
AVL tree
Type Tree

Invented 1962

Invented
by

Georgy Adelson-Velsky
and Evgenii Landis

Time complexity in big O
notation

Algorithm Average Worst
case

Space

Search
[1] [1]

Insert
[1] [1]

Delete
[1] [1]

Animation showing the insertion of
several elements into an AVL tree. It
includes left, right, left-right and
right-left rotations.

AVL tree

In computer science, an AVL tree (named after inventors

Adelson-Velsky and Landis) is a self-balancing binary search tree

(BST). It was the first such data structure to be invented.
[2]

 In an

AVL tree, the heights of the two child subtrees of any node differ

by at most one; if at any time they differ by more than one,

rebalancing is done to restore this property. Lookup, insertion,

and deletion all take O(log n) time in both the average and worst

cases, where is the number of nodes in the tree prior to the

operation. Insertions and deletions may require the tree to be

rebalanced by one or more tree rotations.

The AVL tree is named after its two Soviet inventors, Georgy

Adelson-Velsky and Evgenii Landis, who published it in their

1962 paper "An algorithm for the organization of information".
[3]

AVL trees are often compared with red–black trees because both

support the same set of operations and take time for the

basic operations. For lookup-intensive applications, AVL trees are

faster than red–black trees because they are more strictly

balanced.
[4]

 Similar to red–black trees, AVL trees are height-

balanced. Both are, in general, neither weight-balanced nor -

balanced for any ;
[5]

 that is, sibling nodes can have hugely

differing numbers of descendants.

Definition
Balance factor
Properties

Operations
Searching
Traversal
Insert
Delete
Set operations and bulk operations

Rebalancing
Simple rotation
Double rotation

Comparison to other structures
See also

Contents

https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Georgy_Adelson-Velsky
https://en.wikipedia.org/wiki/Evgenii_Landis
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/File:AVL_Tree_Example.gif
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Tree_height
https://en.wikipedia.org/wiki/Child_nodes
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Tree_rotation
https://en.wikipedia.org/wiki/Soviet_Union
https://en.wikipedia.org/wiki/Georgy_Adelson-Velsky
https://en.wikipedia.org/wiki/Evgenii_Landis
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Weight-balanced_tree

Fig. 1: AVL tree with balance factors
(green)

References
Further reading
External links

In a binary tree the balance factor of a node X is defined to

be the height difference

[6]: 459 

of its two child sub-trees. A binary tree is defined to be an AVL tree if the invariant

[7]

holds for every node X in the tree.

A node X with is called "left-heavy", one with is called "right-heavy", and

one with is sometimes simply called "balanced".

Balance factors can be kept up-to-date by knowing the previous balance factors and the change in

height – it is not necessary to know the absolute height. For holding the AVL balance information,

two bits per node are sufficient.
[8]

The height (counted as the maximal number of levels) of an AVL tree with nodes lies in the

interval:
[6]: 460 

where is the golden ratio and
This is because

an AVL tree of height contains at least nodes where is the Fibonacci sequence

with the seed values

Read-only operations of an AVL tree involve carrying out the same actions as would be carried out on

an unbalanced binary search tree, but modifications have to observe and restore the height balance of

the sub-trees.

Definition

Balance factor

Properties

Operations

https://en.wikipedia.org/wiki/File:AVL-tree-wBalance_K.svg
https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Binary_search_tree

Searching for a specific key in an AVL tree can be done the same way as that of any balanced or

unbalanced binary search tree.
[9]: ch. 8 

 In order for search to work effectively it has to employ a

comparison function which establishes a total order (or at least a total preorder) on the set of

keys.
[10]: 23 

 The number of comparisons required for successful search is limited by the height h and

for unsuccessful search is very close to h, so both are in O(log n).
[11]: 216 

As a read-only operation the traversal of an AVL tree functions the same way as on any other binary

tree. Exploring all n nodes of the tree visits each link exactly twice: one downward visit to enter the

subtree rooted by that node, another visit upward to leave that node's subtree after having explored it.

Once a node has been found in an AVL tree, the next or previous node can be accessed in amortized

constant time.
[12]: 58 

 Some instances of exploring these "nearby" nodes require traversing up to

h ∝ log(n) links (particularly when navigating from the rightmost leaf of the root's left subtree to the

root or from the root to the leftmost leaf of the root's right subtree; in the AVL tree of figure 1,

navigating from node P to the next-to-the-right node Q takes 3 steps). Since there are n−1 links in any

tree, the amortized cost is 2×(n−1)/n, or approximately 2.

