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Week 6 Objectives


• Subproblem Optimal structure

• Defining the dynamic recurrence

• Bottom up computation

• Tracing the solution




Subproblem Optimal Structure 


• Divide and conquer - optimal subproblems

• divide PROBLEM into SUBPROBLEMS, solve 

SUBPROBLEMS

• combine results (conquer)

• critical/optimal structure: solution to the 

PROBLEM must include solutions to subproblems 
(or subproblem solutions must be combinable 
into the overall solution) 


• PROBLEM = {DECISION/MERGING + 
SUBPROBLEMS} 




Optimal Structure - NON 
GREEDY 


• Cannot make a choice decision/CHOICE without 
solving subproblems first


• Might have to solve many subproblems before 
deciding which results to merge.




Ex: Discrete 0/1 Knapsack


• objects (paintings) sold by item

• weights w1,w2,w3,w4... 

• values v1,v2,v3,v4...

• knapsack capacity (weight) = W

• task : fill the knapsack to maximize value




Ex: Discrete Knapsack


• naive approaches may lead to a bad solution

-  choose by biggest value - tea first

-  choose by smallest quantity - flour first

-  correct:


weight=10 

weight=20 

weight=30 

weight=50 



Dynamic Programming


• Characterize the structure of the optimal 
solution


•   Define the dynamic recurrence

• Compute value bottom up (fill table)

• Trace the solution 




Coin Change


• coin denominations d1,d2,...dk

• task: give change of n cents using as few as 

possible coins 

-  denominations can be used multiple times


•  1) characterize optimal solution structure


d1	
 d1	
 d2	
 d3	
 d4	
 d4	
 d5	
 d5	

b	
 n	
0 cents	


•  if above solution optimal, then 

-  {d1,d1,d2,d3,d4} optimal solution for b cents

-  {d4,d5,d5} optimal solution for n-b cents




Coin change

• 2) value and dynamic recursion

• define C[n] = minimum number of coins to make 

change of n cents (thus optimal solution)

• consider subproblems

-  if d1 is used to make change for n cents optimally (one of C[n] 

coins) then  C[n]=1+C[n-d1] ( C[n-d1] is optimal solution for the 
rest of of the problem n-d1) 


-  if d2 is used then  C[n]=1+C[n-d2] etc

-  C[n] is minimum, so C[n] = mini {1+ C[n-di]}. This requires that 

we have already computed values C[n-di] for all i


• formally C[n] = 

-  0, if n=0

-  1, if n=di


-  min[i:di⩽n] {1+C[n-di]}, otherwise




Coin change

• 3) compute bottom-up the values C[]; also 

remember at each step the coin used to obtain 
the solution


‣ C[0]=0;"
‣ for p=1:n"
‣  min=∞"
‣  for i=1:k"
‣  if (p⩾di  && C[p-di]+1 < min) then"

‣  min = C[p-di]+1"
‣  coin=i"

‣  C[p]=min"
‣  S[p]=coin"
‣ return C[] and S[]"



Coin Change

• naive way to solve the recursion top-down

-  exponential running time

-  same argument as with Fibonacci numbers top-down 

recursion
‣  change(n, denominations d1=1,d2=5,d3=10)"
‣  if(n==0) return 0;//exit"
‣  if(n<0) return ∞; //exit"
//else"
‣  val = 1+ min{change(p-10), change(p-5), change(p-1);"
‣  return val;"





Coin Change


• 4) Trace the solution

• at problem size=n the coin used was S[n]

-  we have used coin S[n], and then solved the problem n-dS[n]


-  thus the next coin will be S[n-dS[n]], etc


‣ Trace Solution (S[],d,n)"
‣  while(n>0)"
‣  print “coin S[n]”"
‣  n= n-dS[n]"



Coin Change


• Running time bottom up: for each step p=1:n

-  k comparisons

-  Θ(nk) total


• Tracing Solution : O(n) steps

• Total Θ(nk)




Check Board Pb

• Table of penalties given 

as a matrix Pij; i=1:m; j=1:n

• Task: find the minimum 

path from anywhere-
first-row to anywhere-
last-row

-  always advance one row; can 

move straight, left, right

-  columns form a cylinder (left 

move from the left column ends 
up on the right column, and 
viceversa). Say column 0 is 
actually column n; column n+1 is 
column 1


m	
 7	
 1	
 2	
 6	
 6	
 1	
 0	

5	
 5	
 0	
 1	
 7	
 2	
 4	

3	
 2	
 9	
 1	
 1	
 3	
 7	


2	
 0	
 1	
 5	
 3	
 8	
 6	
 2	

1	
 1	
 3	
 6	
 3	
 1	
 7	
 6	


1	
 2	
 3	
 n	


illustrated path penalty=

1+3+1+1+2=9




Check Board Pb
•  1)optimal solution 
structure


•  if path P=(i1,j1)(i2,j2)....
(ik,jk)...(im,jm) optimal 
overall, then

-   path P’= (i1,j1)(i2,j2)....(ik,jk) is 

optimal to get from first row to 
cell (ik,jk)


