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Week 6 Objectives



• Subproblem Optimal structure


• Defining the dynamic recurrence


• Bottom up computation


• Tracing the solution





Subproblem Optimal Structure 



• Divide and conquer - optimal subproblems


• divide PROBLEM into SUBPROBLEMS, solve 

SUBPROBLEMS


• combine results (conquer)


• critical/optimal structure: solution to the 

PROBLEM must include solutions to subproblems 
(or subproblem solutions must be combinable 
into the overall solution) 



• PROBLEM = {DECISION/MERGING + 
SUBPROBLEMS} 





Optimal Structure - NON 
GREEDY 



• Cannot make a choice decision/CHOICE without 
solving subproblems first



• Might have to solve many subproblems before 
deciding which results to merge.





Ex: Discrete 0/1 Knapsack



• objects (paintings) sold by item


• weights w1,w2,w3,w4... 


• values v1,v2,v3,v4...


• knapsack capacity (weight) = W


• task : fill the knapsack to maximize value





Ex: Discrete Knapsack



• naive approaches may lead to a bad solution


-  choose by biggest value - tea first


-  choose by smallest quantity - flour first


-  correct:



weight=10 

weight=20 

weight=30 

weight=50 



Dynamic Programming



• Characterize the structure of the optimal 
solution



•   Define the dynamic recurrence


• Compute value bottom up (fill table)


• Trace the solution 





Coin Change



• coin denominations d1,d2,...dk


• task: give change of n cents using as few as 

possible coins 


-  denominations can be used multiple times



•  1) characterize optimal solution structure
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•  if above solution optimal, then 


-  {d1,d1,d2,d3,d4} optimal solution for b cents


-  {d4,d5,d5} optimal solution for n-b cents





Coin change


• 2) value and dynamic recursion


• define C[n] = minimum number of coins to make 

change of n cents (thus optimal solution)


• consider subproblems


-  if d1 is used to make change for n cents optimally (one of C[n] 

coins) then  C[n]=1+C[n-d1] ( C[n-d1] is optimal solution for the 
rest of of the problem n-d1) 



-  if d2 is used then  C[n]=1+C[n-d2] etc


-  C[n] is minimum, so C[n] = mini {1+ C[n-di]}. This requires that 

we have already computed values C[n-di] for all i



• formally C[n] = 


-  0, if n=0


-  1, if n=di



-  min[i:di⩽n] {1+C[n-di]}, otherwise





Coin change


• 3) compute bottom-up the values C[]; also 

remember at each step the coin used to obtain 
the solution



‣ C[0]=0;"
‣ for p=1:n"
‣  min=∞"
‣  for i=1:k"
‣  if (p⩾di  && C[p-di]+1 < min) then"

‣  min = C[p-di]+1"
‣  coin=i"

‣  C[p]=min"
‣  S[p]=coin"
‣ return C[] and S[]"



Coin Change


• naive way to solve the recursion top-down


-  exponential running time


-  same argument as with Fibonacci numbers top-down 

recursion

‣  change(n, denominations d1=1,d2=5,d3=10)"
‣  if(n==0) return 0;//exit"
‣  if(n<0) return ∞; //exit"
//else"
‣  val = 1+ min{change(p-10), change(p-5), change(p-1);"
‣  return val;"






Coin Change



• 4) Trace the solution


• at problem size=n the coin used was S[n]


-  we have used coin S[n], and then solved the problem n-dS[n]



-  thus the next coin will be S[n-dS[n]], etc



‣ Trace Solution (S[],d,n)"
‣  while(n>0)"
‣  print “coin S[n]”"
‣  n= n-dS[n]"



Coin Change



• Running time bottom up: for each step p=1:n


-  k comparisons


-  Θ(nk) total



• Tracing Solution : O(n) steps


• Total Θ(nk)





Check Board Pb


• Table of penalties given 

as a matrix Pij; i=1:m; j=1:n


• Task: find the minimum 

path from anywhere-
first-row to anywhere-
last-row


-  always advance one row; can 

move straight, left, right


-  columns form a cylinder (left 

move from the left column ends 
up on the right column, and 
viceversa). Say column 0 is 
actually column n; column n+1 is 
column 1
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illustrated path penalty=


