## Dynamic Programming

 part 2
## Week 7 Objectives

- More dynamic programming examples
- Matrix Multiplication Parenthesis
- Longest Common Subsequence
- Subproblem Optimal structure
- Defining the dynamic recurrence
- Bottom up computation
- Tracing the solution


## Subproblem Optimal Structure

- Divide and conquer - optimal subproblems
- divide PROBLEM into SUBPROBLEMS, solve SUBPROBLEMS
- combine results (conquer)
- critical/optimal structure: solution to the PROBLEM must include solutions to subproblems (or subproblem solutions must be combinable into the overall solution)
- PROBLEM $=\{$ DECISION/MERGING + SUBPROBLEMS $\}$


## Optimal Structure - NON GREEDY

- Cannot make a choice decision/CHOICE without solving subproblems first
- Might have to solve many subproblems before deciding which results to merge.


## Matrix Multiplication (Parenthesis)

- Task: multiply matrices $A_{1}{ }^{*} A_{2}{ }^{*} . .{ }^{*} A_{n}$
- Ai matrix has $p_{i-1}$ rows and $p_{i}$ columns (size $p_{i-1} X p_{i}$ )
- \#rows of matrix $A_{i+1}$ has to be the same as \#columns of $A_{i}$
- Minimize the number of scalar multiplications
- Note that matrices can be multiplied in any order:
- $A_{1}{ }^{*}\left(A_{2}{ }^{*} A_{3}\right)^{*} A_{4} ;\left(A_{1}{ }^{*} A_{2}\right)^{*}\left(A_{3}{ }^{*} A_{4}\right) ; A_{1}{ }^{*}\left(A_{2}{ }^{*} A_{3}{ }^{*} A_{4}\right)$
- $A_{1}\left(\text { size } p_{0} \times p_{1}\right)^{*} A_{2}\left(\right.$ size $\left.p_{1} \times p_{2}\right)$ takes $p_{0}{ }^{*} p_{1}{ }^{*} p_{2}$ scalar multiplications
- order matters, example: $A_{1}(10 \times 100), A_{2}(100 \times 5) ; A_{3}(5 \times 50)\left(p_{0}=10\right.$; $p_{1}=100 ; p_{2}=5 ; p_{3}=50$ )
- then $A_{1}{ }^{*}\left(A_{2}{ }^{*} A_{3}\right)$ takes 75000 scalar multiplications
- while $\left(A_{1}{ }^{*} A_{2}\right)^{*} A_{3}$ takes 7500 scalar multip., 10 times less.


## Matrix Multiplication (Parenthesis)

- NAIVE SOLUTION: try all ways to put parenthesis to see which one is best/minimum
- $A_{1}^{*}\left(\left(A_{2}{ }^{*} A_{3}\right)^{*} A_{4}\right) ;\left(A_{1}{ }^{*} A_{2}\right)^{*}\left(A_{3}{ }^{*} A_{4}\right) ; A_{1}{ }^{*}\left(A_{2}{ }^{*}\left(A_{3}{ }^{*} A_{4}\right)\right)$
- $\left(\left(A_{1}{ }^{*} A_{2}\right)^{*} A_{3}\right)^{*} A_{4} ;\left(A_{1}{ }^{*}\left(A_{2}{ }^{*} A_{3}\right)\right)^{*} A_{4}$
- $P(n)=$ number of ways to parenthesize $n$ matrices
- recursion on $n$

$$
P(n)= \begin{cases}1 & \text { if } n=1 \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text { if } n \geq 2\end{cases}
$$

- why? proof this recursion
- show that this $P(n)$ is exponential in $n$


## Matrix Multiplication (Parenthesis)

- 1) characterize optimal solution structure
- optimal solution SOL parenthesis has a "main split", or "last product" - that is the last matrix multiplication
- say it is between matrices $A_{k}$ and $A_{k+1}$

$$
\overbrace{\left(\left(A_{i} A_{i+1} \ldots A_{k}\right)\right.}^{\text {prefix subchain }} \overbrace{\left(A_{k+1} A_{k+2} \ldots A_{j}\right)}^{\text {suffix subchain }}
$$

- then SOL parenthesis on the left side $\left(A_{i}^{*} \ldots{ }^{*} A_{k}\right)$ must be optimal
- same for right side: parenthesis on $\left(A_{k+1}{ }^{*} \ldots{ }^{*} A_{j}\right)$ must be optimal
- why? use an exchange argument