When inserting a node into an AVL tree, you initially follow the same process as inserting into a

Binary Search Tree. If the tree is empty, then the node is inserted as the root of the tree. If the tree is

not empty, then we go down the root, and recursively go down the tree searching for the location to

insert the new node. This traversal is guided by the comparison function. In this case, the node always

replaces a NULL reference (left or right) of an external node in the tree i.e., the node is either made a

left-child or a right-child of the external node.

After this insertion, if a tree becomes unbalanced, only ancestors of the newly inserted node are

unbalanced. This is because only those nodes have their sub-trees altered.
[13]

 So it is necessary to

check each of the node's ancestors for consistency with the invariants of AVL trees: this is called

"retracing". This is achieved by considering the balance factor of each node.
[6]: 458–481 

[12]: 108 

Since with a single insertion the height of an AVL subtree cannot increase by more than one, the

temporary balance factor of a node after an insertion will be in the range [–2,+2]. For each node

checked, if the temporary balance factor remains in the range from –1 to +1 then only an update of the

balance factor and no rotation is necessary. However, if the temporary balance factor is ±2, the

subtree rooted at this node is AVL unbalanced, and a rotation is needed.
[10]: 52 

 With insertion as the

code below shows, the adequate rotation immediately perfectly rebalances the tree.

In figure 1, by inserting the new node Z as a child of node X the height of that subtree Z increases from

0 to 1.

Invariant of the retracing loop for an insertion

The height of the subtree rooted by Z has increased by 1. It is already in AVL shape.

Searching

Traversal

Insert

https://en.wikipedia.org/wiki/Binary_search_tree#Searching
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Weak_ordering#Total_preorders
https://en.wikipedia.org/wiki/Amortized_complexity
https://en.wikipedia.org/wiki/Binary_Search_Tree
https://en.wikipedia.org/wiki/Loop_invariant

Example code for an insert operation

In order to update the balance factors of all nodes, first observe that all nodes requiring correction lie

from child to parent along the path of the inserted leaf. If the above procedure is applied to nodes

along this path, starting from the leaf, then every node in the tree will again have a balance factor of

−1, 0, or 1.

for (X = parent(Z); X != null; X = parent(Z)) { // Loop (possibly up to the root)

 // BF(X) has to be updated:

 if (Z == right_child(X)) { // The right subtree increases

 if (BF(X) > 0) { // X is right-heavy

 // ==> the temporary BF(X) == +2

 // ==> rebalancing is required.

 G = parent(X); // Save parent of X around rotations

 if (BF(Z) < 0) // Right Left Case (see figure 3)

 N = rotate_RightLeft(X, Z); // Double rotation: Right(Z) then Left(X)

 else // Right Right Case (see figure 2)

 N = rotate_Left(X, Z); // Single rotation Left(X)

 // After rotation adapt parent link

 } else {

 if (BF(X) < 0) {

 BF(X) = 0; // Z’s height increase is absorbed at X.

 break; // Leave the loop

 }

 BF(X) = +1;

 Z = X; // Height(Z) increases by 1

 continue;

 }

 } else { // Z == left_child(X): the left subtree increases

 if (BF(X) < 0) { // X is left-heavy

 // ==> the temporary BF(X) == -2

 // ==> rebalancing is required.

 G = parent(X); // Save parent of X around rotations

 if (BF(Z) > 0) // Left Right Case

 N = rotate_LeftRight(X, Z); // Double rotation: Left(Z) then Right(X)

 else // Left Left Case

 N = rotate_Right(X, Z); // Single rotation Right(X)

 // After rotation adapt parent link

 } else {

 if (BF(X) > 0) {

 BF(X) = 0; // Z’s height increase is absorbed at X.

 break; // Leave the loop

 }

 BF(X) = -1;

 Z = X; // Height(Z) increases by 1

 continue;

 }

 }

 // After a rotation adapt parent link:

 // N is the new root of the rotated subtree

 // Height does not change: Height(N) == old Height(X)

 parent(N) = G;

 if (G != null) {

 if (X == left_child(G))

 left_child(G) = N;

 else

 right_child(G) = N;

 } else

 tree->root = N; // N is the new root of the total tree

 break;

 // There is no fall thru, only break; or continue;

}

// Unless loop is left via break, the height of the total tree increases by 1.

