Dynamic Programming Solution to the Longest Common Subsequence Problem

Cheng Li, Virgil Pavlu

[this solution follows "Introduction to Algorithms" book by Cormen et al]

Longest Common Subsequence Problem

Given two sequences $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$, find a maximum length common subsequence of X and Y.

Methodology

(1) Characterize the Structure of an Optimal Solution. The LCS problem exhibits optimal substructure in the following manner. Given a sequence $X = \langle x_1, x_2, \ldots, x_m \rangle$, we define the *i*th prefix of X, for $i = 0, 1, \ldots, m$, as $X_i = \langle x_1, x_2, \ldots, x_i \rangle$.

Claim 1 Let $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \ldots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Proof: (1) By contradiction, assume $z_k \neq x_m$, then by appending $x_m = y_n$ to Z, we get a common subsequence of X and Y of length k + 1, contradicting the supposed optimality of Z. So $z_k = x_m = y_n$. Thus, the prefix Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1} . Next we show that it is an LCS. Suppose for the purpose of contradiction that there exists a common subsequence W of X_{m-1} and Y_{n-1} with length greater than k-1. We can append $x_m = y_n$ to W and get a common subsequence of X and Y whose length is greater than k, which contradicting the supposed optimality of Z.

(2) $z_k \neq x_m$ implies that Z is a common subsequence of X_{m-1} and Y. By contradiction, suppose that there is a common subsequence W of X_{m-1} and Y with length greater than k, then W is a common subsequence of X_m and Y, contradicting the supposed optimality of Z.

(3) The proof is similar to (2).

(2) Recursively Define the Value of the Optimal Solution. Let C[i, j] be the length of an LCS of the sequences X_i and Y_j . If either i = 0 or j = 0, one of the sequences has length 0, and so the LCS has length 0. If i, j > 0 and $x_m = y_n$ we should first find an LCS of X_{m-1} and Y_{n-1} and then append $x_m = y_n$ to this LCS to get an LCS of X and Y. If i, j > 0 and $x_m \neq y_n$, then we must first find an LCS of X_{m-1} and Y and an LCS of X and Y_{n-1} , and then choose the longer one as an LCS of X and Y. We thus have the following recurrence.

Claim 2

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ C[i-1,j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(C[i,j-1], C[i-1,j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

Proof: The correctness of this recursive definition is embodied in the paragraph which proceeds it. \Box

(3) Compute the Value of the Optimal Solution Bottom-up. Consider the following piece of pseudocode, where $X = \langle x_1, x_2, \ldots, x_m \rangle$, $Y = \langle y_1, y_2, \ldots, y_n \rangle$.

LCS-LENGTH(X, Y)1 m = X.lengthn = Y.length23 let S[1..m, 1..n] and C[0..m, 0..n] be new tables 4 for i = 1 to mC[i, 0] = 05for j = 0 to n6 7 C[0,j] = 08 for i = 1 to m9 for j = 1 to n10 if $x_i == y_i$ 11 C[i, j] = C[i - 1, j - 1] + 1 $S[i,j] = "\check{\nwarrow} "$ 12elseif $C[i-1,j] \ge C[i,j-1]$ 13C[i,j] = C[i-1,j]14 $S[i,j] = ``\uparrow"$ 15**else** C[i, j] = C[i, j-1]1617 $S[i, j] = " \leftarrow "$ 18 return C and S

Claim 3 When the above procedure terminates, C[i, j] will contain the length of an LCS of the sequences X_i and Y_j , and S[i, j] will point to the table entry corresponding to the optimal subproblem solution chosen when computing C[i, j].

Proof: The correctness of the above procedure is based on the fact that it correctly implements the recursive definition given above. The base case is properly handled in Line 4-7, and the recursive case is properly handled in Line 8 to 17. Note that since the loop defined in Line 8 goes from 1 to m and the loop defined in Line 9 goes from 1 to n, no element of C is accessed in either Line 11,13,14 or 16 before it has been computed.

(4) Construct the Optimal Solution from the Computed Information. Consider the following piece of pseudocode, where S is the table computed above.

PRINT-LCS(S, X, i, j)1 **if** i == 0 or j == 0 $\mathbf{2}$ \mathbf{return} 3 if $S[i, j] == " \nwarrow "$ PRINT-LCS(S, X, i-1, j-1)4 5print x_i elseif $S[i, j] == "\uparrow "$ 6 7 PRINT-LCS(S, X, i-1, j)8 elsePRINT-LCS(S, X, i, j-1)

Claim 4 The above procedure prints out an LCS of X and Y.

Proof: The above procedure traces through the table by following the arrows. When $S[i, j] = " \ ", x_i = y_j$ is an element of the LCS, and the procedure will print it out.

Figure 1: The C and S tables computed by LCS-LENGTH on the sequence $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$.

(5) Running Time and Space Requirements. The LCS-LENGTH procedure runs in $\Theta(mn)$ since each table entry takes $\Theta(1)$ time to compute, and it uses $\Theta(mn)$ additional space in the form of the tables S and C. The PRINT-LCS procedure runs in time O(m + n) since it decrements at least one of i and j in each recursive call. It uses no additional space beyond the inputs given. Thus, the total running time is $\Theta(mn)$ and the total space requirement is $\Theta(mn)$.