
Dynamic Programming
part 2

Week 7 Objectives

• More dynamic programming examples
- Matrix Multiplication Parenthesis
- Longest Common Subsequence

• Subproblem Optimal structure

• Defining the dynamic recurrence

• Bottom up computation

• Tracing the solution

Subproblem Optimal Structure

• Divide and conquer - optimal subproblems

• divide PROBLEM into SUBPROBLEMS, solve
SUBPROBLEMS

• combine results (conquer)

• critical/optimal structure: solution to the PROBLEM
must include solutions to subproblems (or subproblem
solutions must be combinable into the overall solution)

• PROBLEM = {DECISION/MERGING + SUBPROBLEMS}

Optimal Structure - NON GREEDY

• Cannot make a choice decision/CHOICE without
solving subproblems first

• Might have to solve many subproblems before
deciding which results to merge.

Matrix Multiplication (Parenthesis)

• Task: multiply matrices A1*A2*...*An

• Ai matrix has pi-1 rows and pi columns (size pi-1 X pi)
- #rows of matrix Ai+1 has to be the same as #columns of Ai

• Minimize the number of scalar multiplications

• Note that matrices can be multiplied in any order:
- A1*(A2*A3)*A4 ; (A1*A2)*(A3*A4) ; A1*(A2*A3*A4)
- A1(size p0xp1) * A2(size p1xp2) takes p0*p1*p2 scalar multiplications
- order matters, example: A1(10x100), A2(100x5); A3(5x50) (p0= 10;

p1=100; p2=5; p3=50)

- then A1*(A2*A3) takes 75000 scalar multiplications

- while (A1*A2)*A3 takes 7500 scalar multip., 10 times less.

Matrix Multiplication (Parenthesis)

• NAIVE SOLUTION: try all ways to put parenthesis
to see which one is best/minimum
- A1*((A2*A3)*A4) ; (A1*A2)*(A3*A4) ; A1*(A2*(A3*A4))
- ((A1*A2)*A3)*A4 ; (A1*(A2*A3))*A4

• P(n) = number of ways to parenthesize n matrices

• recursion on n

• why? proof this recursion

• show that this P(n) is exponential in n

Matrix Multiplication (Parenthesis)
• 1) characterize optimal solution structure

• optimal solution SOL parenthesis has a “main split”,
or “last product” - that is the last matrix
multiplication
- say it is between matrices Ak and Ak+1

• then SOL parenthesis on the left side (Ai*...*Ak) must
be optimal

• same for right side: parenthesis on (Ak+1*...*Aj) must
be optimal
- why? use an exchange argument

Matrix Multiplication (Parenthesis)
• 2) dynamic programming recursion

• C[i,j] = min scalar multip. to multiply Ai*Ai+1*...*Aj

- C[i,i]=0; C[i,i+1] = pi-1*pi*pi+1

• Ai*Ai+1*...*Aj can be computed by first deciding the
main split at some k, 1<k<j
- for that split C[i,j] = C[i,k] + C[k+1,j] + pi-1*pk*pj

- but we dont know what k is best, so we have to try all of them

C[i,k] C[k+1,j]pi-1*pk*pj

Matrix Multiplication (Parenthesis)
• 3) bottom up computation of

table C[]
- what is the right order to fill the

table?
- guarantee that values needed for

recursion are already computed when
we compute C[i,j]

- might need any value C[i,k] and C[k+1,j]

0
C[5,5]
=0

0 C[4,5]

0 C[3,5]

C[2,2]
=0 C[2,3] C[2,4] C[2,5]

0

i=2

j=5

need these values for C[2,5]

Matrix Multiplication (Parenthesis)
• 3) bottom up computation of

table C[]
- what is the right order to fill the

table?
- guarantee that values needed for

recursion are already computed when
we compute C[i,j]

- might need any value C[i,k] and C[k+1,j]

• note length(i,j)=j-i
- when computing C[i,j], length=j-i
- values needed C[i,k] and C[k+1,j] have

smaller lengths for any k

0
C[5,5]
=0

0 C[4,5]

0 C[3,5]

C[2,2]
=0 C[2,3] C[2,4] C[2,5]

0

i=2

j=5

need these values for C[2,5]

Matrix Multiplication (Parenthesis)
• 3) bottom up computation of

table C[]
- what is the right order to fill the

table?
- guarantee that values needed for

recursion are already computed when
we compute C[i,j]

- might need any value C[i,k] and C[k+1,j]

• note length(i,j)=j-i
- when computing C[i,j], length=j-i
- values needed C[i,k] and C[k+1,j] have

smaller lengths for any k

• fill table C[] by length
- from cells with small length (main

diagonal) to cells of high lengths (corners)

0
C[5,5]
=0

0 C[4,5]

0 C[3,5]

C[2,2]
=0 C[2,3] C[2,4] C[2,5]

0

i=2

j=5

need these values for C[2,5]

