
Young diagrams associated to the partitions of the
positive integers 1 through 8. They are arranged
so that images under the reflection about the
main diagonal of the square are conjugate
partitions.

Partitions of n with biggest addend k

Partition (number theory)

In number theory and combinatorics, a partition of a

positive integer n, also called an integer partition, is a

way of writing n as a sum of positive integers. Two sums

that differ only in the order of their summands are

considered the same partition. (If order matters, the sum

becomes a composition.) For example, 4 can be

partitioned in five distinct ways:

4
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1

The order-dependent composition 1 + 3 is the same

partition as 3 + 1, while the two distinct compositions 1 +

2 + 1 and 1 + 1 + 2 represent the same partition 2 + 1 + 1.

A summand in a partition is also called a part. The

number of partitions of n is given by the partition

function p(n). So p(4) = 5. The notation λ ⊢ n means

that λ is a partition of n.

Partitions can be graphically visualized with Young

diagrams or Ferrers diagrams. They occur in a number of

branches of mathematics and physics, including the

study of symmetric polynomials and of the symmetric

group and in group representation theory in general.
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The seven partitions of 5 are:

5
4 + 1
3 + 2
3 + 1 + 1
2 + 2 + 1
2 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1

In some sources partitions are treated as the sequence of summands, rather than as an expression with

plus signs. For example, the partition 2 + 2 + 1 might instead be written as the tuple (2, 2, 1) or in the

even more compact form (2
2
, 1) where the superscript indicates the number of repetitions of a term.

There are two common diagrammatic methods to represent partitions: as Ferrers diagrams, named after

Norman Macleod Ferrers, and as Young diagrams, named after the British mathematician Alfred Young.

Both have several possible conventions; here, we use English notation, with diagrams aligned in the

upper-left corner.

The partition 6 + 4 + 3 + 1 of the positive number 14 can be represented
by the following diagram:

The 14 circles are lined up in 4 rows, each having the size of a part of the partition. The diagrams for the

5 partitions of the number 4 are listed below:
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4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

An alternative visual representation of an integer partition is its Young diagram (often also called a

Ferrers diagram). Rather than representing a partition with dots, as in the Ferrers diagram, the Young

diagram uses boxes or squares. Thus, the Young diagram for the partition 5 + 4 + 1 is

while the Ferrers diagram for the same partition is

While this seemingly trivial variation doesn't appear worthy of separate mention, Young diagrams turn

out to be extremely useful in the study of symmetric functions and group representation theory: filling

the boxes of Young diagrams with numbers (or sometimes more complicated objects) obeying various

rules leads to a family of objects called Young tableaux, and these tableaux have combinatorial and

representation-theoretic significance.
[1]

 As a type of shape made by adjacent squares joined together,

Young diagrams are a special kind of polyomino.
[2]

The partition function  represents the number of possible partitions of a non-negative integer . For

instance,  because the integer  has the five partitions , , , ,

and .
The values of this function for  are:

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002,
1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, ... (sequence A000041 in the OEIS).

The generating function of  is

No closed-form expression for the partition function is known, but it has both asymptotic expansions

that accurately approximate it and recurrence relations by which it can be calculated exactly. It grows as

an exponential function of the square root of its argument.
[3]

 The multiplicative inverse of its generating

function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum

of pentagonal number powers of its argument.
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Using Euler's method to
find p(40): A ruler with plus
and minus signs (grey box)
is slid downwards, the
relevant terms added or
subtracted. The positions of
the signs are given by
differences of alternating
natural (blue) and odd
(orange) numbers. In the
SVG file, (https://upload.wik
imedia.org/wikipedia/comm
ons/0/05/Euler_partition_fu
nction.svg) hover over the
image to move the ruler.

Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular

arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation

of  ends in the digit 4 or 9, the number of partitions of  will be divisible by 5.
[4]
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In both combinatorics and number theory, families of partitions subject to various restrictions are often

studied.
[5]

 This section surveys a few such restrictions.

If we flip the diagram of the partition 6 + 4 + 3 + 1 along its main diagonal, we obtain another partition

of 14:

↔

6 + 4 + 3 + 1 = 4 + 3 + 3 + 2 + 1 + 1

By turning the rows into columns, we obtain the partition 4 + 3 + 3 + 2 + 1 + 1 of the number 14. Such

partitions are said to be conjugate of one another.
[6]

 In the case of the number 4, partitions 4 and

1  +  1  +  1  +  1 are conjugate pairs, and partitions 3  +  1 and 2  +  1  +  1 are conjugate of each other. Of

particular interest is the partition 2 + 2, which has itself as conjugate. Such a partition is said to be self-

conjugate.
[7]

Claim: The number of self-conjugate partitions is the same as the number of partitions with distinct odd

parts.

