
medium.com /basecs/speeding-up-the-traveling-salesman-using-dynamic-program…

Speeding Up The Traveling Salesman
Using Dynamic Programming
Vaidehi Joshi ⋮ 18-23 minutes ⋮ 11/13/2017

Published in

15 min read

Nov 13, 2017

Using dynamic programming to speed up the traveling
salesman problem!

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up-t… 1/20

https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b76d7552e8dd
https://medium.com/@vaidehijoshi?source=post_page-----b76d7552e8dd--------------------------------
https://medium.com/@vaidehijoshi?source=post_page-----b76d7552e8dd--------------------------------
https://medium.com/@vaidehijoshi?source=post_page-----b76d7552e8dd--------------------------------
https://medium.com/@vaidehijoshi?source=post_page-----b76d7552e8dd--------------------------------
https://medium.com/basecs?source=post_page-----b76d7552e8dd--------------------------------
https://medium.com/basecs?source=post_page-----b76d7552e8dd--------------------------------
https://medium.com/basecs?source=post_page-----b76d7552e8dd--------------------------------
https://medium.com/basecs?source=post_page-----b76d7552e8dd--------------------------------


A large part of what makes computer science hard is that it can be hard
to know where to start when it comes to solving a difficult, seemingly
unsurmountable problem.

One of the reasons that some things can seem so tricky is that they’re
multistep problems, and they involve us first understanding the problem,
then considering the simplest solution, then iterating upon that solution to
make it better, more efficient, and more elegant. I often think of the
phrase that has been attributed to Kent Beck who said, “Make it work,
make it right, make it fast.”

Some of the most complex problems in computer science are complex
for this very reason: they involve these three distinct parts, and it can feel
super overwhelming if we don’t consider these three steps as unique
points in our problem-solving strategy. The complex problems are the
ones where we are forced to step back, and try to break up our problem-
solving process into a segmented process, rather than trying to magically
find the perfect solution in one go. To be honest, finding the perfect
solution in one go rarely actually ever happens.

We’ve covered some tricky topics throughout the course of this series,
but one of the more complicated topics presented itself more recently
when we encountered the traveling salesman problem (TSP). Since we
have already taken the first step of trying to find a solution to TSP that
just works, we can now concern ourselves with the next steps: making it
right (or more elegant), and hopefully a little bit faster.

No Fun Factorials
When we first stumbled upon the traveling salesman problem, we were
dealing with a salesman who had a fairly easy task: to visit four cities in
some order, as long as he visited each city once and ended up at the
same city that he started in.

Now, the reason that this was an “easy” task, so to speak, was simply
because of the fact that visiting four cities isn’t really a lot to do. In
algorithmic terms, we were able to solve this problem and find the

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up-t… 2/20

http://wiki.c2.com/?MakeItWorkMakeItRightMakeItFast=
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d


shortest path for our salesman using a brute-force technique, combined
with recursion. We were able to determine that the brute-force approach
was, by definion, a factorial algorithm. In our example, we determined
that, for a salesman who needs to visit four cities would mean making 3!
or “three factorial” function calls, which equals 6.

We also started realizing that the factorial runtime of the brute-force
technique for solving TSP was going to be unscalable over time. In fact,
we realized that it was going to be unscalable almost immediately! For
example, what would happen when our traveling salesman needed to
visit not just four cities, but five cities? When we were dealing with four
cities, we made six recursive calls. So, adding one extra city shouldn’t be
too difficult, right? After all, it’s just one city.

Well, not exactly. Here’s how our algorithm scales from just four cities, to
five:

How a factorial algorithm scales from an input of 4 elements to
5 elements.

When our salesman only had to visit four cities, we made six recursive
calls. But now, we have literally quadrupled our tree of “potential paths”,
which seems really, really, really bad. Solving TSP for five cities means
that we need to make 4! or four factorial recursive calls using the brute-

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up-t… 3/20

https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d


force technique. As it turns out, 4! equals 24, which means we have to
now make 24 recursive calls in order to accomodate just one additional
city in our traveling salesman’s map.

If we compare the illustrated version of the “tree” of recursive function
calls from our previous example of TSP to the one that is drawn above,
we start to get a pretty good idea of just how unsustainable a factorial
algorithm really is.

O(n!) runtime is unsustainable.

We have seen quite a few different forms of Big O Notation throughout
this series, including the good and the bad. So, where do factorial
algorithms fit into this narrative?

If constant, logarithmic, and linear time are good, and
quadratic and exponential time are bad, there is only one
thing left to explore: the ugly. Factorial algorithms are exactly
that: the ugly.

For an algorithm that runs in factorial, or O(n!) time, any operations that
need to run will end up taking n! more time in relation to the data that is
being operated upon, or the input data set.