## Matrix Multiplication (Parenthesis)

- 2) dynamic programming recursion
- $C[i, j]=$ min scalar multip. to multiply $A_{i}^{*} A_{i+1}{ }^{*} \ldots{ }^{*} A_{j}$
- C[i,i]=0; C[i,i,+1] = $p_{i-1}{ }^{*} p_{i}{ }^{*} p_{i+1}$
- $A_{i}^{*} A_{i+1}{ }^{*} \ldots{ }^{*} A_{j}$ can be computed by first deciding the main split at some $k, 1<k<j$
- for that split $C[i, j]=C[i, k]+C[k+1, j]+p^{-1} 1^{*} p k^{*} p j$

$$
\left(\frac{C[\mathrm{i}, \mathrm{k}]}{\left(A_{i} A_{i+1} \ldots A_{k}\right){ }^{\mathrm{p}_{\mathrm{i}-1}{ }^{*} \mathrm{p}_{\mathrm{k}}{ }^{*} \mathrm{p}_{\mathrm{j}}} \sqrt{C[k+1, \mathrm{j}]}}\right.
$$

- but we dont know what $k$ is best, so we have to try all of them

$$
C[i, j]= \begin{cases}0 & \text { if } i=j, \\ \min _{i \leq k<j}\left\{C[i, k]+C[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { if } i<j .\end{cases}
$$

## Matrix Multiplication (Parenthesis)

3) bottom up computation of table C[]

- what is the right order to fill the table?
- guarantee that values needed for recursion are already computed when we compute C[i,j]
- might need any value $C[i, k]$ and $C[k+1, j]$



## Matrix Multiplication (Parenthesis)

3) bottom up computation of table C[]

- what is the right order to fill the table?
- guarantee that values needed for recursion are already computed when we compute C[i,j]
- might need any value $C[i, k]$ and $C[k+1, j]$
note length $(i, j)=j-i$
- when computing $C[i, j]$, length=j-i
- values needed $C[i, k]$ and $C[k+1, j]$ have smaller lengths for any $k$

need theše values for $C[2,5]$


## Matrix Multiplication (Parenthesis)

3) bottom up computation of table C[]

- what is the right order to fill the table?
- guarantee that values needed for recursion are already computed when we compute C[i,j]
- might need any value $C[i, k]$ and $C[k+1, j]$
note length $(i, j)=j-i$
- when computing $C[i, j]$, length=j-i
- values needed $C[i, k]$ and $C[k+1, j]$ have smaller lengths for any $k$

fill table C[] by length
- from cells with small length (main diagonal) to cells of high lengths (corners)


## Matrix Multiplication (Parenthesis)

3) bottom up computation of table C[]

- what is the right order to fill the table?
- guarantee that values needed for recursion are already computed when we compute C[i,j]
- might need any value $C[i, k]$ and $C[k+1, j]$
note length $(i, j)=j-i$
- when computing $C[i, j]$, length=j-i
- values needed $C[i, k]$ and $C[k+1, j]$ have smaller lengths for any $k$

fill table C[] by length
- from cells with small length (main diagonal) to cells of high lengths (corners)


## Matrix Multiplication (Parenthesis)

3) bottom up computation of table C[]

- what is the right order to fill the table?
- guarantee that values needed for recursion are already computed when we compute $C[i, j]$
- might need any value $C[i, k]$ and $C[k+1, j]$
note length $(i, j)=j-i$
- when computing $C[i, j]$, length=j-i
- values needed $C[i, k]$ and $C[k+1, j]$ have smaller lengths for any $k$

fill table C[] by length
- from cells with small length (main diagonal) to cells of high lengths (corners)


## Matrix Multiplication (Parenthesis)

3) bottom up computation of table C[]

- what is the right order to fill the table?
- guarantee that values needed for recursion are already computed when we compute $C[i, j]$
- might need any value $C[i, k]$ and $C[k+1, j]$
note length $(i, j)=j-i$
- when computing $C[i, j]$, length=j-i
- values needed $C[i, k]$ and $C[k+1, j]$ have smaller lengths for any $k$

fill table C[] by length
- from cells with small length (main diagonal) to cells of high lengths (corners)


## Matrix Multiplication (Parenthesis)

3) bottom up computation of table C[]

- what is the right order to fill the table?
- guarantee that values needed for recursion are already computed when we compute $C[i, j]$
- might need any value $C[i, k]$ and $C[k+1, j]$
note length $(i, j)=j-i$
- when computing $C[i, j]$, length=j-i
- values needed $C[i, k]$ and $C[k+1, j]$ have smaller lengths for any $k$

fill table C[] by length
- from cells with small length (main diagonal) to cells of high lengths (corners)


## Matrix Multiplication (Parenthesis)

3) bottom up computation of table C[]

