Dynamic Programming Solution to the

Longest Common Subsequence Problem

Cheng Li, Virgil Pavlu
[this solution follows “Introduction to Algorithms” book by Cormen et al]

Longest Common Subsequence Problem

Given two sequences X =< x1,Ta9,..., Ty > and Y =< y1,¥2,...,Y, >, find a maximum length common
subsequence of X and Y.

Methodology

(1) Characterize the Structure of an Optimal Solution. The LCS problem exhibits optimal sub-

structure in the following manner. Given a sequence X =< x1,x3,..., Ty >, we define the ith prefix of X,
fort=0,1,...,m,as X; =< x1,To,...,T; >.
Claim 1 Let X =< 21,Z2,...,Tm > and Y =< y1,¥Y2,...,Yn > be sequences, and let Z =< z1,22,...,25 >

be any LCS of X and Y.
1. If xpy = yYn, then zx = Ty = yp and Zi_1 is an LCS of X1 and Yy, _1.
2. If Ty # Yn, then zi # x,, implies that Z is an LCS of X;p—1 and Y.
3. If Ty # Yn, then zi # y, implies that Z is an LCS of X and Y, _1.

Proof: (1) By contradiction, assume z, # x,, then by appending x, = y, to Z, we get a common
subsequence of X and Y of length k£ + 1, contradicting the supposed optimality of Z. So zp = =, = yYn-
Thus, the prefix Z;_; is a common subsequence of X,,_1 and Y,,_1. Next we show that it is an LCS. Suppose
for the purpose of contradiction that there exists a common subsequence W of X,,,_1 and Y,,_; with length
greater than k — 1. We can append z,,, = y,, to W and get a common subsequence of X and Y whose length
is greater than k, which contradicting the supposed optimality of Z.

(2) zr # x,, implies that Z is a common subsequence of X,,,_; and Y. By contradiction, suppose
that there is a common subsequence W of X, and Y with length greater than k, then W is a common
subsequence of X,,, and Y, contradicting the supposed optimality of Z.

(3) The proof is similar to (2). O

(2) Recursively Define the Value of the Optimal Solution. Let CJi,j] be the length of an LCS of
the sequences X; and Yj. If either 7 = 0 or j = 0, one of the sequences has length 0, and so the LCS has
length 0. If 4,5 > 0 and =, = y,, we should first find an LCS of X,,_; and Y,,_; and then append z,, = y,
to this LCS to get an LCS of X and Y. If 4,5 > 0 and z,,, # yn, then we must first find an LCS of X, 1
and Y and an LCS of X and Y,,_1, and then choose the longer one as an LCS of X and Y. We thus have
the following recurrence.

Claim 2
0 ift=0o0rj=0,
Cli,jl=qCli—1,7—1]+1 if i, >0 and z; = y;,
max(C[i,j —1],C[i — 1,4]) ifi,j >0 and x; # y;.
Proof: The correctness of this recursive definition is embodied in the paragraph which proceeds it. O



(3) Compute the Value of the Optimal Solution Bottom-up. Consider the following piece of pseu-
docode, where X =< x1,%2,...,Tm >, Y =< y1,¥Y2,- -, Yn >.

LCS-LENGTH(X,Y)
1 m = X.length

2 n =Y.ength

3 let S[1..m,1..n] and C[0..m,0..n] be new tables
4 fori=1tom

5 C[i,0] =0

6 forj=0ton

7 C0,4]=0

8 fori=1tom

9 for j=1ton

11 Cli,j]=Cli—1,5—1]+1
12 S, gl =*\"

13 elseif C[i — 1,5] > Cli,j — 1]
14 Cli,j] = Cli — 1, 5]

15 Sli,j] = “17

16 else Ci,j] = C[i,j — 1]

17 Sli,j]=“+"7

18 return C and S

Claim 3 When the above procedure terminates, C[i, j| will contain the length of an LCS of the sequences
Xi and Y;, and S[i, j| will point to the table entry corresponding to the optimal subproblem solution chosen
when computing C[i, j).

Proof: The correctness of the above procedure is based on the fact that it correctly implements the recursive
definition given above. The base case is properly handled in Line 4-7, and the recursive case is properly
handled in Lines 8 to 17. Note that since the loop defined in Line 8 goes from 1 to m and the loop defined
in Line 9 goes from 1 to n, no element of C' is accessed in either Line 11,13,14 or 16 before it has been
computed. O

(4) Construct the Optimal Solution from the Computed Information. Consider the following
piece of pseudocode, where S is the table computed above.

PrINT-LCS(S, X, 4, 7)
1 ifi==0o0rj==0

2 return

3 i S[i,j] == “N7

4 PRINT-LCS(S, X,i — 1,5 — 1)
5 print z;

6 elseif S[i,j] == “1"”

7 PRINT-LCS(S, X,i — 1, 7)

8 elsePRINT-LCS(S, X,i,j — 1)

Claim 4 The above procedure prints out an LCS of X and Y.

Proof: The above procedure traces through the table by following the arrows. When S[i, jl= “N”, z; = y;
is an element of the LCS, and the procedure will print it out. a



0w
! 0 0 0
0 1 1
N
> () 0 1l s
3 © I g
(R N
+ (B) | o8l s
5 D Nt
5 2 9
TN
6@ 95 2 3
7B R
5 92 3

Figure 1: The C and S tables computed by LCS-LENGTH on the sequence X =< A, B,C,B,D,A, B >
and Y =< B,D,C,A, B, A >.

(5) Running Time and Space Requirements. The LCS-LENGTH procedure runs in ©(mn) since each
table entry takes ©(1) time to compute, and it uses ©(mn) additional space in the form of the tables S and
C. The PRINT-LCS procedure runs in time O(m + n) since it decrements at least one of ¢ and j in each
recursive call. It uses no additional space beyond the inputs given. Thus, the total running time is ©(mn)
and the total space requirement is ©(mn).



