Dynamic Programming

Week 6 Objectives

- Subproblem Optimal structure
- Defining the dynamic recurrence
- Bottom up computation
- Tracing the solution

Subproblem Optimal Structure

- Divide and conquer - optimal subproblems
- divide PROBLEM into SUBPROBLEMS, solve SUBPROBLEMS
- combine results (conquer)
- critical/optimal structure: solution to the PROBLEM must include solutions to subproblems (or subproblem solutions must be combinable into the overall solution)
- PROBLEM $=\{$ DECISION/MERGING + SUBPROBLEMS\}

Optimal Structure - NON GREEDY

- Cannot make a choice decision/CHOICE without solving subproblems firs \dagger
- Might have to solve many subproblems before deciding which results to merge.

Ex: Discrete 0/1 Knapsack

- objects (paintings) sold by item
- weights w1,w2,w3,w4...
- values v1,v2,v3,v4...
- knapsack capacity (weight) = W
- task : fill the knapsack to maximize value

Ex: Discrete Knapsack

- naive approaches may lead to a bad solution
- choose by biggest value - tea firs \dagger
- choose by smallest quantity - flour first
- correct:

Dynamic Programming

- Characterize the structure of the optimal solution
- Define the dynamic recurrence
- Compute value bottom up (fill table)
- Trace the solution

Coin Change

- coin denominations $d_{1}, d_{2}, \ldots d_{k}$
- task: give change of n cents using as few as possible coins
- denominations can be used multiple times
- 1) characterize optimal solution structure

0 cents

d 1	dl	d 2	d 3	d 4	d 4	d 5	d 5

- if above solution optimal, then
- \{d1,d1,d2,d3,d4\} optimal solution for b cents
- \{d4,d5,d5\} optimal solution for n-b cents

Coin change

- 2) value and dynamic recursion
- define $C[n]=$ minimum number of coins to make change of n cents (thus optimal solution)
- consider subproblems
- if d1 is used to make change for n cents optimally (one of $C[n]$ coins) then $C[n]=1+C\left[n-d_{1}\right]\left(C\left[n-d_{1}\right]\right.$ is optimal solution for the rest of of the problem $n-d_{1}$)
- if d_{2} is used then $C[n]=1+C\left[n-d_{2}\right]$ etc
- $C[n]$ is minimum, so $C[n]=\min _{i}\left\{1+C\left[n-d_{i}\right]\right\}$. This requires that we have already computed values C[n-di] for all i
- formally $C[n]=$
- 0 , if $n=0$
- 1 , if $n=d_{i}$
- $\min _{[i: d i \leqslant n]}\left\{1+C\left[n-d_{i}\right]\right\}$, otherwise

Coin change

- 3) compute bottom-up the values $C[]$; also remember at each step the coin used to obtain the solution
- $\mathrm{C}[0]=0$;
for $p=1: n$
) $\min =\infty$
f for $i=1: k$
if $\left(\mathrm{P} \geqslant \mathrm{d}_{i} \quad \& \& C[\mathrm{P}-\mathrm{di}]+1<\min \right)$ then
min $=\mathrm{m}[\mathrm{p}-\mathrm{di}]+1$
- coin=i
$\mathrm{C}[\mathrm{P}]=\mathrm{min}$
$\mathrm{S}[\mathrm{p}]=\mathrm{COin}$
return C[] and S[]

Coin Change

- naive way to solve the recursion top-down
- exponential running time
- same argument as with Fibonacci numbers top-down recursion
- change(n , denominations $\mathrm{d} 1=1, \mathrm{~d} 2=5, \mathrm{~d} 3=10$)
- if($\mathrm{n}==0$) return 0 ;//exit
- if($\mathrm{n}<0$) return ∞; //exit
//else
- val $=1+\min \{$ change $(\mathrm{p}-10)$, change(p-5), change(p-1);
- return val;

Coin Change

- 4) Trace the solution
- at problem size=n the coin used was $S[n]$
- we have used coin $S[n]$, and then solved the problem $n-d s[n]$
- thus the next coin will be $\mathrm{S}[\mathrm{n}-\mathrm{ds[n]}]$, etc
- Trace Solution (S[],d,n)
- while($\mathrm{n}>0$)

```
- print "coin S[n]"
    \(\Rightarrow \mathrm{n}=\mathrm{n}-\mathrm{d}_{\mathrm{S}[\mathrm{n}]}\)
```


Coin Change

- Running time bottom up: for each step $p=1: n$
- k comparisons
- Θ (nk) total
- Tracing Solution: $O(n)$ steps
- Total $\Theta(n k)$

Check Board Pb

- Table of penalties given as a matrix $P_{i j} ; i=1: m ; j=1: n$
- Task: find the minimum path from anywhere-first-row to anywhere-last-row
- always advance one row; can move straight, left, right
- columns form a cylinder (left move from the left column ends up on the right column, and viceversa). Say column 0 is actually column n; column $n+1$ is column 1