1
2
3

4
5
6

7
8
9

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28
29
30

31
32
33

34
35
36

37
38
39

40
41
42

43
44
45

46
47
48

49
50
51

52
53
54

55
56

The retracing can stop if the balance factor becomes 0 implying that the height of that subtree

remains unchanged.

If the balance factor becomes ±1 then the height of the subtree increases by one and the retracing

needs to continue.

If the balance factor temporarily becomes ±2, this has to be repaired by an appropriate rotation after

which the subtree has the same height as before (and its root the balance factor 0).

The time required is O(log n) for lookup, plus a maximum of O(log n) retracing levels (O(1) on

average) on the way back to the root, so the operation can be completed in O(log n) time.
[10]: 53 

The preliminary steps for deleting a node are described in section Binary search tree#Deletion.
There,

the effective deletion of the subject node or the replacement node decreases the height of the

corresponding child tree either from 1 to 0 or from 2 to 1, if that node had a child.

Starting at this subtree, it is necessary to check each of the ancestors for consistency with the

invariants of AVL trees. This is called "retracing".

Since with a single deletion the height of an AVL subtree cannot decrease by more than one, the

temporary balance factor of a node will be in the range from −2 to +2.
If the balance factor remains in

the range from −1 to +1 it can be adjusted in accord with the AVL rules. If it becomes ±2 then the

subtree is unbalanced and needs to be rotated. (Unlike insertion where a rotation always balances the

tree, after delete, there may be BF(Z) ≠ 0 (see figures 2 and 3), so that after the appropriate single or

double rotation the height of the rebalanced subtree decreases by one meaning that the tree has to be

rebalanced again on the next higher level.) The various cases of rotations are described in section

Rebalancing.

Invariant of the retracing loop for a deletion

The height of the subtree rooted by N has decreased by 1. It is already in AVL shape.

Example code for a delete operation

Delete

for (X = parent(N); X != null; X = G) { // Loop (possibly up to the root)

 G = parent(X); // Save parent of X around rotations

 // BF(X) has not yet been updated!

 if (N == left_child(X)) { // the left subtree decreases

 if (BF(X) > 0) { // X is right-heavy

 // ==> the temporary BF(X) == +2

 // ==> rebalancing is required.

 Z = right_child(X); // Sibling of N (higher by 2)

 b = BF(Z);

 if (b < 0) // Right Left Case (see figure 3)

 N = rotate_RightLeft(X, Z); // Double rotation: Right(Z) then Left(X)

 else // Right Right Case (see figure 2)

 N = rotate_Left(X, Z); // Single rotation Left(X)

 // After rotation adapt parent link

 } else {

 if (BF(X) == 0) {

 BF(X) = +1; // N’s height decrease is absorbed at X.

 break; // Leave the loop

 }

 N = X;

1

2
3
4

5
6
7

8
9
10

11
12
13

14
15
16

17
18
19

20

https://en.wikipedia.org/wiki/Binary_search_tree#Deletion

The retracing can stop if the balance factor becomes ±1 (it must have been 0) meaning that the height

of that subtree remains unchanged.

If the balance factor becomes 0 (it must have been ±1) then the height of the subtree decreases by one

and the retracing needs to continue.

If the balance factor temporarily becomes ±2, this has to be repaired by an appropriate rotation. It

depends on the balance factor of the sibling Z (the higher child tree in figure 2) whether the height of

the subtree decreases by one –and the retracing needs to continue– or does not change (if Z has the

balance factor 0) and the whole tree is in AVL-shape.

The time required is O(log n) for lookup, plus a maximum of O(log n) retracing levels (O(1) on

average) on the way back to the root, so the operation can be completed in O(log n) time.

In addition to the single-element insert, delete and lookup operations, several set operations have

been defined on AVL trees: union, intersection and set difference. Then fast bulk operations on

insertions or deletions can be implemented based on these set functions. These set operations rely on

 BF(N) = 0; // Height(N) decreases by 1

 continue;

 }

 } else { // (N == right_child(X)): The right subtree decreases

 if (BF(X) < 0) { // X is left-heavy

 // ==> the temporary BF(X) == -2

 // ==> rebalancing is required.