Okay, but what does this actually mean? Well, let’s look at how a factorial
algorithm compares to all the other forms of Big O Notation that we’re
already familiar with.

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up-t… 4/20

https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d


Factorial time is super slow and inefficient as input size grows

We’ll notice almost immediately that algorithms that grow in factorial time
are super slow and ineffcient as input size grows. For example, we’ll see
that even a slight increase in the number of elements to be operated
upon by a factorial algorithm causes it to shoot up in the number of
operations required to run. If we compare this to linearithmic, linear, or
even just quadratic time algorithms— which are still pretty bad in their
own right — we’ll see that factorial algorithms are obsecenely terrible in
comparison!

All of this is to say: our first approach to solving TSP using brute-force
recursion is probably not the best solution. Yes, it works, but it’s probably
not as “right” as it could be; it could stand to be improved, and surely
could be made more elegant. And, of course, it is not fast — at all!

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up-t… 5/20



Using brute-force takes a top-down approach to solving TSP.

So, how can we improve upon this first attempt that we made?

Well, if we think back to our foray into dynamic programming (DP), we’ll
remember that there is more than one approach when it comes to solving
a DP problem. In our initial stab at this problem, we attempted to solve
TSP using a kind of top down approach: we started with a large,
complex problem, and broke it down into smaller parts. Then, when we
got down to our base case, and expanded the problem down to its
smallest possible parts, we used recursion to build up all the possible
paths that our traveling salesman could take, which allowed us to choose
the best (the shortest) permutation of all the paths that we had found.

In the process, we figured out one way to solve the traveling salesman
problem. But what if we approached it a different manner? What would
happen if we took our top down approach and turned it upside down?

There’s only one way to find out — we have to try it out!

Turning TSP on its head

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up-t… 6/20

https://medium.com/p/43d29830a630


If we look at our top down methodology from last week, we’ll see that we
have enumerated through all of the permutations of paths — that is to
say, we have brute-forced our way to determine every single route that
our traveling salesman could take.

The brute-force approach to solving TSP.

This methodology isn’t particularly elegant, is kind of messy, and, as we
have already determined, will simply never scale as our input size grows.
But ignoring all of those issues for a moment, let’s just take a look at this
“tree” of recursive function calls once again.

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up-t… 7/20

https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d


Rethinking the brute-force approach by identifying the simplest
problem, or function call.

On second glance, we’ll notice that there is something interesting going
on here: we’re starting with the more complex function call initially, and
then, from within that, we are invoking three recursive function calls from
within it. Each of those three recursive function calls spins off two more
recursive calls of its own, which creates the third level of this function call
“tree”. This is, of course, keeping in tune with our working definition of a
top down approach: starting with the largest problem first, and breaking it
down into its smallest parts. But, now that we can see the smallest parts
more obviously, we can change our approach from a top down method to
a bottom up method.

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up-t… 8/20



We’ll recall that a bottom up dynamic programming approach starts with
the smallest possible subproblems, figures out a solution to them, and
then slowly builds itself up to solve the larger, more complicated
subproblem. In the context of our “function call tree”, the smallest
possible subproblem are the smallest possible function calls. We’ll see
that the smallest function calls are the simplest ones — the ones that
have no recursive calls within them. In our case, these are the function
calls at the very bottom of our “function call tree”, which lead back to our
starting node, node w, which is the city that our traveling salesman is
“starting” from, and will inevitably have to “end” up at.

Now that we’ve identified the smallest possible subproblems, we can turn
TSP on its head. We’ll flip our top down approach to this problem and,
instead, use a bottom up approach here. Let’s start with our three
simplest function calls.

Flipping TSP on its head, part 1.

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up-t… 9/20

https://medium.com/basecs/less-repetition-more-dynamic-programming-43d29830a630


We’ll see that each of these calls connects back to w, as we would
expect. Recall that we’re using a list notation to keep track of the nodes
that we can navigate to. Since we’re dealing with the smallest possible
subproblem(s), there is nowhere that we can navigate to from these
nodes; instead, all we can do is go back to our starting node, w. This is
why each of the lists for these three subproblems is empty ({}).

However, we do need to keep track of cost and distance here, since
inevitably, we’re still going to have to find the shortest path for our
traveling salesman, regardless of whether we’re using a top down or
bottom up approach. Thus, we’re going to have to keep track of the
distance between nodes as we build up our “bottom up” tree. In the
image above, we’ll see that we have the values 6, 1, and 3 next to nodes
x, y, and z, respectively. These number represent the distance to get
from each node back to the origin node, w.

When we first tried to solve TSP, we used an adjacency matrix to help us
keep track of the distances between nodes in our graph. We’ll lean on
our adjacency matrix in this approach yet again.