- what is the right order to fill the table?
- guarantee that values needed for recursion are already computed when we compute $C[i, j]$
- might need any value $C[i, k]$ and $C[k+1, j]$
note length $(i, j)=j-i$
- when computing $C[i, j]$, length=j-i
- values needed $C[i, k]$ and $C[k+1, j]$ have smaller lengths for any $k$

fill table C[] by length
- from cells with small length (main diagonal) to cells of high lengths (corners)


## Matrix Multiplication (Parenthesis)

3) bottom up computation of table C[]

- what is the right order to fill the table?
- guarantee that values needed for recursion are already computed when we compute $C[i, j]$
- might need any value $C[i, k]$ and $C[k+1, j]$
note length $(i, j)=j-i$
- when computing $C[i, j]$, length=j-i
- values needed $C[i, k]$ and $C[k+1, j]$ have smaller lengths for any $k$

fill table C[] by length
- from cells with small length (main diagonal) to cells of high lengths (corners)


## Matrix Multiplication (Parenthesis)

- 3) Bottom-up computation of C[]
- by diagonal from short length, to long length
- keep track of split at $k$, for sequence $[i . . . j]$ : $S[i, j]=k$
- $A_{i}^{*} A_{2}{ }^{*} \ldots A_{j}$ multiplied best as $\left(A_{i}^{*} A_{i+1}{ }^{*} \ldots{ }^{*} A_{k}\right)\left(A_{k+1}{ }^{*} . .{ }^{*} A_{j}\right)$

MATRIX-CHAIN-ORDER $(p)$
$n=p . l e n g t h-1$
let $C[1 . . n, 1 . . n]$ and $S[1 . . n-1,2 . . n]$ be new tables
for $i=1$ to $n$
$C[i, i]=0$
for $l=2$ to $n / / l$ is the chain length
for $i=1$ to $n-l+1$
$j=i+l-1$
$C[i, j]=0$
for $k=i$ to $j-1$
$q=C[i, k]+C[k+1, j]+p_{i-1} p_{k} p_{j}$
if $q<C[i, j]$
$C[i, j]=q$
$S[i, j]=k$
14 return $C$ and $S$

## Matrix Multiplication (Parenthesis)

- 4) Trace the solution - Exercise
- use $S[i, j]$ to determine the main split
- run recursion on both sides of the split
- also calculate the running time of the trace


## Matrix Multiplication (Parenthesis)

- Running time
- C[] table fills about $1 / 2^{*} n * n$ cells - $\Theta\left(n^{2}\right)$ cells
- each cell $C[i, j]$ tries all $k ; 1 \leq k<j-\Theta(n)$ steps
- Total $\Theta\left(n^{3}\right)$ time for bottom up computation
- Trace solution: certainly lower than $\Theta\left(n^{3}\right)$, so it doesnt add to the running time asymptote.


## Top-down computation instead of bottom up

- Suppose we want to do the computation top down
- Recursively follow the recursion
p Rec-Matrix-Chain( $p, i, j) / / b a d ~ r u n n i n g ~ t i m e ~$ - if(i==j) return 0;

$$
m[i, j]=\infty
$$

$$
\text { for } k=i: j-1
$$

$$
\text { - } q=\operatorname{Rec}-M a t r i x-C h a i n(p, i, k)+\operatorname{Rec-Matrix-Chain}(p, k+1, j)+p_{i-1} p_{k} p_{j} ;
$$

$$
\text { if }(q<m[i, j]) m[i, j]=q ;
$$

- return m[i,j]
- Exponential number of calls VS bottom up which is only $\Theta\left(n^{2}\right)$ for this section of the code


## Top-down with memoization

- memoization: "store, dont recompute" the computed results; each actual computation only happen once init all $m[i, j]=\infty$; call MEMOIZATION-top-down(p,1,n)
- MEMOIZATION-top-down(p,i,j)
$\rightarrow$ if $(m[i, j]<\infty)$ return $m[i, j] / /$ look up previous computed values
- if(i==j) m[i,j] $=0$;
- else for k=i:j-1

```
        q=Rec-Matrix-Chain(p,i,k) + Rec-Matrix-Chain(p,k+1,j) + p pi-1 pkpj;
    if (q<m[i,j]) m[i,j]=q; //store value for future look up
v return m[i,j]
```


## Memoization

- now same running time as bottom-up : $\Theta\left(n^{3}\right)$ overall
- bottom-up (DP) VS top-down (Memoization):
- DP advantage: no overhead (stack of calls, recursion), efficient when the whole fable has to be computed anyway
- DP requires a certain fill-order of the table
- Memoization: better when not all values must be computed
- Memoization follow literally the recursionl; easier to implement


## Longest Common Subsequence

(LCS)

## Longest Common Subsequence

- Given two $X=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ and $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ find the longest common subsequence
- it doesnt have to be continuos in either $X$ or $Y$
- not unique: possible that several common sequences have maximum length
- example
- $X=($ absscddegt) $Y=(x a s b s d c g g g)$
- LCS=Z=(absdg)


