
Dynamic Programming

Week 6 Objectives

• Subproblem Optimal structure

• Defining the dynamic recurrence

• Bottom up computation

• Tracing the solution

Subproblem Optimal Structure

• Divide and conquer - optimal subproblems

• divide PROBLEM into SUBPROBLEMS, solve

SUBPROBLEMS

• combine results (conquer)

• critical/optimal structure: solution to the

PROBLEM must include solutions to subproblems
(or subproblem solutions must be combinable
into the overall solution)

• PROBLEM = {DECISION/MERGING +
SUBPROBLEMS}

Optimal Structure - NON
GREEDY

• Cannot make a choice decision/CHOICE without
solving subproblems first

• Might have to solve many subproblems before
deciding which results to merge.

Ex: Discrete 0/1 Knapsack

• objects (paintings) sold by item

• weights w1,w2,w3,w4...

• values v1,v2,v3,v4...

• knapsack capacity (weight) = W

• task : fill the knapsack to maximize value

Ex: Discrete Knapsack

• naive approaches may lead to a bad solution

-  choose by biggest value - tea first

-  choose by smallest quantity - flour first

-  correct:

weight=10

weight=20

weight=30

weight=50

Dynamic Programming

• Characterize the structure of the optimal
solution

•  Define the dynamic recurrence

• Compute value bottom up (fill table)

• Trace the solution

Coin Change

• coin denominations d1,d2,...dk

• task: give change of n cents using as few as

possible coins

-  denominations can be used multiple times

•  1) characterize optimal solution structure

d1	

 d1	

 d2	

 d3	

 d4	

 d4	

 d5	

 d5	

b	

 n	

0 cents	

•  if above solution optimal, then

-  {d1,d1,d2,d3,d4} optimal solution for b cents

-  {d4,d5,d5} optimal solution for n-b cents

Coin change

• 2) value and dynamic recursion

• define C[n] = minimum number of coins to make

change of n cents (thus optimal solution)

• consider subproblems

-  if d1 is used to make change for n cents optimally (one of C[n]

coins) then C[n]=1+C[n-d1] (C[n-d1] is optimal solution for the
rest of of the problem n-d1)

-  if d2 is used then C[n]=1+C[n-d2] etc

-  C[n] is minimum, so C[n] = mini {1+ C[n-di]}. This requires that

we have already computed values C[n-di] for all i

• formally C[n] =

-  0, if n=0

-  1, if n=di

-  min[i:di⩽n] {1+C[n-di]}, otherwise

Coin change

• 3) compute bottom-up the values C[]; also

remember at each step the coin used to obtain
the solution

‣ C[0]=0;"
‣ for p=1:n"
‣  min=∞"
‣  for i=1:k"
‣  if (p⩾di && C[p-di]+1 < min) then"

‣  min = C[p-di]+1"
‣  coin=i"

‣  C[p]=min"
‣  S[p]=coin"
‣ return C[] and S[]"

Coin Change

• naive way to solve the recursion top-down

-  exponential running time

-  same argument as with Fibonacci numbers top-down

recursion

‣  change(n, denominations d1=1,d2=5,d3=10)"
‣  if(n==0) return 0;//exit"
‣  if(n<0) return ∞; //exit"
//else"
‣  val = 1+ min{change(p-10), change(p-5), change(p-1);"
‣  return val;"

Coin Change

• 4) Trace the solution

• at problem size=n the coin used was S[n]

-  we have used coin S[n], and then solved the problem n-dS[n]

-  thus the next coin will be S[n-dS[n]], etc

‣ Trace Solution (S[],d,n)"
‣  while(n>0)"
‣  print “coin S[n]”"
‣  n= n-dS[n]"

Coin Change

• Running time bottom up: for each step p=1:n

-  k comparisons

-  Θ(nk) total

• Tracing Solution : O(n) steps

• Total Θ(nk)

Check Board Pb

• Table of penalties given

as a matrix Pij; i=1:m; j=1:n

• Task: find the minimum

path from anywhere-
first-row to anywhere-
last-row

-  always advance one row; can

move straight, left, right

-  columns form a cylinder (left

move from the left column ends
up on the right column, and
viceversa). Say column 0 is
actually column n; column n+1 is
column 1

m	

 7	

 1	

 2	

 6	

 6	

 1	

 0	

5	

 5	

 0	

 1	

 7	

 2	

 4	

3	

 2	

 9	

 1	

 1	

 3	

 7	

2	

 0	

 1	

 5	

 3	

 8	

 6	

 2	

1	

 1	

 3	

 6	

 3	

 1	

 7	

 6	

1	

 2	

 3	

 n	

illustrated path penalty=

1+3+1+1+2=9

Check Board Pb

•  1)optimal solution
structure

•  if path P=(i1,j1)(i2,j2)....
(ik,jk)...(im,jm) optimal
overall, then

-  path P’= (i1,j1)(i2,j2)....(ik,jk) is

optimal to get from first row to
cell (ik,jk)