However, in our bottom up approach, we’ll use it to enumerate all the
function calls that lead to one another. This is strikingly different than our
top down approach, when we were using our adjacency matrix to help us
enumerate all the possible paths. In our bottom up approach, we’re trying
to be a bit more elegant about how we do things, so we’re aiming to not
enumerate more than we need to! This will make more sense as we go
on, but it’s important to note the difference between enumerating paths
versus enumerating function calls.

So, what would the second level of our function call “tree” look like? Well,
the question that we’re trying to answer for each of our smallest possible
subproblems here is this:

If we are at the simplest possible version of this function call
and cannot call anything recursively from within this function,
what other function could possibly call this one?

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up… 10/20

https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d


Flipping TSP on its head, part 2.

Another way of thinking about it is in terms of nodes. Ultimately, we’re
trying to determine which possible nodes would allow us to get to the
node that we’re looking at. So, in the case of node x, the only way to get
to node x would potentially be node y or node z. Remember that we’re
using a bottom up approach here, so we’re almost retracing our steps
backwards, starting at the end, and working our way back through the
circle.

Notice, again, that we’re keeping track of the cost/distance from each of
these nodes to the next. We’re going to need them pretty soon!

Again, we can expand this function call “tree” a bit more to add another
level. Remember, we’re trying to answer the question: what other function
could possibly call this function that we cannot expand any further?

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up-… 11/20



Flipping TSP on its head, part 3.

In the drawing depicted here, we’ll see what this actually looks like in
practice. For example, looking at the leftmost branch of this function call
“tree”, we’ll notice that the only possible function call that will allow us to
get to an empty node x is from either node y or node z, where the set
contains only a possible “next” node of x, like so: {x}. For both node y
and z in the leftmost subtree, we’ll see that the only possible way to get
to y is from node z, when the set contains both x and y (or {x, y}).
Similarly, the only possible way to get to z is from node y, when the set
contains both x and z (or {x, z}).

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up… 12/20



This is a visualization exemplifies what we mean when we say that we
are enumerating function calls rather than enumerating potential paths.
As we continue to determine all the possible function calls that allow us to
call other functions from within them, something starts to become very
obvious: we have some overlapping subproblems here!

We’ll notice that there are two function calls that are instances of z when
its set contains both x and y (or {x, y}), which is highlighted in yellow.
Similarly, there are two function calls that are instances of y when its set
contains both x and z (or {x, z}), highlighted in pink. Finally, we’ll see
two function calls that are instances of x when its set contains both y and
z (or {y, z}), highlighted in green.

Dynamic programming is all about identifying repeated work and being
smarter and more efficient with our approach so that we don’t actually
have to repeat ourselves! So, let’s cut out this repetition and use some
dynamic programming to make things a little better for our traveling
salesman.

Dynamic programming to the salesman’s
rescue
Now that we’ve identified our overlapping and recurring subproblems,
there’s only one thing left to do: eliminate the repetition, of course!

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up… 13/20



Flipping TSP on its head, part 4.

Using our function call “tree”, we can rearrange some of our function calls
so that we’re not actually repeating ourselves in level three of this tree.

We can do this by cutting down our repeated subproblems so that they
only show up once. Then, we’ll reconfigure the bottom level of our tree so

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up… 14/20



that it is still accurate, but also that we each function call show up once,
not twice.

Now it starts to become apparent how the bottom up approach is different
than our top down method from before.

We’ll see that we no longer need to do the work of generating that entire
bottom level of our function call “tree” in order to figure out all o the
recursive function calls. Nor do we need to determine all the possible
paths that our traveling salesman could take by using brute force.
Instead, we’re enumerating through function calls, finding the repeated
ones, and condensing our “tree” of function calls as we continue to build
it.

Once we’ve eliminated the repeated subproblems, we can do the work of
actually finding the shortest path. Remember that we will need to use our
adjacency matrix to figure out the distance between one node to another.
But, we’ll also notice that we’re not having to repeat ourselves nearly as
much because we won’t see the same numbers appear too many times
as we sum them up.

In the illustration shown below, each of the function calls that allow our
salesman to traverse from one node to another has a number (the cost or
distance) associated with it. As we continue down this tree, we’ll sum up
the cost of each set of function calls. For example, if we choose the
function calls that lead from w <- x <- y <- z, we’ll sum up the cost
between these nodes, which amounts to 6 + 4 + 2 = 12.

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up… 15/20



10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up… 16/20



Flipping TSP on its head, part 5.

When we get down to the third level of our function call “tree”, we’ll see
that we have two numbers that we can choose from. Recall that we had a
similar scenario happen to us in our top down approach last week: we
had two different paths with two different costs/distances to choose from.
We ended up choosing the smaller of the two cost, since we’re trying to
find the shortest path for our salesman. In this case, we have two
different function calls, with two different costs/distances to choose from.
Again, we’ll choose the smaller of the two costs, since we’re still trying to
find the shortest path here, too!