## Longest Common Subsequence

- 1) Characterize optimal solution structure - (add general army- needs more cannons story)
- notation: $x_{m-1}=\left(x_{1}, x_{2}, \ldots, x_{m-1}\right) ; Y_{n-1}=\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)$ etc
- if $X=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ and $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ have an LCS $Z=\left(Z_{1}, z_{2}, \ldots, Z_{k}\right)$ then
- if $x_{m}=y_{n} ;$ then $z_{k}=x_{m}=y_{n}$ and $z_{k-1}=\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$
- if $X_{m} \neq y_{n}$ and $z_{k} \neq x_{m}$ then $Z=\operatorname{LCS}\left(X_{m-1}, Y\right)$
- if $x_{m} \neq Y_{n}$ and $z_{k} \neq y_{n}$ then $Z=\operatorname{LCS}\left(X_{m}, Y_{n-1}\right)$


## Longest Common Subsequence

- 2) dynamic recursion
- C $[i, j]=\operatorname{LCS}\left(X_{i}, Y_{j}\right)$ where $X_{i}=\left(x_{1}, x_{2}, \ldots x_{i}\right) Y_{j}=\left(y_{1}, y_{2}, \ldots y_{j}\right)$
- $C[i, j]$ is

$$
\begin{array}{ll}
-0 & \text {; for base case } i=0 \text { or } j=0 \\
-C[i-1, j-1]+1 & \text {; for } i, j>0 \text { and } x i=y j \\
-\max \{C[i-1, j], C[i, j-1]\} & \text {; for } i, j>0 \text { and } x i \neq y j
\end{array}
$$

## Longest Common Subsequence

- 3) bottom up computation
in order to compute C[i,j] we need to have already computed the following three values:
- C[i-1,j-1]
- C[i, j-1]
- C[i-1,j]



## Longest Common Subsequence

- 3) bottom up computation
- in order to compute C[i,j]



## Longest Common Subsequence

- 3) bottom up computation keep track of the solution: $\mathrm{S}[\mathrm{i}, \mathrm{j}]$ remembers which one of the three possibilities we used:
- C[i-1,j-1] +1; $\mathrm{S}[\mathrm{i}, \mathrm{j}]={ }^{\prime \prime}{ }^{\prime \prime}$
- C[i,j-1] ; $S[i, j]=" \uparrow " ;$
- C[i-1,j] ; $S[i, j]=" \leftarrow "$

| LCS-LENGTh $(X, Y)$ |
| :--- |
| $1 \quad m=X . l e n g t h$ |
| $2 \quad n=Y . l e n g t h$ |
| 3 let $S[1 . . m, 1 . . n]$ and $C[0 . . m, 0 . . n]$ be |
| 4 for $i=1$ to $m$ |
| $5 \quad C[i, 0]=0$ |
| 6 for $j=0$ to $n$ |
| $7 \quad C[0, j]=0$ |
| 8 for $i=1$ to $m$ |
| $9 \quad$ for $j=1$ to $n$ |
| $10 \quad$ if $x_{i}=y_{j}$ |
| 11 |$\quad C[i, j]=C[i-1, j-1]+1$.

## Longest Common Subsequence

- 3) bottom up computation
- illustrated are C[] and S[] tables
- C $[i, j]$ is the size of $\operatorname{LCS}\left(X_{i}, Y_{j}\right)$
- $S[i, j]$ is the arrow pointing to the subproblem
- " $\nwarrow$ " indicates a common item, part of LCS; subproblem decreases both $i$ and $j$
- " $\uparrow$ " indicates discarding last vale of $X_{i}$; decrease $i$
- " $\leftarrow$ " indicates discarding last value of $Y_{j}$; decrease $j$



## Longest Common Subsequence

- 4) trace solution
- start at S[m,n], follow arrows:
- every "โ"r means a common item is found by LCS

Print-LCS $(S, X, i, j)$
1 if $i==0$ or $j==0$
2 return
3 if $S[i, j]==$ "
$4 \quad \operatorname{Print-LCS}(S, X, i-1, j-1)$
print $x_{i}$
6 elseif $S[i, j]=$ " $\uparrow$ "
$7 \quad \operatorname{Print-LCS}(S, X, i-1, j)$


8 elsePrint-LCS $(S, X, i, j-1)$

## Longest Common Subsequence

- Running time
- bottom up computation fills a table of $m \times n$ cells
- each cell takes constant time
- overall $\Theta$ (mn)
- Trace solution $O(m+n)$
- we "walk" on the table towards the [0,0] cell either vertical or horizontal or diagonal.

