
Dynamic Programming Solution to the

Longest Common Subsequence Problem
Cheng Li, Virgil Pavlu

[this solution follows “Introduction to Algorithms” book by Cormen et al]

Longest Common Subsequence Problem

Given two sequences X =< x1, x2, . . . , xm > and Y =< y1, y2, . . . , yn >, find a maximum length common
subsequence of X and Y .

Methodology

(1) Characterize the Structure of an Optimal Solution. The LCS problem exhibits optimal sub-
structure in the following manner. Given a sequence X =< x1, x2, . . . , xm >, we define the ith prefix of X,
for i = 0, 1, . . . ,m, as Xi =< x1, x2, . . . , xi >.

Claim 1 Let X =< x1, x2, . . . , xm > and Y =< y1, y2, . . . , yn > be sequences, and let Z =< z1, z2, . . . , zk >
be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1.

2. If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y .

3. If xm 6= yn, then zk 6= yn implies that Z is an LCS of X and Yn−1.

Proof: (1) By contradiction, assume zk 6= xm, then by appending xm = yn to Z, we get a common
subsequence of X and Y of length k + 1, contradicting the supposed optimality of Z. So zk = xm = yn.
Thus, the prefix Zk−1 is a common subsequence of Xm−1 and Yn−1. Next we show that it is an LCS. Suppose
for the purpose of contradiction that there exists a common subsequence W of Xm−1 and Yn−1 with length
greater than k− 1. We can append xm = yn to W and get a common subsequence of X and Y whose length
is greater than k, which contradicting the supposed optimality of Z.

(2) zk 6= xm implies that Z is a common subsequence of Xm−1 and Y . By contradiction, suppose
that there is a common subsequence W of Xm−1 and Y with length greater than k, then W is a common
subsequence of Xm and Y , contradicting the supposed optimality of Z.

(3) The proof is similar to (2). 2

(2) Recursively Define the Value of the Optimal Solution. Let C[i, j] be the length of an LCS of
the sequences Xi and Yj . If either i = 0 or j = 0, one of the sequences has length 0, and so the LCS has
length 0. If i, j > 0 and xm = yn we should first find an LCS of Xm−1 and Yn−1 and then append xm = yn
to this LCS to get an LCS of X and Y . If i, j > 0 and xm 6= yn, then we must first find an LCS of Xm−1

and Y and an LCS of X and Yn−1, and then choose the longer one as an LCS of X and Y . We thus have
the following recurrence.

Claim 2

C[i, j] =


0 if i = 0 or j = 0,

C[i− 1, j − 1] + 1 if i, j > 0 and xi = yj ,

max(C[i, j − 1], C[i− 1, j]) if i, j > 0 and xi 6= yj .

Proof: The correctness of this recursive definition is embodied in the paragraph which proceeds it. 2
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(3) Compute the Value of the Optimal Solution Bottom-up. Consider the following piece of pseu-
docode, where X =< x1, x2, . . . , xm >, Y =< y1, y2, . . . , yn >.

LCS-Length(X,Y )
1 m = X.length
2 n = Y.length
3 let S[1..m, 1..n] and C[0..m, 0..n] be new tables
4 for i = 1 to m
5 C[i, 0] = 0
6 for j = 0 to n
7 C[0, j] = 0
8 for i = 1 to m
9 for j = 1 to n
10 if xi == yj
11 C[i, j] = C[i− 1, j − 1] + 1
12 S[i, j] = “↖ ”
13 elseif C[i− 1, j] ≥ C[i, j − 1]
14 C[i, j] = C[i− 1, j]
15 S[i, j] = “ ↑ ”
16 else C[i, j] = C[i, j − 1]
17 S[i, j] = “← ”
18 return C and S

Claim 3 When the above procedure terminates, C[i, j] will contain the length of an LCS of the sequences
Xi and Yj, and S[i, j] will point to the table entry corresponding to the optimal subproblem solution chosen
when computing C[i, j].

Proof: The correctness of the above procedure is based on the fact that it correctly implements the recursive
definition given above. The base case is properly handled in Line 4-7, and the recursive case is properly
handled in Lines 8 to 17. Note that since the loop defined in Line 8 goes from 1 to m and the loop defined
in Line 9 goes from 1 to n, no element of C is accessed in either Line 11,13,14 or 16 before it has been
computed. 2

(4) Construct the Optimal Solution from the Computed Information. Consider the following
piece of pseudocode, where S is the table computed above.

Print-LCS(S,X, i, j)
1 if i == 0 or j == 0
2 return
3 if S[i, j] == “↖ ”
4 Print-LCS(S,X, i− 1, j − 1)
5 print xi

6 elseif S[i, j] == “ ↑ ”
7 Print-LCS(S,X, i− 1, j)
8 elsePrint-LCS(S,X, i, j − 1)

Claim 4 The above procedure prints out an LCS of X and Y .

Proof: The above procedure traces through the table by following the arrows. When S[i, j]= “↖”, xi = yj
is an element of the LCS, and the procedure will print it out. 2
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↑ ↑ ↖ ← ↑ ↑

↖ ← ← ↑ ↖ ←

↑ ↑ ↑ ↖ ← ↖

Figure 1: The C and S tables computed by LCS-LENGTH on the sequence X =< A,B,C,B,D,A,B >
and Y =< B,D,C,A,B,A >.

(5) Running Time and Space Requirements. The LCS-Length procedure runs in Θ(mn) since each
table entry takes Θ(1) time to compute, and it uses Θ(mn) additional space in the form of the tables S and
C. The Print-LCS procedure runs in time O(m + n) since it decrements at least one of i and j in each
recursive call. It uses no additional space beyond the inputs given. Thus, the total running time is Θ(mn)
and the total space requirement is Θ(mn).
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