Matrix Multiplication (Parenthesis)
• 3) bottom up computation of

table C[]
- what is the right order to fill the

table?
- guarantee that values needed for

recursion are already computed when
we compute C[i,j]

- might need any value C[i,k] and C[k+1,j]

• note length(i,j)=j-i
- when computing C[i,j], length=j-i
- values needed C[i,k] and C[k+1,j] have

smaller lengths for any k

• fill table C[] by length
- from cells with small length (main

diagonal) to cells of high lengths (corners)

0
C[5,5]
=0

0 C[4,5]

0 C[3,5]

C[2,2]
=0 C[2,3] C[2,4] C[2,5]

0

i=2

j=5

need these values for C[2,5]

Matrix Multiplication (Parenthesis)
• 3) bottom up computation of

table C[]
- what is the right order to fill the

table?
- guarantee that values needed for

recursion are already computed when
we compute C[i,j]

- might need any value C[i,k] and C[k+1,j]

• note length(i,j)=j-i
- when computing C[i,j], length=j-i
- values needed C[i,k] and C[k+1,j] have

smaller lengths for any k

• fill table C[] by length
- from cells with small length (main

diagonal) to cells of high lengths (corners)

0
C[5,5]
=0

0 C[4,5]

0 C[3,5]

C[2,2]
=0 C[2,3] C[2,4] C[2,5]

0

i=2

j=5

need these values for C[2,5]

Matrix Multiplication (Parenthesis)
• 3) bottom up computation of

table C[]
- what is the right order to fill the

table?
- guarantee that values needed for

recursion are already computed when
we compute C[i,j]

- might need any value C[i,k] and C[k+1,j]

• note length(i,j)=j-i
- when computing C[i,j], length=j-i
- values needed C[i,k] and C[k+1,j] have

smaller lengths for any k

• fill table C[] by length
- from cells with small length (main

diagonal) to cells of high lengths (corners)

0
C[5,5]
=0

0 C[4,5]

0 C[3,5]

C[2,2]
=0 C[2,3] C[2,4] C[2,5]

0

i=2

j=5

need these values for C[2,5]

Matrix Multiplication (Parenthesis)
• 3) bottom up computation of

table C[]
- what is the right order to fill the

table?
- guarantee that values needed for

recursion are already computed when
we compute C[i,j]

- might need any value C[i,k] and C[k+1,j]

• note length(i,j)=j-i
- when computing C[i,j], length=j-i
- values needed C[i,k] and C[k+1,j] have

smaller lengths for any k

• fill table C[] by length
- from cells with small length (main

diagonal) to cells of high lengths (corners)

0
C[5,5]
=0

0 C[4,5]

0 C[3,5]

C[2,2]
=0 C[2,3] C[2,4] C[2,5]

0

i=2

j=5

need these values for C[2,5]

Matrix Multiplication (Parenthesis)
• 3) bottom up computation of

table C[]
- what is the right order to fill the

table?
- guarantee that values needed for

recursion are already computed when
we compute C[i,j]

- might need any value C[i,k] and C[k+1,j]

• note length(i,j)=j-i
- when computing C[i,j], length=j-i
- values needed C[i,k] and C[k+1,j] have

smaller lengths for any k

• fill table C[] by length
- from cells with small length (main

diagonal) to cells of high lengths (corners)

0
C[5,5]
=0

0 C[4,5]

0 C[3,5]

C[2,2]
=0 C[2,3] C[2,4] C[2,5]

0

i=2

j=5

need these values for C[2,5]

Matrix Multiplication (Parenthesis)
• 3) bottom up computation of

table C[]
- what is the right order to fill the

table?
- guarantee that values needed for

recursion are already computed when
we compute C[i,j]

- might need any value C[i,k] and C[k+1,j]

• note length(i,j)=j-i
- when computing C[i,j], length=j-i
- values needed C[i,k] and C[k+1,j] have

smaller lengths for any k

• fill table C[] by length
- from cells with small length (main

diagonal) to cells of high lengths (corners)

0
C[5,5]
=0

0 C[4,5]

0 C[3,5]

C[2,2]
=0 C[2,3] C[2,4] C[2,5]

0

i=2

j=5

need these values for C[2,5]

Matrix Multiplication (Parenthesis)
• 3) Bottom-up computation of C[]
- by diagonal from short length, to long length

• keep track of split at k, for sequence [i...j]: S[i,j]=k
- Ai*A2*...Aj multiplied best as (Ai*Ai+1*...*Ak)(Ak+1*...*Aj)

Matrix Multiplication (Parenthesis)

• 4) Trace the solution - Exercise
- use S[i,j] to determine the main split
- run recursion on both sides of the split

• also calculate the running time of the trace

Matrix Multiplication (Parenthesis)

• Running time
- C[] table fills about 1/2 * n * n cells - Θ(n2) cells

- each cell C[i,j] tries all k ; 1≤k<j - Θ(n) steps

• Total Θ(n3) time for bottom up computation

• Trace solution: certainly lower than Θ(n3), so it
doesnt add to the running time asymptote.