-  path P’’= (ik,jk)..(im,jm) is optimal
to get from cell (ik,jk) to the
last row

-  explain why (exchange
argument)

m	

 7	

 1	

 2	

 6	

 6	

 1	

 0	

5	

 5	

 0	

 1	

 7	

 2	

 4	

3	

 2	

 9	

 1	

 1	

 3	

 7	

2	

 0	

 1	

 5	

 3	

 8	

 6	

 2	

1	

 1	

 3	

 6	

 3	

 1	

 7	

 6	

1	

 2	

 3	

 n	

CheckBoard

• 2)dynamic recurrence

• C[i,j]= minimum cost (penalty) from row 1 to cell

[i,j]

• C[i,j] = Pij if i=1 (first row)

• Pij (that cell) + minimum of the path up to that

cell

-  can come on cell [i,j] from any of the three cells below

-  Pij + min (C[i-1,j-1], C[i-1,j], C[i-1,j+1])

CheckBoard

• 3) Bottom up computation (fill array C)

‣  c[1,j]=P1j for all j"

‣  for i=2:m"

‣  for j=1:n"
‣  c[i,j]= Pij + min (C[i-1,j-1], C[i-1,j], C[i-1,j+1]) "

‣  return array C[]"

CheckBoard

• 4)Trace the solution

-  array C computed

‣  find the minimum column j = argmin C[m,:] on the last row; output cell

(m,j)"

‣  i=m; while i>1"

‣  j_below = argminj (C[i-1,j-1], C[i-1,j], C[i-1,j+1]); output cell
(i-1,j_below)"

‣  i=i-1; j=j_below"

CheckBoard - Running Time

• Outer loop – n iterations

• 

 inner loop – m iteration

• 

- constant time (3 comparisons)

• Total Θ(mn)

Discrete Knapsack

• given a knapsack of max-weight W

• and a set of items

-  item weights w1, w2, ..., wn

-  item values v1,v2, ...,vn

• select the items that fit in the knapsack and
maximize the total value.

-  difference to discrete knapsack: an item can be selected or

not, no fractions allowed

Discrete Knapsack

• Greedy ideas dont work - lead to not-optimal

selection of items:

-  select maximum value

-  select minimum weight

Discrete Knapsack - trick

• Before we proceed to steps 1-4, solution need to
fix an order of the items.

-  We are going to use subsets of items, so “up to item i” means

items {1,2,3,…,i}

-  The order is necessary to guarantee that item sets are

inclusive: {1,2,3,…i}= {1,2,3,…i-1}∪{i}

• any order works, but it has to be fixed

• will use the order given by the input : items 1,

2, 3, ...,n

Discrete Knapsack

•  1) characterize the optimal solution structure

• say i is the highest number item (by our fixed

order) included in the optimal solution SOL

-  SOL contains some items in the set {1,2,...i}

-  so item i+1, i+2, ... , n not used

• then SOL\{i} is the optimal solution for the
Knapsack problem (knapsack = W-wi, items
{1,2,3..,i-1})

-  why ? use an exchange argument

Discrete Knapsack

• 2) dynamic recursion

• C[i,W] = maximum value to the Knapsack

problem (knapsack=W, items ={1,2,3...i})

• does C[i,W] includes the item i?

-  not if wi>W

-  if no, C[i,W] = C[i-1,W]

-  if yes, C[i,W] = C[i-1,W-wi] + vi

-  we dont know yes or no above, so we solve both subprobelms,

choose max

Discrete Knapsack

• 3) bottom up computation of C[]

‣ for w=0:W {C[0,w]=0}"
‣ for i=1:n "
‣  C[i,0]=0"
‣  for w=1:W"
‣  if wi>w C[i,w]=C[i-1,w]"
‣  else C[i,w] = max(vi+C[i-1,w-wi], C [i-1,w])"

Discrete Knapsack

• 4) Trace the solution

• computed C[], weights w[], number of items n ,

knapsack capacity W

‣ Items(C[],w[],n,W)"
‣ while (n>0 and W>0)"
‣  if(C[n,W]>C[n-1,W]) "
‣  output n"
‣  W=W-wn"

‣  n=n-1"

Discrete Knapsack - running
time

• Outer for loop – n iterations

• 

Inner for loop – W iterations

• 

- inside step : constant time

• Overall Θ(nW)