 Z = left_child(X); // Sibling of N (higher by 2)

 b = BF(Z);

 if (b > 0) // Left Right Case

 N = rotate_LeftRight(X, Z); // Double rotation: Left(Z) then Right(X)

 else // Left Left Case

 N = rotate_Right(X, Z); // Single rotation Right(X)

 // After rotation adapt parent link

 } else {

 if (BF(X) == 0) {

 BF(X) = -1; // N’s height decrease is absorbed at X.

 break; // Leave the loop

 }

 N = X;

 BF(N) = 0; // Height(N) decreases by 1

 continue;

 }

 }

 // After a rotation adapt parent link:

 // N is the new root of the rotated subtree

 parent(N) = G;

 if (G != null) {

 if (X == left_child(G))

 left_child(G) = N;

 else

 right_child(G) = N;

 } else

 tree->root = N; // N is the new root of the total tree

 if (b == 0)

 break; // Height does not change: Leave the loop

 // Height(N) decreases by 1 (== old Height(X)-1)

}

// If (b != 0) the height of the total tree decreases by 1.

21
22

23
24
25

26
27
28

29
30
31

32
33
34

35
36
37

38
39
40

41
42
43

44
45
46

47
48
49

50
51
52

53
54
55
56

57
58
59

60
61

Set operations and bulk operations

https://en.wikipedia.org/wiki/Union_(set_theory)
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Set_difference

two helper operations, Split and Join. With the new operations, the implementation of AVL trees can

be more efficient and highly-parallelizable.
[14]

The function Join on two AVL trees t1 and t2 and a key k will return a tree containing all elements in

t1, t2 as well as k. It requires k to be greater than all keys in t1 and smaller than all keys in t2. If the two

trees differ by height at most one, Join simply create a new node with left subtree t1, root k and right

subtree t2. Otherwise, suppose that t1 is higher than t2 for more than one (the other case is

symmetric). Join follows the right spine of t1 until a node c which is balanced with t2. At this point a

new node with left child c, root k and right child t2 is created to replace c. The new node satisfies the

AVL invariant, and its height is one greater than c. The increase in height can increase the height of

its ancestors, possibly invalidating the AVL invariant of those nodes. This can be fixed either with a

double rotation if invalid at the parent or a single left rotation if invalid higher in the tree, in both

cases restoring the height for any further ancestor nodes. Join will therefore require at most two

rotations. The cost of this function is the difference of the heights between the two input trees.

Pseudocode implementation for the Join algorithm

function JoinRightAVL(TL, k, TR)

 (l,k',c) = expose(TL)

 if (Height(c) <= Height(TR)+1)

 T' = Node(c,k,TR)

 if (Height(T') <= Height(l)+1) then return Node(l,k',T')

 else return rotateLeft(Node(l,k',rotateRight(T')))

 else

 T' = JoinRightAVL(c,k,TR)

 T'' = Node(l,k',T')

 if (Height(T') <= Height(l)+1) return T''

 else return rotateLeft(T'')

function JoinLeftAVL(TL, k, TR)

 /* symmetric to JoinRightAVL */

function Join(TL, k, TR)

 if (Height(TL)>Height(TR)+1) return JoinRightAVL(TL, k, TR)

 if (Height(TR)>Height(TL)+1) return JoinLeftAVL(TL, k, TR)

 return Node(TL,k,TR)

Here Height(v) is the height of a subtree (node) v. (l,k,r) = expose(v) extracts v's left child l, the
key k of v's root, and the right child r. Node(l,k,r) means to create a node of left child l, key k, and
right child r.

To split an AVL tree into two smaller trees, those smaller than key k, and those larger than key k, first

draw a path from the root by inserting k into the AVL. After this insertion, all values less than k will be

found on the left of the path, and all values greater than k will be found on the right. By applying Join,

all the subtrees on the left side are merged bottom-up using keys on the path as intermediate nodes

from bottom to top to form the left tree, and the right part is asymmetric. The cost of Split is

O(log n), order of the height of the tree.

Pseudocode implementation for the Split algorithm

function Split(T,k)

 if (T = nil) return (nil,false,nil)

 (L,m,R) = expose(T)

 if (k = m) return (L,true,R)

 if (k<m)

 (L',b,R') = Split(L,k)

 return (L',b,Join(R',m,R))
 if (k>m)

 (L',b,R') = Split(R,k)

 return (Join(L,m,L'),b,R'))

The union of two AVL trees t1 and t2 representing sets A and B, is an AVL t that represents A ∪ B.

Pseudocode implementation for the Union algorithm

function Union(t1, t2):

 if t1 = nil:

 return t2

 if t2 = nil:

 return t1

 (t<, b, t>) = Split(t2, t1.root)

 return Join(Union(left(t1), t<), t1.root, Union(right(t1), t>))

Here, Split is presumed to return two trees: one holding the keys less its input key, one holding
the greater keys. (The algorithm is non-destructive, but an in-place destructive version exists as
well.)

