

Week 6 Objectives

- Subproblem Optimal structure
- Defining the dynamic recurrence
- Bottom up computation
- Tracing the solution

Subproblem Optimal Structure

- Divide and conquer optimal subproblems
- divide PROBLEM into SUBPROBLEMS, solve SUBPROBLEMS
- combine results (conquer)
- critical/optimal structure: solution to the PROBLEM must include solutions to subproblems (or subproblem solutions must be combinable into the overall solution)
- PROBLEM = {DECISION/MERGING +
 SUBPROBLEMS}

Optimal Structure - NON GREEDY

- Cannot make a choice decision/CHOICE without solving subproblems first
- Might have to solve many subproblems before deciding which results to merge.

Ex: Discrete 0/1 Knapsack

- objects (paintings) sold by item
- weights w1,w2,w3,w4...
- values v1,v2,v3,v4...
- knapsack capacity (weight) = W
- task: fill the knapsack to maximize value

Ex: Discrete Knapsack

- naive approaches may lead to a bad solution
 - choose by biggest value tea first
 - choose by smallest quantity flour first
 - correct:

Dynamic Programming

- Characterize the structure of the optimal solution
- Define the dynamic recurrence
- Compute value bottom up (fill table)
- Trace the solution

- coin denominations d₁,d₂,...d_k
- task: give change of n cents using as few as possible coins
 - denominations can be used multiple times
- 1) characterize optimal solution structure

- if above solution optimal, then
 - {d1,d1,d2,d3,d4} optimal solution for b cents
 - {d4,d5,d5} optimal solution for n-b cents

- 2) value and dynamic recursion
- define C[n] = minimum number of coins to make change of n cents (thus optimal solution)
- consider subproblems
 - if d1 is used to make change for n cents optimally (one of C[n] coins) then $C[n]=1+C[n-d_1]$ ($C[n-d_1]$ is optimal solution for the rest of of the problem $n-d_1$)
 - if d_2 is used then $C[n]=1+C[n-d_2]$ etc
 - C[n] is minimum, so $C[n] = \min_i \{1 + C[n-d_i]\}$. This requires that we have already computed values $C[n-d_i]$ for all i
- formally C[n] =
 - 0, if n=0
 - 1, if n=d_i
 - $\min_{[i:di \le n]} \{1+C[n-d_i]\}$, otherwise

 3) compute bottom-up the values C[]; also remember at each step the coin used to obtain the solution

```
C[0]=0;
for p=1:n
    min=∞
    for i=1:k
        if (p>di && C[p-di]+1 < min) then
        min = C[p-di]+1
        coin=i
        C[p]=min
        S[p]=coin
    return C[] and S[]</pre>
```

- naive way to solve the recursion top-down
 - exponential running time
 - same argument as with Fibonacci numbers top-down recursion

```
change(n, denominations d1=1,d2=5,d3=10)
if(n==0) return 0;//exit
```

if(n<0) return ∞; //exit

//else

val = $1+ \min\{change(p-10), change(p-5), change(p-1);$

return val;

- 4) Trace the solution
- at problem size=n the coin used was S[n]
 - we have used coin S[n], and then solved the problem $n-d_{S[n]}$
 - thus the next coin will be $S[n-d_{S[n]}]$, etc
- Trace Solution (S[],d,n)
 - while(n>0)
 - print "coin S[n]"
 - $n = n d_{S[n]}$

- Running time bottom up: for each step p=1:n
 - k comparisons
 - $\Theta(nk)$ total
- Tracing Solution : O(n) steps
- Total Θ(nk)

Check Board Pb

- Table of penalties given as a matrix P_{ij} ; i=1:m; j=1:n
- Task: find the minimum path from anywhere-first-row to anywhere-last-row
 - always advance one row; can move straight, left, right
 - columns form a cylinder (left move from the left column ends up on the right column, and viceversa). Say column 0 is actually column n; column n+1 is column 1

illustrated path penalty= 1+3+1+1+2=9

m	7		2	6	6		0
	5	5	0	I	7	2	4
	თ	2	9	_		ო	7
2	0		5	3	8	6	2
_		3	6	3	_	7	6
	-	2	3				n