Check Board Pb

- t)optimal solution structure
- if path $P=\left(i_{1}, j_{1}\right)\left(i_{2}, j_{2}\right) \ldots$
 overall, then
- path $P^{\prime}=\left(i_{1}, j_{1}\right)\left(i_{2}, j_{2}\right) \ldots . .\left(i_{k}, j_{k}\right)$ is cell (i_{k}, j_{k})
- path $P^{\prime \prime}=\left(i_{k}, j_{k}\right)$. $\left(i_{m,}, j_{m}\right)$ is optimal to get from cell (i_{k}, j_{k}) to the last row
- explain why (exchange

m	7	1	2	6	6	1	0
	5	5	0	1	7	2	4
	3	2	9	1	1	3	7
2	0	1	5	3	8	6	2
1	1	3	6	3	1	7	6
	1	2	3				n

CheckBoard

- 2)dynamic recurrence
- $C[i, j]=$ minimum cost (penalty) from row 1 to cell
- $C[i, j]=P i j$ if $i=1$ (first row)
- Pij (that cell) + minimum of the path up to that cell
- can come on cell $[i, j]$ from any of the three cells below
- $P_{i j}+\min (C[i-1, j-1], C[i-1, j], C[i-1, j+1])$

CheckBoard

- 3) Bottom up computation (fill array C)
- c[1,j]=P1j for all j
for $i=2: m$
- for $j=1: n$
- $C[i, j]=P i j+\min (C[i-1, j-1], C[i-1, j], C[i-1, j+1])$
return array C[]

CheckBoard

- 4)Trace the solution
- array C computed
- find the minimum column $j=\operatorname{argmin} C[m,:]$ on the last row; output cell (m, j)
i=m; while i>1

ī-1,j_below)
- i=i-1; j=j_below

CheckBoard - Running Time

- Outer loop - n iterations
- inner loop - m iteration
- - constant time (3 comparisons)
- Total $\Theta(m n)$

Discrete Knapsack

- given a knapsack of max-weight W
- and a set of items
- item weights $w_{1}, w_{2}, \ldots, w_{n}$
- item values $v_{1}, v_{2}, \ldots, v_{n}$
- select the items that fit in the knapsack and maximize the total value.
- difference to discrete knapsack: an item can be selected or not, no fractions allowed

Discrete Knapsack

- Greedy ideas dont work - lead to not-optimal selection of items:
- select maximum value
- select minimum weight

Discrete Knapsack - trick

- Before we proceed to steps 1-4, solution need to fix an order of the items.
- We are going to use subsets of items, so "up to item i" means
- The order is necessary to guarantee that item sets are inclusive: $\{1,2,3, \ldots i\}=\{1,2,3, \ldots . .1-1\} \cup\{i\}$
- any order works, but it has to be fixed
- will use the order given by the input : items 1, $2,3, \ldots, n$

Discrete Knapsack

- 1) characterize the optimal solution structure
- say i is the highest number item (by our fixed order) included in the optimal solution SOL
- SOL contains some items in the set $\{1,2, \ldots . i\}$
- so item i+1, i+2, ... , n not used
- then SOL $\{\{i\}$ is the optimal solution for the Knapsack problem (knapsack $=\mathrm{W}-\mathrm{w}_{\mathrm{i}}$, items $\{1,2,3 . ., i-1\})$
- why ? use an exchange argument

Discrete Knapsack

- 2) dynamic recursion
- $\mathrm{C}[\mathrm{i}, \mathrm{W}]=$ maximum value to the Knapsack problem (knapsack=W, items $=\{1,2,3 \ldots i\}$)
- does $C[i, W]$ includes the item i?
- not if wi>W
- if no, $C[i, W]=C[i-1, W]$
- if yes, $C[i, W]=C\left[i-1, W-w_{i}\right]+v i$
- we dont know yes or no above, so we solve both subprobelms, choose max

$$
c[i, w]= \begin{cases}0 & \text { if } i=0 \text { or } w=0, \\ c[i-1, w] & \text { if } w_{i}>w, \\ \max \left(v_{i}+c\left[i-1, w-w_{i}\right], c[i-1, w]\right) & \text { if } i>0 \text { and } w \geq w_{i} .\end{cases}
$$

Discrete Knapsack

- 3) bottom up computation of $C[]$
for w=0:W \{C[0,w]=0\}
- for $\mathrm{i}=1: \mathrm{n}$

C[i,0]=0
for $w=1: W$

- if wi>w C[i,w]=C[i-1,w]
- else C[i,w] = max(vi+C[i-1,w-wi], C [i-1,w])

Discrete Knapsack

- 4) Trace the solution
- computed C[], weights w[], number of items n, knapsack capacity W
- Items(C[],w[],n,W)
while ($\mathrm{n}>0$ and $\mathrm{w}>0$)
$P \operatorname{if}(C[n, W]>C[n-1, W])$
- output n
- $\mathrm{W}=\mathrm{W}-\mathrm{W}_{\mathrm{n}}$
$\mathrm{n}=\mathrm{n}-1$

Discrete Knapsack - running

 time- Outer for loop - n iterations
- Inner for loop - W iterations
- inside step : constant time
- Overall $\Theta(n W)$

