allocated as contiguous disk
blocks. In that case, to convert the file block address  into a disk block
address, the operating system simply adds the file block address  to the
address of the first disk block constituting the file. The scheme is simple, but
the file cannot exceed its created size.

Other operating systems allow a file to grow. The resulting disk blocks may
not be contiguous, so mapping logical blocks to physical blocks is more
involved.

MS-DOS, for example, used a simple File Allocation Table (FAT). The FAT has
an entry for each disk block,[note 1] and that entry identifies whether its block is
used by a file and if so, which block (if any) is the next disk block of the same
file. So, the allocation of each file is represented as a linked list in the table. In
order to find the disk address of file block , the operating system (or disk
utility) must sequentially follow the file's linked list in the FAT. Worse, to find a
free disk block, it must sequentially scan the FAT. For MS-DOS, that was not a
huge penalty because the disks and files were small and the FAT had few
entries and relatively short file chains. In the FAT12 filesystem (used on floppy
disks and early hard disks), there were no more than 4,080 [note 2] entries, and
the FAT would usually be resident in memory. As disks got bigger, the FAT
architecture began to confront penalties. On a large disk using FAT, it may be

https://en.wikipedia.org/w/index.php?title=B-tree&action=edit&section=21
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necessary to perform disk reads to learn the disk location of a file block to be
read or written.

TOPS-20 (and possibly TENEX) used a 0 to 2 level tree that has similarities to
a B-tree[citation needed]. A disk block was 512 36-bit words. If the file fit in a 512
(29) word block, then the file directory would point to that physical disk block. If
the file fit in 218 words, then the directory would point to an aux index; the 512
words of that index would either be NULL (the block isn't allocated) or point to
the physical address of the block. If the file fit in 227 words, then the directory
would point to a block holding an aux-aux index; each entry would either be
NULL or point to an aux index. Consequently, the physical disk block for a 227

word file could be located in two disk reads and read on the third.

Apple's filesystem HFS+ and APFS, Microsoft's NTFS,[24] AIX (jfs2) and some
Linux filesystems, such as btrfs and Ext4, use B-trees.

B*-trees are used in the HFS and Reiser4 file systems.

DragonFly BSD's HAMMER file system uses a modified B+-tree.[25]

Performance[edit]
A B-tree grows slower with growing data amount, than the linearity of a linked
list. Compared to a skip list, both structures have the same performance, but
the B-tree scales better for growing n. A T-tree, for main memory database
systems, is similar but more compact.

Variations[edit]
Access concurrency[edit]

Lehman and Yao[26] showed that all the read locks could be avoided (and
thus concurrent access greatly improved) by linking the tree blocks at each
level together with a "next" pointer. This results in a tree structure where both
insertion and search operations descend from the root to the leaf. Write locks
are only required as a tree block is modified. This maximizes access
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concurrency by multiple users, an important consideration for databases
and/or other B-tree-based ISAM storage methods. The cost associated with
this improvement is that empty pages cannot be removed from the btree
during normal operations. (However, see [27] for various strategies to
implement node merging, and source code at.[28])

United States Patent 5283894, granted in 1994, appears to show a way to use
a 'Meta Access Method' [29] to allow concurrent B+ tree access and
modification without locks. The technique accesses the tree 'upwards' for both
searches and updates by means of additional in-memory indexes that point at
the blocks in each level in the block cache. No reorganization for deletes is
needed and there are no 'next' pointers in each block as in Lehman and Yao.

Parallel algorithms[edit]

Since B-trees are similar in structure to red-black trees, parallel algorithms for
red-black trees can be applied to B-trees as well.

Maple tree[edit]

A Maple tree is a B-tree developed for use in the Linux kernel to reduce lock
contention in virtual memory management.[30][31][32]

See also[edit]
B+ tree
R-tree
Red–black tree
2–3 tree
2–3–4 tree

Notes[edit]
1. ^ For FAT, what is called a "disk block" here is what the FAT

documentation calls a "cluster", which is a fixed-size group of one or
more contiguous whole physical disk sectors. For the purposes of this
discussion, a cluster has no significant difference from a physical sector.
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2. ^ Two of these were reserved for special purposes, so only 4078 could
actually represent disk blocks (clusters).
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