The algorithm for intersection or difference is similar, but requires the Join2 helper routine that is the

same as Join but without the middle key. Based on the new functions for union, intersection or

difference, either one key or multiple keys can be inserted to or deleted from the AVL tree. Since Split

calls Join but does not deal with the balancing criteria of AVL trees directly, such an implementation

is usually called the "join-based" implementation.

The complexity of each of union, intersection and difference is for AVL trees of

sizes and . More importantly, since the recursive calls to union, intersection or difference

are independent of each other, they can be executed in parallel with a parallel depth

.
[14]

 When , the join-based implementation has the same computational DAG as single-

element insertion and deletion.

If during a modifying operation the height difference between two child subtrees changes, this may, as

long as it is < 2, be reflected by an adaption of the balance information at the parent. During insert

and delete operations a (temporary) height difference of 2 may arise, which means that the parent

subtree has to be "rebalanced". The given repair tools are the so-called tree rotations, because they

move the keys only "vertically", so that the ("horizontal") in-order sequence of the keys is fully

preserved (which is essential for a binary-search tree).
[6]: 458–481 

[12]: 33 

Rebalancing

https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Join-based_tree_algorithms
https://en.wikipedia.org/wiki/Parallel_programming
https://en.wikipedia.org/wiki/Analysis_of_parallel_algorithms
https://en.wikipedia.org/wiki/Tree_rotation

Let X be the node that has a (temporary) balance factor of −2 or +2. Its left or right subtree was

modified. Let Z be the higher child (see figures 2 and 3). Note that both children are in AVL shape by

induction hypothesis.

In case of insertion this insertion has happened to one of Z's children in a way that Z's height has

increased.
 In case of deletion this deletion has happened to the sibling t1 of Z in a way so that t1's

height being already lower has decreased. (This is the only case where Z's balance factor may also be

0.)

There are four possible variants of the violation:

Right Right⟹ Z is a right child of its parent X and BF(Z) ≥ 0
Left Left ⟹ Z is a left child of its parent X and BF(Z) ≤ 0
Right Left ⟹ Z is a right child of its parent X and BF(Z) < 0
Left Right ⟹ Z is a left child of its parent X and BF(Z) > 0

And the rebalancing is performed differently:

Right
Right

⟹ X is rebalanced with
a simple rotation rotate_Left (see figure 2)

Left Left ⟹ X is rebalanced with
a simple rotation rotate_Right (mirror-image of figure

2)

Right Left ⟹ X is rebalanced with
a double rotation

rotate_RightLeft
(see figure 3)

Left Right ⟹ X is rebalanced with
a double rotation

rotate_LeftRight
(mirror-image of figure
3)

Thereby, the situations are denoted as C B, where C (= child direction) and B (= balance) come from

the set { Left, Right } with Right := −Left. The balance violation of case C == B is repaired by a simple

rotation rotate_(−C), whereas the case C != B is repaired by a double rotation rotate_CB.

The cost of a rotation, either simple or double, is constant.

Figure 2 shows a Right Right situation. In its upper half, node X has two child trees with a balance

factor of +2. Moreover, the inner child t23 of Z (i.e., left child when Z is right child resp. right child

when Z is left child) is not higher than its sibling t4. This can happen by a height increase of subtree t4

or by a height decrease of subtree t1. In the latter case, also the pale situation where t23 has the same

height as t4 may occur.

The result of the left rotation is shown in the lower half of the figure. Three links (thick edges in figure

2) and two balance factors are to be updated.

As the figure shows, before an insertion, the leaf layer was at level h+1, temporarily at level h+2 and

after the rotation again at level h+1. In case of a deletion, the leaf layer was at level h+2, where it is

again, when t23 and t4 were of same height. Otherwise the leaf layer reaches level h+1, so that the

height of the rotated tree decreases.

Simple rotation

https://en.wikipedia.org/wiki/Mathematical_induction

Fig. 2: Simple rotation

rotate_Left(X,Z)

Code snippet of a simple left rotation

Input: X = root of subtree to be rotated left
Z = right child of X, Z is right-heavy
 with height == Height(LeftSubtree(X))+2

Result: new root of rebalanced subtree

Figure 3 shows a Right Left situation. In its upper third, node X has two child trees with a balance

factor of +2. But unlike figure 2, the inner child Y of Z is higher than its sibling t4. This can happen by

the insertion of Y itself or a height increase of one of its subtrees t2 or t3 (with the consequence that

they are of different height) or by a height decrease of subtree t1. In the latter case, it may also occur

that t2 and t3 are of the same height.