1+3+1+1+2=9





Check Board Pb

•  1)optimal solution 
structure



•  if path P=(i1,j1)(i2,j2)....
(ik,jk)...(im,jm) optimal 
overall, then


-   path P’= (i1,j1)(i2,j2)....(ik,jk) is 

optimal to get from first row to 
cell (ik,jk)



-  path P’’= (ik,jk)..(im,jm) is optimal 
to get from cell (ik,jk) to the 
last row



-  explain why (exchange 
argument)
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CheckBoard 



• 2)dynamic recurrence


• C[i,j]= minimum cost (penalty) from row 1 to cell 

[i,j]


• C[i,j] = Pij if i=1 (first row)


• Pij (that cell) + minimum of the path up to that 

cell


-  can come on cell [i,j] from any of the three cells below


-  Pij + min (C[i-1,j-1], C[i-1,j], C[i-1,j+1]) 





CheckBoard



• 3) Bottom up computation (fill array C)


‣  c[1,j]=P1j for all j"

‣  for i=2:m"

‣  for j=1:n"
‣  c[i,j]= Pij + min (C[i-1,j-1], C[i-1,j], C[i-1,j+1]) "

‣  return array C[]"



CheckBoard



• 4)Trace the solution 


-  array C computed


‣  find the minimum column j = argmin C[m,:] on the last row; output cell 

(m,j)"

‣  i=m; while i>1"

‣  j_below = argminj (C[i-1,j-1], C[i-1,j], C[i-1,j+1]); output cell 
(i-1,j_below)"

‣  i=i-1; j=j_below"



CheckBoard - Running Time



• Outer loop – n iterations 


• 

 inner loop – m iteration


• 

 

- constant time (3 comparisons)  


• Total  Θ(mn)





Discrete Knapsack


• given a knapsack of max-weight W 


• and a set of items


-  item weights w1, w2, ..., wn


-  item values v1,v2, ...,vn



• select the items that fit in the knapsack and 
maximize the total value.


-  difference to discrete knapsack: an item can be selected or 

not, no fractions allowed





Discrete Knapsack


• Greedy ideas dont work - lead to not-optimal 

selection of items:


-  select maximum value


-  select minimum weight





Discrete Knapsack - trick



• Before we proceed to steps 1-4, solution need to 
fix an order of the items.


-  We are going to use subsets of items, so “up to item i” means 

items {1,2,3,…,i}


-  The order is necessary to guarantee that item sets are 

inclusive: {1,2,3,…i}= {1,2,3,…i-1}∪{i}



• any order works, but it has to be fixed


• will use the order given by the input : items 1, 

2, 3, ...,n 





Discrete Knapsack



•  1) characterize the optimal solution structure


• say i is the highest number item (by our fixed 

order) included in the optimal solution SOL


-  SOL contains some items in the set {1,2,...i}


-  so item i+1, i+2, ... , n not used



• then SOL\{i} is the optimal solution for the 
Knapsack problem (knapsack = W-wi, items 
{1,2,3..,i-1})


-  why ? use an exchange argument





Discrete Knapsack


• 2) dynamic recursion


• C[i,W] = maximum value to the Knapsack 

problem (knapsack=W, items ={1,2,3...i})


• does C[i,W] includes the item i?


-  not if wi>W


-  if no, C[i,W] = C[i-1,W]


-  if yes, C[i,W] = C[i-1,W-wi] + vi


-  we dont know yes or no above, so we solve both subprobelms, 

choose max





Discrete Knapsack



• 3) bottom up computation of C[]


‣ for w=0:W {C[0,w]=0}"
‣ for i=1:n "
‣  C[i,0]=0"
‣  for w=1:W"
‣  if wi>w C[i,w]=C[i-1,w]"
‣  else C[i,w] = max(vi+C[i-1,w-wi], C [i-1,w])"



Discrete Knapsack



• 4) Trace the solution


• computed C[], weights w[], number of items n , 

knapsack capacity W


‣ Items(C[],w[],n,W)"
‣ while (n>0 and W>0)"
‣  if(C[n,W]>C[n-1,W]) "
‣  output n"
‣  W=W-wn"

‣  n=n-1"



Discrete Knapsack - running 
time



• Outer for loop – n iterations


• 

Inner for loop – W iterations


• 

 

- inside step : constant time


• Overall  Θ(nW)