Eventually, as we continue sum the distances/costs, we’ll see that we
ended up witht he exact same results as our brute-force method from last
week. The shortest cost for our traveling salesman is going to be 11, and
there are two possible paths that would allow for them to achieve that
lowest cost. However, using the bottom up approach, we’ve optimized
our TSP algorithm, since we no longer have six recursive calls being
made in this method. Furthermore, we’re also not generating as big of a
tree structure! If we think back to when we were first introduced to
dynamic programming, we’ll recall that we could also use memoization
and save the results of our function calls as we calculate them, optimizing
our solution even further.

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up… 17/20

https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d
https://medium.com/basecs/less-repetition-more-dynamic-programming-43d29830a630
https://medium.com/basecs/less-repetition-more-dynamic-programming-43d29830a630


Using dynamic programming makes our 5 city example a little
faster.

Okay, so we started down this path in an effort to take the next step in the
adage of “Make it work, make it right, make it fast.”

We have arguably made our workable solution much better, and certainly
more elegant, and far less repetitive. The illustration shown here
exemplifies how the bottom up DP approach would scale for a traveling
salesman problem where the salesman has to visit five cities instead of

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up… 18/20



four. We’ll see that we’re still making a lot of calls, but our function call
“tree” is a bit slimmer and significantly better than before.

By using dynamic programming, we’ve made our solution for the traveling
salesman problem just a little bit better by choosing to smartly enumerate
function calls rather than brute-force our way through every single
possible path that our salesman could take.

The only question we have to answer now is, of course, how does the
runtime of this method compare to our ugly factorial, O(n!) runtime from
earlier?

Well, as it turns out, the bottom up approach that we’ve been exploring
here is really the foundations of something called the Held-Karp
algorithm, which is also often referred to as the Bellman-Held-Karp
algorithm. This algorithm was derived in 1962, by both Michael Held and
Richard M. Karp as well as Richard Bellman, who was working
independently on his own related research at the time.

The Held-Karp algorithm uses dynamic programming to
approach TSP.

The Held-Karp algorithm actually proposed the bottom up dynamic
programming approach as a solution to improving the brute-force method
of solving the traveling salesman problem. Bellman, Held, and Karp’s
algorithm was determined to run in exponential time, since it still does a

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up… 19/20

https://en.wikipedia.org/wiki/Held%E2%80%93Karp_algorithm


bulk of the work of enumerating through all the potential sets of function
calls that are possible. The exponential runtime of the Held-Karp
algorithm is still not perfect — it’s far from it, in fact! But, it’s not as ugly
as a factorial algorithm, and it’s still an improvement.

And, to be honest, I’m sure the traveling salesman would be happy to
take whatever he could get.

Resources
The traveling salesman problem has been written about, researched, and
taught extensively. As it turns out, there are many different approaches
when it comes to attempting to solve it, and the Held-Karp algorithm is
just one of them. If you want to dig deeper into this particular topic, here
are some good places to start.

1. Travelling Salesman Problem, 0612 TV w/ NERDfirst
2. Traveling Salesman Problem Dynamic Programming Held-Karp,

Tushar Roy
3. What is an NP-complete in computer science?, StackOverflow
4. Big O Notation and Complexity, Kestrel Blackmore
5. A Dynamic Programming Algorithm for TSP, Coursera
6. Traveling Salesman Problem: An Overview of Applications,

Formulations, and Solution Approaches, Rajesh Matai, Surya Singh,
and Murari Lal Mittal

Previous Chapter Next Chapter

10/23/24, 10:39 AM Speeding Up The Traveling Salesman Using Dynamic Programming

chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up… 20/20

https://www.youtube.com/watch?v=_51ot-Ri0ng
https://www.youtube.com/watch?v=-JjA4BLQyqE
https://stackoverflow.com/questions/210829/what-is-an-np-complete-in-computer-science
http://www.kestrelblackmore.com/blog/big-o-notation-complexity
https://www.coursera.org/learn/algorithms-npcomplete/lecture/uVABz/a-dynamic-programming-algorithm-for-tsp
https://www.intechopen.com/books/traveling-salesman-problem-theory-and-applications/traveling-salesman-problem-an-overview-of-applications-formulations-and-solution-approaches
https://www.intechopen.com/books/traveling-salesman-problem-theory-and-applications/traveling-salesman-problem-an-overview-of-applications-formulations-and-solution-approaches
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d
chrome-extension://ecabifbgmdmgdllomnfinbmaellmclnh/data/reader/index.html?id=548983547&url=https%3A%2F%2Fmedium.com%2Fbasecs%2Fspeeding-up-the-traveling-salesman-using-dynamic-programming-b76d7552e8dd