Proof (outline): The crucial observation is that every odd part can be "folded" in the middle to form a

self-conjugate diagram:

  ↔  

One can then obtain a bijection between the set of partitions with distinct odd parts and the set of self-

conjugate partitions, as illustrated by the following example:






 ↔

9 + 7 + 3 = 5 + 5 + 4 + 3 + 2
Dist. odd self-conjugate

Among the 22 partitions of the number 8, there are 6 that contain only odd parts:

Conjugate and self-conjugate partitions

Odd parts and distinct parts
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7 + 1
5 + 3
5 + 1 + 1 + 1
3 + 3 + 1 + 1
3 + 1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

Alternatively, we could count partitions in which no number occurs more than once. Such a partition is

called a partition with distinct parts. If we count the partitions of 8 with distinct parts, we also obtain 6:

8
7 + 1
6 + 2
5 + 3
5 + 2 + 1
4 + 3 + 1

This is a general property. For each positive number, the number of partitions with odd parts equals the

number of partitions with distinct parts, denoted by q(n).
[8][9]

 This result was proved by Leonhard Euler

in 1748
[10]

 and later was generalized as Glaisher's theorem.

For every type of restricted partition there is a corresponding function for the number of partitions

satisfying the given restriction. An important example is q(n). The first few values of q(n) are (starting

with q(0)=1):

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, ... (sequence A000009 in the OEIS).

The generating function for q(n) (partitions into distinct parts) is given by
[11]

The pentagonal number theorem gives a recurrence for q:
[12]

q(k) = ak + q(k − 1) + q(k − 2) − q(k − 5) − q(k − 7) + q(k − 12) + q(k − 15) − q(k − 22) − ...

where ak is (−1)
m

 if k = 3m
2
 − m for some integer m and is 0 otherwise.

By taking conjugates, the number pk(n) of partitions of n into exactly k parts is equal to the number of

partitions of n in which the largest part has size k. The function pk(n) satisfies the recurrence

pk(n) = pk(n − k) + pk−1(n − 1)

with initial values p0(0) = 1 and pk(n) = 0 if n ≤ 0 or k ≤ 0 and n and k are not both zero.
[13]

Restricted part size or number of parts
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One recovers the function p(n) by

One possible generating function for such partitions, taking k fixed and n variable, is

More generally, if T is a set of positive integers then the number of partitions of n, all of whose parts

belong to T, has generating function

This can be used to solve change-making problems (where the set T specifies the available coins). As two

particular cases, one has that the number of partitions of n in which all parts are 1 or 2 (or, equivalently,

the number of partitions of n into 1 or 2 parts) is

and the number of partitions of n in which all parts are 1, 2 or 3 (or, equivalently, the number of

partitions of n into at most three parts) is the nearest integer to (n + 3)
2
 / 12.

[14]

The asymptotic growth rate for p(n) is given by

where .
[15]

 The more precise asymptotic formula

 as 

was first obtained by G. H. Hardy and Ramanujan in 1918 and independently by J. V. Uspensky in 1920.

A complete asymptotic expansion was given in 1937 by Hans Rademacher.

If A is a set of natural numbers, we let pA(n) denote the number of partitions
of n into elements of A. If A

possesses positive natural density α then

Asymptotics
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and conversely if this asymptotic property holds for pA(n) then A has natural density α.
[16]

 This result

was stated, with a sketch of proof, by Erdős in 1942.
[17][18]

If A is a finite set, this analysis does not apply (the density of a finite set is zero). If A has k elements

whose greatest common divisor is 1, then
[19]

One may also simultaneously limit the number and size of the parts. Let p(N, M; n) denote the number

of partitions of n with at most M parts, each of size at most N. Equivalently, these are the partitions

whose Young diagram fits inside an M × N rectangle. There is a recurrence relation

obtained by observing that  counts the partitions of n into exactly M

parts of size at most N, and subtracting 1 from each part of such a partition yields a partition of n − M

into at most M parts.
[20]

The Gaussian binomial coefficient is defined as:

The Gaussian binomial coefficient is related to the generating function of p(N, M; n) by the equality

The rank of a partition is the largest number k such that the partition contains at least k parts of size at

least k. For example, the partition 4 + 3 + 3 + 2 + 1 + 1 has rank 3 because it contains 3 parts that are ≥ 3,

but does not contain 4 parts that are ≥ 4. In the Ferrers diagram or Young diagram of a partition of rank

r, the r × r square of entries in the upper-left is known as the Durfee square:

Partitions in a rectangle and Gaussian binomial coefficients

Rank and Durfee square
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