Greedy Algorithms

Week 5 Objectives

- Subproblem structure
- Greedy algorithm
- Mathematical induction application
- Greedy correctness

Subproblem Optimal Structure

- Divide and conquer - optimal subproblems
- divide PROBLEM into SUBPROBLEMS, solve SUBPROBLEMS
- combine results (conquer)
- critical/optimal structure: solution to the PROBLEM must include solutions to subproblems (or subproblem solutions must be combinable into the overall solution)
- PROBLEM $=\{$ DECISION/MERGING + SUBPROBLEMS $\}$

Optimal Structure - GREEDY

- PROBLEM $=$ \{DECISION/MERGING + SUBPROBLEMS $\}$
- GREEDY CHOICE: can make the DECISION without solving the SUBPROBLEMS
- the GREEDY CHOICE looks good at the moment, and it is globally correct
- example : pick the smallest value
- solve SUBPROBLEMS after decision is made
- GREEDY CHOICE: after making the DECISION, very few SUBPROBLEMS to solve (fypically one)

Optimal Structure - NON GREEDY

- Cannot make a choice decision/CHOICE without solving subproblems first
- Might have to solve many subproblems before deciding which results to merge.

Ex: Fractional Knapsack

- fractional goods (coffee, tea, flour, maize...) sold by weight
- supply (weights/quantities available) w1,w2,w3,w4...
- values (totals) v1,v2,v3,v4...
- ex: coffee wl=10pounds; coffee overall value vl=\$40
- knapsack capacity (weight) = W
- task : fill the knapsack to maximize value

Ex: Fractional Knapsack

- naive approaches may lead to a bad solution
- choose by biggest value - tea first
- choose by smallest quantity - flour first
- choose by quality is correct- coffee first
- $q_{\text {coffee }}=30 / 25 ; q_{\text {tea }}=40 / 50 ; q_{\text {flour }}=15 / 20 ; q_{\text {maize }}=10 / 70$

Ex: Fractional Knapsack

- solution: compute item quality (value/weight)
- $q_{i}=v_{i} / w_{i}$
- sort items by quality q1>q2>q3>...
- LOOP
- take as much as possible of the best quality
- if knapsack full, STOP
- if stock depletes (knapsack not full), move on to the next quality item, repeat
- END LOOP

Fractional Knapsack - greedy proof

proving now that the greedy choice is optimal

- meaning that the solution includes the greedy choice.
- greedy choice: take as much as possible form best quality (below item with quality q1)
- items available sorted by quality: q1>q2>q3>..., greedy choice is to take as much as possible of item 1 , that is quantity $w 1$

contradiction/exchange argument

- suppose that best solution doesnt include the greedy choice: SOL=($\mathrm{rl}, \mathrm{r} 2, r 3, \ldots$.$) quantities chosen of these items, and that \mathrm{rl}$ is not the max quantity available (of max quality item), $\mathrm{rl}<\mathrm{wl}$
- create a new solution SOL' from SOL by taking more of item 1 and less of the others
- $\quad e=m i n(r 2, w 1-r 1) ; S O L^{\prime}=(r 1+e, r 2-e, r 3, r 4 \ldots)$
- value(SOL') - value $(S O L)=((q 1-q 2)>0$ which means $S O L$ is better
than SOL: CONTRADICTING that SOL is best solution

Fractional Knapsack - greedy proof

- english explanation:
- say coffee is the highest quality,
- the greedy choice is to take max possible of coffee which is wl=1Opounds
- contradiction/exchange argument
- suppose that best solution doesnt include the greedy choice: SOL=(8pounds coffee, r2 of tea, r3 flours,...) rl=8pounds<wl=10pounds
- create a new solution SOL' from SOL by taking out 2pounds of tea and adding 2 pounds of coffee; $e=2$ pounds
- e=min(r2,wl-r1); SOL'=(r1+e,r2-e,r3,r4...)
- value(SOL') - value(SOL) =e(q1-q2)>0 which means SOL' is better

Activity Selection Problem

- S=set of n activities given by start and finish time $a_{i}=\left(s_{i}, f_{i}\right) i=1: n, f_{i}>s_{i}$
- Determine a selection that gives a maximal set
- select maximum number of activities
- no overlapping activities can be selected