Top-down computation instead of bottom up

• Suppose we want to do the computation top down

• Recursively follow the recursion

‣ Rec-Matrix-Chain(p,i,j)//bad running time
‣ if(i==j) return 0;

‣ m[i,j]=∞

‣ for k=i:j-1

‣ q=Rec-Matrix-Chain(p,i,k) + Rec-Matrix-Chain(p,k+1,j) + pi-1pkpj;

‣ if (q<m[i,j]) m[i,j]=q;

‣ return m[i,j]

• Exponential number of calls VS bottom up which is
only Θ(n2) for this section of the code

Add slide.

Top-down with memoization

• memoization: “store, dont recompute” the computed
results; each actual computation only happen once

• init all m[i,j]=∞; call MEMOIZATION-top-down(p,1,n)

‣MEMOIZATION-top-down(p,i,j)
‣ if (m[i,j]<∞) return m[i,j] // look up previous computed values

‣ if(i==j) m[i,j] = 0;

‣ else for k=i:j-1

‣ q=Rec-Matrix-Chain(p,i,k) + Rec-Matrix-Chain(p,k+1,j) + pi-1pkpj;

‣ if (q<m[i,j]) m[i,j]=q; //store value for future look up

‣ return m[i,j]

These two slides are

Memoization

• now same running time as bottom-up : Θ(n3) overall

• bottom-up (DP) VS top-down (Memoization):
- DP advantage: no overhead (stack of calls, recursion), efficient when

the whole table has to be computed anyway
- DP requires a certain fill-order of the table
- Memoization: better when not all values must be computed
- Memoization follow literally the recursionl; easier to implement

Longest Common Subsequence
(LCS)

Longest Common Subsequence

• Given two X=(x1, x2, ..., xm) and Y=(y1,y2,..,yn) find the
longest common subsequence
- it doesnt have to be continuos in either X or Y
- not unique: possible that several common sequences have maximum

length

• example
- X=(absscddegt) Y=(xasbsdcggg)
- LCS=Z=(absdg)

Longest Common Subsequence

• 1) Characterize optimal solution structure - (add
general army- needs more cannons story)
- notation: Xm-1 = (x1, x2, ..., xm-1); Yn-1= (y1,y2,..,yn-1) etc

• if X=(x1, x2, ..., xm) and Y=(y1,y2,..,yn) have an LCS
Z=(z1,z2,...,zk) then
- if xm=yn; then zk=xm=yn and Zk-1 = LCS (Xm-1, Yn-1)
- if xm≠yn and zk≠xm then Z=LCS(Xm-1,Y)
- if xm≠yn and zk≠yn then Z=LCS(Xm,Yn-1)

Longest Common Subsequence

• 2) dynamic recursion

• C[i,j] = LCS (Xi,Yj) where Xi=(x1,x2,...xi) Yj=(y1,y2,...yj)

• C[i,j] is
- 0 ; for base case i=0 or j=0
- C[i-1,j-1]+1 ; for i,j>0 and xi=yj
- max {C[i-1,j], C[i,j-1]} ; for i,j>0 and xi≠yj

Longest Common Subsequence

• 3) bottom up computation

• in order to compute C[i,j]
we need to have already
computed the following
three values:
- C[i-1,j-1]
- C[i,j-1]
- C[i-1,j]

i-1,j-1 i-1,j

i,j-1 i,j

i=1

i=2

i=m

j=1 j=2 j=n

Longest Common Subsequence

• 3) bottom up computation

• in order to compute C[i,j]
we need to have already
computed the following
three values:
- C[i-1,j-1]
- C[i,j-1]
- C[i-1,j]

• fill row by row, each row
from left to right

i-1,j-1 i-1,j

i,j-1 i,j

i=1

i=2

i=m

j=1 j=2 j=n

Longest Common Subsequence

• 3) bottom up computation

• keep track of the solution:
S[i,j] remembers which
one of the three
possibilities we used:
- C[i-1,j-1] + 1 ; S[i,j] =”↖”

- C[i,j-1] ; S[i,j] =”↑” ;

- C[i-1,j] ; S[i,j]=”←”

Longest Common Subsequence

• 3) bottom up computation
- illustrated are C[] and S[] tables

on the same grid
- C[i,j] is the size of LCS(Xi,Yj)

• S[i,j] is the arrow pointing
to the subproblem
- ”↖” indicates a common item, part

of LCS; subproblem decreases
both i and j

- ”↑” indicates discarding last vale
of Xi; decrease i

- ”←” indicates discarding last value
of Yj; decrease j

Longest Common Subsequence
• 4) trace solution

• start at S[m,n], follow arrows:

• every ”↖” r means a common
item is found by LCS

Longest Common Subsequence

• Running time
- bottom up computation fills a table of m x n cells
- each cell takes constant time

• overall Θ(mn)

• Trace solution O(m+n)
- we “walk” on the table towards the [0,0] cell either vertical or

horizontal or diagonal.