Check Board Pb

- 1)optimal solution structure
- if path $P=(i_1,j_1)(i_2,j_2)...$ $(i_k,j_k)...(i_m,j_m)$ optimal overall, then
 - path P'= $(i_1,j_1)(i_2,j_2)....(i_k,j_k)$ is optimal to get from first row to cell (i_k,j_k)
 - path $P'' = (i_k, j_k)..(i_m, j_m)$ is optimal to get from cell (i_k, j_k) to the last row
 - explain why (exchange argument)

m	7		2	6	6		0
	5	5	0		7	2	4
	3	2	9			ო	7
2	0	I	5	3	8	6	2
-		3	6	3	_	7	6
	1	2	3				n

CheckBoard

- 2)dynamic recurrence
- C[i,j]= minimum cost (penalty) from row 1 to cell [i,j]
- lacktriangle C[i,j] = Pij if i=1 (first row)
- Pij (that cell) + minimum of the path up to that cell
 - can come on cell [i,j] from any of the three cells below
 - Pij + min (C[i-1,j-1], C[i-1,j], C[i-1,j+1])

CheckBoard

3) Bottom up computation (fill array C)

```
c[1,j]=P1j for all j

for i=2:m

for j=1:n

c[i,j]= Pij + min (C[i-1,j-1], C[i-1,j], C[i-1,j+1])

return array C[]
```

CheckBoard

- 4)Trace the solution
 - array C computed

```
find the minimum column j = argmin C[m,:] on the last row; output cell
(m,j)

i=m; while i>1

j_below = argminj (C[i-1,j-1], C[i-1,j], C[i-1,j+1]); output cell
(i-1,j_below)

i=i-1; j=j below
```

CheckBoard - Running Time

- Outer loop n iterations
- inner loop m iteration
- constant time (3 comparisons)
- lacktriangle Total Θ (mn)

- given a knapsack of max-weight W
- and a set of items
 - item weights w₁, w₂, ..., w_n
 - item values v₁,v₂, ...,v_n
- select the items that fit in the knapsack and maximize the total value.
 - difference to discrete knapsack: an item can be selected or not, no fractions allowed

- Greedy ideas dont work lead to not-optimal selection of items:
 - select maximum value
 - select minimum weight

Discrete Knapsack - trick

- Before we proceed to steps 1-4, solution need to fix an order of the items.
 - We are going to use subsets of items, so "up to item i" means items {1,2,3,...,i}
 - The order is necessary to guarantee that item sets are inclusive: $\{1,2,3,...i\}=\{1,2,3,...i-1\}\cup\{i\}$
- any order works, but it has to be fixed
- will use the order given by the input: items 1, 2, 3, ...,n

- 1) characterize the optimal solution structure
- say i is the highest number item (by our fixed order) included in the optimal solution SOL
 - SOL contains some items in the set {1,2,...i}
 - so item i+1, i+2, ..., n not used
- then SOL\{i} is the optimal solution for the Knapsack problem (knapsack = W-w_i, items {1,2,3..,i-1})
 - why? use an exchange argument

- 2) dynamic recursion
- C[i,W] = maximum value to the Knapsack problem (knapsack=W, items ={1,2,3...i})
- does C[i,W] includes the item i?
 - not if wi>W
 - if no, C[i,W] = C[i-1,W]
 - if yes, $C[i,W] = C[i-1,W-w_i] + vi$
 - we don't know yes or no above, so we solve both subprobelms, choose max

$$c[i,w] = egin{cases} 0 & \textit{if } i = 0 \; \textit{or } w = 0, \ c[i-1,w] & \textit{if } w_i > w, \ \max(v_i + c[i-1,w-w_i], c[i-1,w]) & \textit{if } i > 0 \; \textit{and } w \geq w_i. \end{cases}$$

3) bottom up computation of C[]

- 4) Trace the solution
- computed C[], weights w[], number of items n, knapsack capacity W

```
Items(C[],w[],n,W)

while (n>0 and W>0)

if(C[n,W]>C[n-1,W])

output n

w=W-wn
n=n-1
```

Discrete Knapsack – running time

- Outer for loop n iterations
- Inner for loop W iterations
- inside step : constant time
- Overall $\Theta(nW)$