
Dynamic Programming Solution to the

Matrix-Chain Multiplication Problem
Javed Aslam, Cheng Li, Virgil Pavlu

[this solution follows “Introduction to Algorithms” book by Cormen et al]

Matrix-Chain Multiplication Problem

Given a chain < A1, A2, . . . , An > of n matrices, where for i = 1, 2, . . . , n, matrix Ai has dimension pi−1×pi,
fully parenthesize the product A1A2 . . . An in a way that minimizes the number of scalar multiplications.

First we show that exhaustively checking all possible parenthesizations leads to exponential growth of
computation. Denote the number of alternative parenthesizations of a sequence of n matrices by P (n). When
n = 1, we have just one way to fully parenthesize one matrix. When n ≥ 2, a fully parenthesized matrix
product may be splited into two fully parenthesized matrix subproducts, between the kth and (k + 1)st
matrices for some k = 1, 2, . . . , n− 1. Thus, we obtain the recurrence

P (n) =

{
1 if n = 1∑n−1

k=1 P (k)P (n− k) if n ≥ 2

We show that P (n) ≥ 2n−2 = Ω(2n). Clearly, the claim is true for n = 1, 2. Assume that the claim is true
for each k < n.

P (n) =

n−1∑
k=1

P (k)P (n− k)

≥ P (1)P (n− 1) + P (n− 1)P (1)

= 2P (1)P (n− 1)

= 2P (n− 1)

≥ 2 · 2n−1−2

= 2n−2

In fact, P (n) = Ω(4n

n3/2).

Methodology

(1) Characterize the Structure of an Optimal Solution.

Claim 1 Suppose that in and optimal way to parenthesize AiAi+1 . . . Aj, we split the product between Ak and
Ak+1. Then the way we parenthesize the “prefix” subchain AiAi+1 . . . Ak within this optimal parenthesization
of AiAi+1 . . . Aj must be an optimal parenthesization of AiAi+1 . . . Ak. And the way we parenthesize the
“suffix” subchain Ak+1Ak+2 . . . Aj within this optimal parenthesization of AiAi+1 . . . Aj must be an optimal
parenthesization of Ak+1Ak+2 . . . Aj.

((AiAi+1 . . . Ak)(Ak+1Ak+2 . . . Aj))

prefix subchain suffix subchain

Proof: By contradiction, suppose there were a less costly way to parenthesize AiAi+1 . . . Ak, then the
optimal parenthesization of AiAi+1 . . . Aj could be replaced with this parenthesization, yielding another
way to parenthesize AiAi+1 . . . Aj whose cost was lower than the optimum: a contradiction. An identical
argument applies to the subchain Ak+1Ak+2 . . . Aj in the optimal parenthesization of AiAi+1 . . . Aj . 2

1

(2) Recursively Define the Value of the Optimal Solution. First, we define in English the quantity
we shall later define recursively. LetAi..j be the matrix that results from evaluating the productAiAi+1 . . . Aj ,
where i ≤ j. Let C[i, j] be the minimum number of scalar multiplications needed to compute the matrix
Ai...j . If i = j, no scalar multiplications are needed. Thus, C[i, i] = 0 for i = 1, 2, . . . , n. When i < j, we
assume that in an optimal parenthesization, the product AiAi+1 . . . Aj is split between Ak and Ak+1, where
i ≤ k < j. Then C[i, j] = C[i, k] + C[k + 1, j] + pi−1pkpj . We don’t know the value of k in the optimal
parenthesization, but there are only j − i possible values for k, namely k = i, i+ 1, . . . , j + 1. So we should
check all these values to find the best. We thus have the following recurrence.

Claim 2

C[i, j] =

{
0 if i = j,

mini≤k<j{C[i, k] + C[k + 1, j] + pi−1pkpj} if i < j.

Proof: The correctness of this recursive definition is embodied in the paragraph which precedes it. 2

(3) Compute the Value of the Optimal Solution Bottom-up. Consider the following piece os
pseudocode, where p =< p0, p1, . . . , pn >, with p.length = n + 1, table C[1..n, 1..n] stores the costs and
table S[1..n− 1, 2..n] stores which index of k achieved the optimal cost in computing C[i, j].