-  path P’’= (ik,jk)..(im,jm) is optimal 
to get from cell (ik,jk) to the 
last row


-  explain why (exchange 
argument)


m	
 7	
 1	
 2	
 6	
 6	
 1	
 0	

5	
 5	
 0	
 1	
 7	
 2	
 4	

3	
 2	
 9	
 1	
 1	
 3	
 7	


2	
 0	
 1	
 5	
 3	
 8	
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1	
 1	
 3	
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 6	


1	
 2	
 3	
 n	




CheckBoard 


• 2)dynamic recurrence

• C[i,j]= minimum cost (penalty) from row 1 to cell 

[i,j]

• C[i,j] = Pij if i=1 (first row)

• Pij (that cell) + minimum of the path up to that 

cell

-  can come on cell [i,j] from any of the three cells below

-  Pij + min (C[i-1,j-1], C[i-1,j], C[i-1,j+1]) 




CheckBoard


• 3) Bottom up computation (fill array C)

‣  c[1,j]=P1j for all j"

‣  for i=2:m"

‣  for j=1:n"
‣  c[i,j]= Pij + min (C[i-1,j-1], C[i-1,j], C[i-1,j+1]) "

‣  return array C[]"



CheckBoard


• 4)Trace the solution 

-  array C computed

‣  find the minimum column j = argmin C[m,:] on the last row; output cell 

(m,j)"

‣  i=m; while i>1"

‣  j_below = argminj (C[i-1,j-1], C[i-1,j], C[i-1,j+1]); output cell 
(i-1,j_below)"

‣  i=i-1; j=j_below"



CheckBoard - Running Time


• Outer loop – n iterations 

• 
 inner loop – m iteration

• 
 
- constant time (3 comparisons)  

• Total  Θ(mn)




Discrete Knapsack

• given a knapsack of max-weight W 

• and a set of items

-  item weights w1, w2, ..., wn

-  item values v1,v2, ...,vn


• select the items that fit in the knapsack and 
maximize the total value.

-  difference to discrete knapsack: an item can be selected or 

not, no fractions allowed




Discrete Knapsack

• Greedy ideas dont work - lead to not-optimal 

selection of items:

-  select maximum value

-  select minimum weight




Discrete Knapsack - trick


• Before we proceed to steps 1-4, solution need to 
fix an order of the items.

-  We are going to use subsets of items, so “up to item i” means 

items {1,2,3,…,i}

-  The order is necessary to guarantee that item sets are 

inclusive: {1,2,3,…i}= {1,2,3,…i-1}∪{i}


• any order works, but it has to be fixed

• will use the order given by the input : items 1, 

2, 3, ...,n 




Discrete Knapsack


•  1) characterize the optimal solution structure

• say i is the highest number item (by our fixed 

order) included in the optimal solution SOL

-  SOL contains some items in the set {1,2,...i}

-  so item i+1, i+2, ... , n not used


• then SOL\{i} is the optimal solution for the 
Knapsack problem (knapsack = W-wi, items 
{1,2,3..,i-1})

-  why ? use an exchange argument




Discrete Knapsack

• 2) dynamic recursion

• C[i,W] = maximum value to the Knapsack 

problem (knapsack=W, items ={1,2,3...i})

• does C[i,W] includes the item i?

-  not if wi>W

-  if no, C[i,W] = C[i-1,W]

-  if yes, C[i,W] = C[i-1,W-wi] + vi

-  we dont know yes or no above, so we solve both subprobelms, 

choose max




Discrete Knapsack


• 3) bottom up computation of C[]

‣ for w=0:W {C[0,w]=0}"
‣ for i=1:n "
‣  C[i,0]=0"
‣  for w=1:W"
‣  if wi>w C[i,w]=C[i-1,w]"
‣  else C[i,w] = max(vi+C[i-1,w-wi], C [i-1,w])"



Discrete Knapsack


• 4) Trace the solution

• computed C[], weights w[], number of items n , 

knapsack capacity W

‣ Items(C[],w[],n,W)"
‣ while (n>0 and W>0)"
‣  if(C[n,W]>C[n-1,W]) "
‣  output n"
‣  W=W-wn"

‣  n=n-1"



Discrete Knapsack - running 
time


• Outer for loop – n iterations

• 
Inner for loop – W iterations

• 
 
- inside step : constant time

• Overall  Θ(nW)