The result of the first, the right, rotation is shown in the middle third of the figure. (With respect to

the balance factors, this rotation is not of the same kind as the other AVL single rotations, because the

height difference between Y and t4 is only 1.) The result of the final left rotation is shown in the lower

third of the figure. Five links (thick edges in figure 3) and three balance factors are to be updated.

As the figure shows, before an insertion, the leaf layer was at level h+1, temporarily at level h+2 and

after the double rotation again at level h+1. In case of a deletion, the leaf layer was at level h+2 and

after the double rotation it is at level h+1, so that the height of the rotated tree decreases.

Code snippet of a right-left double rotation

Input: X = root of subtree to be rotated
Z = its right child, left-heavy
 with height == Height(LeftSubtree(X))+2

Result: new root of rebalanced subtree

node *rotate_Left(node *X, node *Z) {

 // Z is by 2 higher than its sibling

 t23 = left_child(Z); // Inner child of Z

 right_child(X) = t23;

 if (t23 != null)

 parent(t23) = X;

 left_child(Z) = X;

 parent(X) = Z;

 // 1st case, BF(Z) == 0,

 // only happens with deletion, not insertion:

 if (BF(Z) == 0) { // t23 has been of same height as t4

 BF(X) = +1; // t23 now higher

 BF(Z) = –1; // t4 now lower than X

 } else

 { // 2nd case happens with insertion or deletion:

 BF(X) = 0;

 BF(Z) = 0;

 }

 return Z; // return new root of rotated subtree

}

1
2
3

4
5
6

7
8
9

10
11
12

13
14
15

16
17
18

19
20

Double rotation

https://en.wikipedia.org/wiki/File:AVL-simple-left_K.svg

Fig. 3: Double rotation rotate_RightLeft(X,Z)

= rotate_Right around Z followed by

rotate_Left around X

Both AVL trees and red–black (RB) trees are self-balancing

binary search trees and they are related mathematically.

Indeed, every AVL tree can be colored red–black,
[15]

 but

there are RB trees which are not AVL balanced. For

maintaining the AVL resp. RB tree's invariants, rotations

play an important role. In the worst case, even without

rotations, AVL or RB insertions or deletions require

O(log n) inspections and/or updates to AVL balance

factors resp. RB colors. RB insertions and deletions and

AVL insertions require from zero to three tail-recursive

rotations and run in amortized O(1) time,
[16]: pp.165, 158 

[17]

thus equally constant on average. AVL deletions requiring O(log n) rotations in the worst case are

also O(1) on average. RB trees require storing one bit of information (the color) in each node, while

AVL trees mostly use two bits for the balance factor, although, when stored at the children, one bit

with meaning «lower than sibling» suffices. The bigger difference between the two data structures is

their height limit.

For a tree of size n ≥ 1

an AVL tree's height is at most

node *rotate_RightLeft(node *X, node *Z) {

 // Z is by 2 higher than its sibling

 Y = left_child(Z); // Inner child of Z

 // Y is by 1 higher than sibling

 t3 = right_child(Y);

 left_child(Z) = t3;

 if (t3 != null)

 parent(t3) = Z;

 right_child(Y) = Z;

 parent(Z) = Y;

 t2 = left_child(Y);

 right_child(X) = t2;

 if (t2 != null)

 parent(t2) = X;

 left_child(Y) = X;

 parent(X) = Y;

 // 1st case, BF(Y) == 0,

 // only happens with deletion, not insertion:

 if (BF(Y) == 0) {

 BF(X) = 0;

 BF(Z) = 0;

 } else

 // other cases happen with insertion or deletion:

 if (BF(Y) > 0) { // t3 was higher

 BF(X) = –1; // t1 now higher

 BF(Z) = 0;

 } else {

 // t2 was higher

 BF(X) = 0;

 BF(Z) = +1; // t4 now higher

 }

 BF(Y) = 0;

 return Y; // return new root of rotated subtree

}

1
2

3
4
5

6
7
8

9
10
11

12
13
14

15
16
17

18
19
20

21
22
23

24
25
26

27
28
29

30
31
32
33

34

Comparison to other structures

https://en.wikipedia.org/wiki/File:AVL-double-rl_K.svg
https://en.wikipedia.org/wiki/Tail_call
https://en.wikipedia.org/wiki/Amortized_analysis

where the golden ratio,

 and .

