
CS 5800: Algorithms Virgil Pavlu
Homework 6: Dynamic Programming part II v1

Problems

1. (no credit). Using the class notes (without the book), finish the Optimal BST and
completely write the solution (including the DP recipe elements 1,2A,2B,3,4,5). Then
compare your writeup with the book chapter.

2. Jars on a ladder problem. Given a ladder of n rungs and k identical glass jars, one
has to design an experiment of dropping jars from certain rungs, in order to find the
highest rung (HS) on the ladder from which a jar doesn’t break if dropped.

Idea: With only one jar (k=1), we can’t risk breaking the jar without getting an answer.
So we start from the lowest rung on the ladder, and move up. When the jar breaks, the
previous rung is the answer; if we are unlucky, we have to do all n rungs, thus n trials.
Now lets think of k=log(n): with log(n) or more jars, we have enough jars to do binary
search, even if jars are broken at every rung. So in this case we need log(n) trials.
Note that we can’t do binary search with less than log(n) jars, as we risk breaking all
jars before arriving at an answer in the worst case.

Your task is to calculate q = MinT (n, k)= the minimum number of dropping trials
any such experiment has to make, to solve the problem even in the worst/unluckiest
case (i.e., not running out of jars to drop before arriving at an answer). MinT stands
for Minumum number of Trials.

A(5 points). Explain the optimal solution structure and write a recursion forMinT (n, k).

B(5 points). Write the alternative/dual recursion for MaxR(k, q) = the Highest
Ladder Size n doable with k jars and maximum q trials. Explain how MinT (n, k) can
be computed from the table MaxR(k, q). MaxR stands for the Maximum number of
Rungs.

C(10 points). For one of these two recursions (not both, take your pick) write the
bottom-up non-recursive computation pseudocode. Hint: the recursion MinT (n, k) is
a bit more difficult and takes more computation steps, but once the table is computed,
the rest is easier on points E-F below. The recursion in MaxR(q, k) is perhaps easier,
but trickier afterwards: make sure you compute all cells necessary to get MinT (n, k)—
see point B.

D(10 points). Redo the computation this time top-down recursive, using memoiza-
tion.

E(10 points). Trace the solution. While computing bottom-up, use an auxiliary
structure that can be used to determine the optimal sequence of drops for a given
input n, k. The procedure TRACE(n, k) should output the ladder rungs to drop jars,
considering the dynamic outcomes of previous drops. Hint: its recursive. Somewhere
in the procedure there should be an if statement like “if the trial at rung x breaks the
jar... else ...”

1

F(extra credit, 20 points). Output the entire decision tree from part E) using
JSON to express the tree, for the following test cases : (n=9,k=2); (n=11, k=3);
(n=10000,k=9). Turn in your program that produces the optimum decision tree for
given n and k using JSON as described below. Turn in a zip folder that contains: (1)
all files required by your program (2) instructions how to run your program (3) the
three decision trees in files t-9-2.txt, t-11-3.txt and t-10000-9.txt (4) the answers to all
other questions of this homework.

To represent an algorithm, i.e., an experimental plan, for finding the highest safe rung
for fixed n,k, and q we use a restricted programming language that is powerful enough
to express what we need. We use the programming language of binary decision trees
which satisfy the rules of a binary search tree. The nodes represent questions such
as 7 (representing the question: does the jar break at rung 7?). The edges represent
yes/no answers. We use the following simple syntax for decision trees based on JSON.
The reason we use JSON notation is that you can get parsers from the web and it is
a widely used notation. A decision tree is either a leaf or a compound decision tree
represented by an array with exactly 3 elements.

// h = highest safe rung or leaf

{ "decision_tree" : [1,{"h":0},[2,{"h":1},[3,{"h":2},{"h":3}]]] }

The grammar and object structure would be in an EBNF-like notation:

DTH = "{" "\"decision_tree\"" ":" <dt> DT.

DT = Compound | Leaf.

Compound = "[" <q> int "," <yes> DT "," <no> DT "]".

Leaf = "{" "\"h\" " ":" <leaf> int "}".

This approach is useful for many algorithmic problems: define a simple computational
model in which to define the algorithm. The decision trees must satisfy certain rules
to be correct.

A decision tree t in DT for HSR(n,k,q) must satisfy the following properties:

(a) the BST (Binary Search Tree Property): For any left subtree: the root is one
larger than the largest node in the subtree and for any right subtree the root is
equal to the smallest (i.e., leftmost) node in the subtree.

(b) there are at most k yes from the root to any leaf.

(c) the longest root-leaf path has q edges.

(d) each rung 1..n-1 appears exactly once as internal node of the tree.

(e) each rung 0..n-1 appears exactly once as a leaf.

2

If all properties are satisfied, we say the predicate correct(t,n,k,q) holds. HSR(n,k,q)
returns a decision tree t so that correct(t,n,k,q).

To test your trees, you can download the JSON HSR-validator from the url:
https://github.com/czxttkl/ValidateJsonDecisionTree

G(extra credit, 20 points). Solve a variant of this problem for q = MinT(n,k) that
optimizes the average case instead of the worst case: now we are not concerned with
the worst case q, but with the average q. Will make the assumption that all cases are
equally likely (the probability of the answer being a particular rung is the same for all
rungs). You will have to redo points A,C,E specifically for this variant.

3. (20 pts) Problem 14-2. Hint: try to use the LCS problem as a procedure.

4. (30 pts) Exercise 14.4-6.

5. (Extra credit 20 pts) Suppose that you are the curator of a large zoo. You have just
received a grant of $m to purchase new animals at an auction you will be attending in
Africa. There will be an essentially unlimited supply of n different types of animals,
where each animal of type i has an associated cost ci. In order to obtain the best
possible selection of animals for your zoo, you have assigned a value vi to each animal
type, where vi may be quite different than ci. (For instance, even though panda bears
are quite rare and thus expensive, if your zoo already has quite a few panda bears,
you might associate a relatively low value to them.) Using a business model, you have
determined that the best selection of animals will correspond to that selection which
maximizes your perceived profit (total value minus total cost); in other words, you
wish to maximize the sum of the profits associated with the animals purchased.

Devise an efficient algorithm to select your purchases in this manner. You may assume
that m is a positive integer and that ci and vi are positive integers for all i. Be sure to
analyze the running time and space requirements of your algorithm.

6. (20 points) Problem 14-4.

7. (20 points) Problem 14-10. Assume that you invest a fixed amount d = 10, 000 every
year (i.e. you do not reinvest your profits).

3