Activity Selection Problem

- Greedy solution: sort activities by their finishing time
- fl<f2<f3...
- select the activity that finishes first $a=\left(s_{1}, f_{1}\right)$
- discard all overlapping activities with selected one : discard all activities with starting time $\mathrm{s}_{\mathrm{i}}<\mathrm{f}_{1}$
- repeat
- intuition: activity that finishes first is the one that leaves as much time as possible for other activities

Activity Selection Problem

- Proof of greedy choice optimality
- activities sorted by finishing time f1<f2<f3...
- greedy choice pick the activity a with earliest finishing time f1
- want to show that activity a is included in one of the best solutions (could be more than one optimal selection of activities)
- Exchange argument
- SOL a best solution.
- if SOL includes a, done.
- suppose the best solution does not select $a, S O L=(b, c, d, \ldots)$ sorted by finishing time $f_{b}<f_{c}<f_{d}$. Then create a new solution that replaces b with a $S O L=(a, c, d, \ldots .$.$) .$
- This solution SOL is valid, a and c dont overlap: $s_{c}>f_{b}>f_{a}$
- SOL' is as good as SOL (same number of activities) and includes a

Mathematical Induction

- property $P(n)=\{T R U E$, FALSE $\}$ for $n=i n t e g e r$
- want to prove $P(n)=$ TRUE for all n
- Base cases: $P(n)=T R U E$ for any $n \leqslant n_{0}$
- Induction Step: prove $P(n+1)$ for next value $n+1$
- if $P(t)=$ TRUE for certain values of $t<n+1$ then prove by mathematical derivation/arguments than $P(n+1)=T R U E$
- Then $P(n)=$ TRUE for all n

Mathematical Induction- Example

- $P(n): 1+2+3+\ldots+n=n(n+1) / 2$
- base case $n=1: 1=1^{*} 2 / 2$ - correct
- induction step : lets prove $P(n+1)$ assuming $P(n)$
- $P(n+1): 1+2+3+\ldots+n+(n+1)=(n+1)(n+2) / 2$.
- assuming P(n) TRUE: $1+2+3 \ldots+(n+1)=[1+2+3+\ldots+n]+(n+1)=n(n+1) / 2+$
- thus $P(n)$ TRUE for all $n>0$

Activity Selection - Induction Argument

- $s(a)=$ start time; $f(a)=$ finish time
- SOL=\{a, $\left.a_{2}, \ldots, a_{k}\right\}$ greedy solution
- chosen by earliest finishing time
- OPT $=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. optimal solution, sorted by finishing time; optimal means m max possible
- prove by induction that $f\left(a_{i}\right) \leqslant f\left(b_{i}\right)$ for all $i=1: k$
- base case $f\left(a_{1}\right) \leqslant f\left(b_{1}\right)$ because $f\left(a_{1}\right)$ smallest in the whole set
- inductive step: assume $f\left(a_{n-1}\right) \leqslant f\left(b_{n-1}\right)$. Then b_{n} is a valid choice for greedy at step n because $f\left(a_{n-1}\right) \leqslant f\left(b_{n-1}\right) \leqslant s\left(b_{n}\right)$. Since greedy picked a_{n} over b_{n}, it must be because an fits the greedy criteria $f\left(a_{n}\right) \leqslant f\left(b_{n}\right)$
so $f\left(a_{k}\right) \leqslant f\left(b_{k}\right)$. If $m>k$ then any b_{k+1} item would also fit into greedy solution (CONTRADICTION) thus $m=k$

$$
\begin{array}{ccc}
k & s_{k} & f_{k} \\
\hline 0 & - & 0
\end{array}
$$

114

Recursive-Activity-SELECTOR $(s, f, 0,11)$

235

306

$5 \quad 3 \quad 9$
$6 \quad 5 \quad 9$
$7 \quad 6 \quad 10$
$8 \quad 8$
11

Recursive-Activity-Selector (s, f, k, n)
$1 \quad m=k+1$
while $m \leq n$ and $s[m]<f[k] \quad / /$ find $m=m+1$
if $m \leq n$
return $\left\{a_{m}\right\} \cup$ Recursive-Activity-Selector (s, f, m, n)