The way we fill in the tables C and S here is more tricky than that in the knapsack problem and
checkboard problem. In knapsack problem and checkboard problem, we fill in the tables by rows. Here, the
recurrence formula shows that the cost C[i, j] of computing a matrix-chain product of j − i + 1 matrices
depends only on the costs of computing matrix-chain products of fewer than j − i + 1 matrices. Thus, the
tables C and S should be filled in by increasing lengths of the matrix chains. This corresponds to filling in
the tables diagonally.

matrix-chain-order(p)
1 n = p.length− 1
2 let C[1..n, 1..n] and S[1..n− 1, 2..n] be new tables
3 for i = 1 to n
4 C[i, i] = 0
5 for l = 2 to n //l is the chain length
6 for i = 1 to n− l + 1
7 j = i+ l − 1
8 C[i, j] = ∞
9 for k = i to j − 1
10 q = C[i, k] + C[k + 1, j] + pi−1pkpj
11 if q < C[i, j]
12 C[i, j] = q
13 S[i, j] = k
14 return C and S

Claim 3 When the above procedure terminates, C[i, j] will contain the minimum number of scalar multiplications
needed to compute the matrix Ai...j, and S[i, j] will contain the index of k achieved the optimal cost in
computing C[i, j].

Proof: The correctness of the above procedure is based on the fact that it correctly implements the recursive
definition given above. The base case is properly handled in Lines 3-4, and the recursive case is properly
handled in Lines 5-13. At each step, the C[i, j] cost computed in lines 10-13 depends only on table entries
C[i, k] and C[k + 1, j] already computed. Lines 8-12 correctly compute mini≤k<j{C[i, k] + C[k + 1, j] +
pi−1pkpj}, and C[i, j] is set to this value in Line 12. Lines 8-13 correctly compute argmini≤k<j{C[i, k] +

2

C[k + 1, j] + pi−1pkpj}, and S[i, j] is set to this value in Line 13. 2

Figure 1 illustrates this procedure on a chain of n = 6 matrices.

(4) Construct the Optimal Solution from the Computed Information. Consider the following
piece of pseudocode, where S is the table computed by MATRIX-CHAIN-ORDER.

Print-Optimal-Parens(S, i, j)
1 if i == j
2 print “A”i
3 else print “(”
4 Print-Optimal-Parens(S, i, S[i, j])
5 Print-Optimal-Parens(S, S[i, j] + 1, j)
6 print “)”

Claim 4 The above procedure correctly prints an optimal parenthesization of < Ai, Ai+1, . . . , Aj >.

Proof: S[i, j] indicates the value of k such that an optimal parenthesization of AiAi+1 . . . Aj splits the
product between Ak and Ak+1. The above procedure just recursively splits the parenthesization of a chain
into the parenthesization of its prefix chain and the parenthesization of its suffix chain. 2

(5) Running Time and Space Requirements. The procedure MATRIX-CHAIN-ORDER runs in
O(n3) due to the nested loop defined in Lines 5, 6 and 9. We can also show that the running time of this
algorithm is in fact also Ω(n3) (exercise). The algorithm requires Θ(n2) space to store the C and S tables.
The procedure PRINT-OPTIMAL-PARENS runs in Θ(n) time and uses no additional space. The overall
running time is Θ(n3) and the space requirement is Θ(n2).

3

1

2

3

4

5

6

1

2

3

4

5

6

0 0 0 0 0 0

15750 2625 750 1000 5000

7875 4375 2500 3500

9375 7125 5375

11875 10500

15125

j i

C

A3 A4A2 A5A1 A6

1 2 3 4 5

1 3 3 5

3 3 3

3 3

3

2

3

4

5

6

5

4

3

2

1

j i

S

j

1

2

3

4

5

6

1 2 3 4 5 6

i

0

15750

7875

9375

11875

15125

0

2625

4375

7125

10500

0

750

2500

5375

0

1000

3500

0

5000 0

C

j

1

2

3

4

5

6

1 2 3 4 5 6

i

1

1

3

3

3

2

3

3

3

3

3

3

4

5 5

S

Figure 1: The C and S table computed by Matrix-Chain-Order for n = 6 and the following matrix
dimensions:

matrix A1 A2 A3 A4 A5 A6

dimension 30× 35 35× 15 15× 5 5× 10 10× 20 20× 25

The tables at the top are rotated to make the main diagonal runs horizontally. The C table uses only the
main diagonal and upper triangle, since C[i, j] is only defined for i ≤ j. The S table uses only the upper
triangle. Of the colored entries, the pairs that have the same color are taken together in line 10 when
computing

C[2, 5] = min

C[2, 2] + C[3, 5] + p1p2p5 = 0 + 2500 + 35 · 15 · 20 = 13, 000

C[2, 3] + C[4, 5] + p1p3p5 = 2625 + 1000 + 35 · 5 · 20 = 7125

C[2, 4] + C[5, 5] + p1p4p5 = 4375 + 0 + 35 · 10 · 20 = 11, 375

= 7125.

The tables at the bottom are normally orientated. The tables are filled in by diagonals.

4