a RB tree's height is at most

 .[18]

AVL trees are more rigidly balanced than RB trees with an asymptotic relation AVL/RB ≈0.720 of the

maximal heights. For insertions and deletions, Ben Pfaff shows in 79 measurements a relation of

AVL/RB between 0.677 and 1.077 with median ≈0.947 and geometric mean ≈0.910.
[4]

Trees
Tree rotation
WAVL tree
Red–black tree
Splay tree
Scapegoat tree
B-tree
T-tree
List of data structures

1. Eric Alexander. "AVL Trees" (https://web.archive.org/web/20190731124716/https://pages.cs.wisc.
edu/~ealexand/cs367/NOTES/AVL-Trees/index.html). Archived from the original on July 31, 2019.

2. Sedgewick, Robert (1983). "Balanced Trees" (https://archive.org/details/algorithms00sedg/page/1
99). Algorithms. Addison-Wesley. p. 199 (https://archive.org/details/algorithms00sedg/page/199).
ISBN 0-201-06672-6.

3. Adelson-Velsky, Georgy; Landis, Evgenii (1962). "An algorithm for the organization of
information". Proceedings of the USSR Academy of Sciences (in Russian). 146: 263–266. English
translation (https://zhjwpku.com/assets/pdf/AED2-10-avl-paper.pdf) by Myron J. Ricci in Soviet
Mathematics - Doklady, 3:1259–1263, 1962.

4. Pfaff, Ben (June 2004). "Performance Analysis of BSTs in System Software" (http://www.stanford.
edu/~blp/papers/libavl.pdf) (PDF). Stanford University.

See also

References

https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Asymptotic_analysis
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Geometric_mean
https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/wiki/Tree_rotation
https://en.wikipedia.org/wiki/WAVL_tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/Scapegoat_tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/T-tree
https://en.wikipedia.org/wiki/List_of_data_structures
https://web.archive.org/web/20190731124716/https://pages.cs.wisc.edu/~ealexand/cs367/NOTES/AVL-Trees/index.html
https://en.wikipedia.org/wiki/Robert_Sedgewick_(computer_scientist)
https://archive.org/details/algorithms00sedg/page/199
https://archive.org/details/algorithms00sedg/page/199
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-201-06672-6
https://en.wikipedia.org/wiki/Proceedings_of_the_USSR_Academy_of_Sciences
https://zhjwpku.com/assets/pdf/AED2-10-avl-paper.pdf
http://www.stanford.edu/~blp/papers/libavl.pdf
https://en.wikipedia.org/wiki/Stanford_University

Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, Third
Edition. Addison-Wesley, 1997. ISBN 0-201-89685-0. Pages 458–475 of section 6.2.3: Balanced
Trees.

5. AVL trees are not weight-balanced? (meaning: AVL trees are not μ-balanced?) (https://cs.stackex
change.com/q/421)

Thereby: A Binary Tree is called -balanced, with , if for every node , the inequality

holds and is minimal with this property. is the number of nodes below the tree with as
root (including the root) and is the left child node of .

6. Knuth, Donald E. (2000). Sorting and searching (2. ed., 6. printing, newly updated and rev. ed.).
Boston [u.a.]: Addison-Wesley. ISBN 0-201-89685-0.

7. Rajinikanth. "AVL Tree : Data Structures" (http://www.btechsmartclass.com/data_structures/avl-tre
es.html). btechsmartclass.com. Retrieved 2018-03-09.

8. However, the balance information can be kept in the child nodes as one bit indicating whether the
parent is higher by 1 or by 2; thereby higher by 2 cannot occur for both children. This way the AVL
tree is a "rank balanced" tree, as coined by Haeupler, Sen and Tarjan.

9. Dixit, J. B. (2010). Mastering data structures through 'C' language. New Delhi, India: University
Science Press, an imprint of Laxmi Publications Pvt. Ltd. ISBN 9789380386720.
OCLC 939446542 (https://www.worldcat.org/oclc/939446542).

10. Brass, Peter (2008). Advanced data structures. Cambridge: Cambridge University Press.
ISBN 9780511438202. OCLC 312435417 (https://www.worldcat.org/oclc/312435417).

11. Hubbard, John Rast (2000). Schaum's outline of theory and problems of data structures with Java
(https://archive.org/details/schaumsoutlineof0000hubb). New York: McGraw-Hill.
ISBN 0071378707. OCLC 48139308 (https://www.worldcat.org/oclc/48139308).

