Dynamic Programming Solution to the Longest Common Subsequence Problem

Cheng Li, Virgil Pavlu
[this solution follows "Introduction to Algorithms" book by Cormen et al]

Longest Common Subsequence Problem

Given two sequences $X=<x_{1}, x_{2}, \ldots, x_{m}>$ and $Y=<y_{1}, y_{2}, \ldots, y_{n}>$, find a maximum length common subsequence of X and Y.

Methodology

(1) Characterize the Structure of an Optimal Solution. The LCS problem exhibits optimal substructure in the following manner. Given a sequence $X=<x_{1}, x_{2}, \ldots, x_{m}>$, we define the i th prefix of X, for $i=0,1, \ldots, m$, as $X_{i}=<x_{1}, x_{2}, \ldots, x_{i}>$.

Claim 1 Let $X=<x_{1}, x_{2}, \ldots, x_{m}>$ and $Y=<y_{1}, y_{2}, \ldots, y_{n}>$ be sequences, and let $Z=<z_{1}, z_{2}, \ldots, z_{k}>$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an $L C S$ of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then $z_{k} \neq x_{m}$ implies that Z is an $L C S$ of X_{m-1} and Y.
3. If $x_{m} \neq y_{n}$, then $z_{k} \neq y_{n}$ implies that Z is an LCS of X and Y_{n-1}.

Proof: (1) By contradiction, assume $z_{k} \neq x_{m}$, then by appending $x_{m}=y_{n}$ to Z, we get a common subsequence of X and Y of length $k+1$, contradicting the supposed optimality of Z. So $z_{k}=x_{m}=y_{n}$. Thus, the prefix Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1}. Next we show that it is an LCS. Suppose for the purpose of contradiction that there exists a common subsequence W of X_{m-1} and Y_{n-1} with length greater than $k-1$. We can append $x_{m}=y_{n}$ to W and get a common subsequence of X and Y whose length is greater than k, which contradicting the supposed optimality of Z.
(2) $z_{k} \neq x_{m}$ implies that Z is a common subsequence of X_{m-1} and Y. By contradiction, suppose that there is a common subsequence W of X_{m-1} and Y with length greater than k, then W is a common subsequence of X_{m} and Y, contradicting the supposed optimality of Z.
(3) The proof is similar to (2).
(2) Recursively Define the Value of the Optimal Solution. Let $C[i, j]$ be the length of an LCS of the sequences X_{i} and Y_{j}. If either $i=0$ or $j=0$, one of the sequences has length 0 , and so the LCS has length 0 . If $i, j>0$ and $x_{m}=y_{n}$ we should first find an LCS of X_{m-1} and Y_{n-1} and then append $x_{m}=y_{n}$ to this LCS to get an LCS of X and Y. If $i, j>0$ and $x_{m} \neq y_{n}$, then we must first find an LCS of X_{m-1} and Y and an LCS of X and Y_{n-1}, and then choose the longer one as an LCS of X and Y. We thus have the following recurrence.

Claim 2

$$
C[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ C[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\ \max (C[i, j-1], C[i-1, j]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j}\end{cases}
$$

Proof: The correctness of this recursive definition is embodied in the paragraph which proceeds it.
(3) Compute the Value of the Optimal Solution Bottom-up. Consider the following piece of pseudocode, where $X=<x_{1}, x_{2}, \ldots, x_{m}>, Y=<y_{1}, y_{2}, \ldots, y_{n}>$.

```
LCS-Length \((X, Y)\)
    \(m=\) X.length
    \(n=Y\).length
    let \(S[1 . . m, 1 . . n]\) and \(C[0 . . m, 0 . . n]\) be new tables
    for \(i=1\) to \(m\)
        \(C[i, 0]=0\)
    for \(j=0\) to \(n\)
        \(C[0, j]=0\)
    for \(i=1\) to \(m\)
        for \(j=1\) to \(n\)
            if \(x_{i}==y_{j}\)
                \(C[i, j]=C[i-1, j-1]+1\)
                \(S[i, j]=\) " \({ }^{\prime} "\)
        elseif \(C[i-1, j] \geq C[i, j-1]\)
            \(C[i, j]=C[i-1, j]\)
            \(S[i, j]=" \uparrow "\)
        else \(C[i, j]=C[i, j-1]\)
            \(S[i, j]=" \leftarrow "\)
18 return \(C\) and \(S\)
```

Claim 3 When the above procedure terminates, $C[i, j]$ will contain the length of an LCS of the sequences X_{i} and Y_{j}, and $S[i, j]$ will point to the table entry corresponding to the optimal subproblem solution chosen when computing $C[i, j]$.
Proof: The correctness of the above procedure is based on the fact that it correctly implements the recursive definition given above. The base case is properly handled in Line 4-7, and the recursive case is properly handled in Lines 8 to 17 . Note that since the loop defined in Line 8 goes from 1 to m and the loop defined in Line 9 goes from 1 to n, no element of C is accessed in either Line $11,13,14$ or 16 before it has been computed.
(4) Construct the Optimal Solution from the Computed Information. Consider the following piece of pseudocode, where S is the table computed above.

```
Print-LCS(S, X,i,j)
    if }i==0\mathrm{ or }j==
        return
    if S[i,j]=="\nwarrow"
        Print-LCS(S, X,i-1,j-1)
        print }\mp@subsup{x}{i}{
    elseif S[i,j]=="\uparrow"
        Print-LCS(S, X,i-1,j)
    elsePrint-LCS(S, X,i,j-1)
```

Claim 4 The above procedure prints out an LCS of X and Y.
Proof: The above procedure traces through the table by following the arrows. When $S[i, j]=" \nwarrow$ ", $x_{i}=y_{j}$ is an element of the LCS, and the procedure will print it out.

Figure 1: The C and S tables computed by LCS-LENGTH on the sequence $X=<A, B, C, B, D, A, B>$ and $Y=<B, D, C, A, B, A>$.
(5) Running Time and Space Requirements. The LCS-LENgTh procedure runs in $\Theta(m n)$ since each table entry takes $\Theta(1)$ time to compute, and it uses $\Theta(m n)$ additional space in the form of the tables S and C. The Print-LCS procedure runs in time $O(m+n)$ since it decrements at least one of i and j in each recursive call. It uses no additional space beyond the inputs given. Thus, the total running time is $\Theta(m n)$ and the total space requirement is $\Theta(m n)$.