12. Pfaff, Ben (2004). An Introduction to Binary Search Trees and Balanced Trees. Free Software
Foundation, Inc.

13. Weiss, Mark Allen. (2006). Data structures and algorithm analysis in C++ (3rd ed.). Boston:
Pearson Addison-Wesley. p. 145. ISBN 0-321-37531-9. OCLC 61278554 (https://www.worldcat.or
g/oclc/61278554).

14. Blelloch, Guy E.; Ferizovic, Daniel; Sun, Yihan (2016), "Just join for parallel ordered sets",
Symposium on Parallel Algorithms and Architectures, ACM, pp. 253–264, arXiv:1602.02120 (http
s://arxiv.org/abs/1602.02120), doi:10.1145/2935764.2935768 (https://doi.org/10.1145%2F293576
4.2935768), ISBN 978-1-4503-4210-0, S2CID 2897793 (https://api.semanticscholar.org/CorpusI
D:2897793).

15. Paul E. Black (2015-04-13). "AVL tree" (https://xlinux.nist.gov/dads/HTML/avltree.html). Dictionary
of Algorithms and Data Structures. National Institute of Standards and Technology. Retrieved
2016-07-02.

16. Kurt Mehlhorn, Peter Sanders: "Algorithms and Data Structures. The Basic Toolbox." Springer,
Berlin/Heidelberg 2008, ISBN 978-3-540-77977-3, doi:10.1007/978-3-540-77978-0 (https://doi.or
g/10.1007%2F978-3-540-77978-0).

17. Dinesh P. Mehta, Sartaj Sahni (Ed.) Handbook of Data Structures and Applications 10.4.2
18. Red–black tree#Proof of asymptotic bounds

Further reading

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-201-89685-0
https://cs.stackexchange.com/q/421
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-201-89685-0
http://www.btechsmartclass.com/data_structures/avl-trees.html
https://en.wikipedia.org/wiki/WAVL_tree
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9789380386720
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/939446542
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780511438202
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/312435417
https://archive.org/details/schaumsoutlineof0000hubb
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0071378707
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/48139308
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-321-37531-9
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/61278554
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1602.02120
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F2935764.2935768
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4503-4210-0
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:2897793
https://xlinux.nist.gov/dads/HTML/avltree.html
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Kurt_Mehlhorn
https://en.wikipedia.org/wiki/Peter_Sanders_(computer_scientist)
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-77977-3
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F978-3-540-77978-0
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Proof_of_asymptotic_bounds

Haeupler, Bernhard; Sen, Siddhartha; Tarjan, Robert E. (2015), "Rank-balanced trees" (http://sids
en.azurewebsites.net/papers/rb-trees-talg.pdf) (PDF), ACM Transactions on Algorithms, 11 (4):
Art. 30, 26, doi:10.1145/2689412 (https://doi.org/10.1145%2F2689412), MR 3361215 (https://ww
w.ams.org/mathscinet-getitem?mr=3361215), S2CID 1407290 (https://api.semanticscholar.org/Co
rpusID:1407290).

 This article incorporates public domain material from the NIST document: Black, Paul E. "AVL
Tree" (https://xlinux.nist.gov/dads/HTML/avltree.html). Dictionary of Algorithms and Data
Structures.
A verified functional implementation in Isabelle (proof assistant): Chapter 9 in Functional
Algorithms, Verified! (https://functional-algorithms-verified.org/)

Retrieved from "https://en.wikipedia.org/w/index.php?title=AVL_tree&oldid=1098105473"

This page was last edited on 14 July 2022, at 06:33 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0;
additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

External links

https://en.wikipedia.org/wiki/Robert_Tarjan
http://sidsen.azurewebsites.net/papers/rb-trees-talg.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F2689412
https://en.wikipedia.org/wiki/MR_(identifier)
https://www.ams.org/mathscinet-getitem?mr=3361215
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:1407290
https://en.wikipedia.org/wiki/Copyright_status_of_works_by_the_federal_government_of_the_United_States
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://xlinux.nist.gov/dads/HTML/avltree.html
https://en.wikipedia.org/wiki/Dictionary_of_Algorithms_and_Data_Structures
https://en.wikipedia.org/wiki/Isabelle_(proof_assistant)
https://functional-algorithms-verified.org/
https://en.wikipedia.org/w/index.php?title=AVL_tree&oldid=1098105473
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

