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ABSTRACT

Geometric Algorithms for Intervals and Related Problems

by

Shimin Li, Doctor of Philosophy

Utah State University, 2018

Major Professor: Haitao Wang, Ph.D.
Department: Computer Science

In this dissertation, we study several problems related to intervals and develop effi-

cient algorithms for them. Interval problems have many applications in reality because

many objects, values, and ranges are intervals in nature, such as time intervals, dis-

tances, line segments, probabilities, etc. Problems on intervals are gaining attention

also because intervals are among the most basic geometric objects, and for the same

reason, computational geometry techniques find useful for attacking these problems.

Specifically, the problems we study in this dissertation includes the following: balanced

splitting on weighted intervals, minimizing the movements of spreading points, dispers-

ing points on intervals, multiple barrier coverage, and separating overlapped intervals

on a line. We develop efficient algorithms for these problems and our results are either

first known solutions or improve the previous work.

In the problem of balanced splitting on weighted intervals, we are given a set of n

intervals with non-negative weights on a line and an integer k ≥ 1. The goal is to find

k points to partition the line into k + 1 segments, such that the maximum sum of the

interval weights in these segments is minimized. We give an algorithm that solves the

problem in O(n logn) time. Our second problem is on minimizing the movements of

spreading points. In this problem, we are given a set of points on a line and we want

to spread the points on the line so that the minimum pairwise distance of all points is

no smaller than a given value δ. The objective is to minimize the maximum moving

distance of all points. We solve the problem in O(n) time. We also solve the cycle

version of the problem in linear time. For the third problem, we are given a set of n
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non-overlapping intervals on a line and we want to place a point on each interval so that

the minimum pairwise distance of all points are maximized. We present an O(n) time

algorithm for the problem. We also solve its cycle version in O(n) time. The fourth

problem is on multiple barrier coverage, where we are given n sensors in the plane and

m barriers (represented by intervals) on a line. The goal is to move the sensors onto the

line to cover all the barriers such that the maximum moving distance of all sensors is

minimized. Our algorithm for the problem runs in O(n2 log n log log n+nm logm) time.

In a special case where the sensors are all initially on the line, our algorithm runs in

O((n+m) log(n+m)) time. Finally, for the problem of separating overlapped intervals,

we have a set of n intervals (possibly overlapped) on a line and we want to move them

along the line so that no two intervals properly intersect. The objective is to minimize

the maximum moving distance of all intervals. We propose an O(n logn) time algorithm

for the problem.

The algorithms and techniques developed in this dissertation are quite basic and

fundamental, so they might be useful for solving other related problems on intervals as

well.

(164 pages)
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PUBLIC ABSTRACT

Geometric Algorithms for Intervals and Related Problems

Shimin Li

In this dissertation, we study several problems related to intervals and develop effi-

cient algorithms for them. Interval problems have many applications in reality because

many objects, values, and ranges are intervals in nature, such as time intervals, dis-

tances, line segments, probabilities, etc. Problems on intervals are gaining attention

also because intervals are among the most basic geometric objects, and for the same

reason, computational geometry techniques find useful for attacking these problems.

Specifically, the problems we study in this dissertation includes the following: balanced

splitting on weighted intervals, minimizing the movements of spreading points, dispers-

ing points on intervals, multiple barrier coverage, and separating overlapped intervals

on a line. We develop efficient algorithms for these problems and our results are either

first known solutions or improve the previous work.

In the problem of balanced splitting on weighted intervals, we are given a set of n

intervals with non-negative weights on a line and an integer k ≥ 1. The goal is to find

k points to partition the line into k + 1 segments, such that the maximum sum of the

interval weights in these segments is minimized. We give an algorithm that solves the

problem in O(n logn) time. Our second problem is on minimizing the movements of

spreading points. In this problem, we are given a set of points on a line and we want

to spread the points on the line so that the minimum pairwise distance of all points is

no smaller than a given value δ. The objective is to minimize the maximum moving

distance of all points. We solve the problem in O(n) time. We also solve the cycle

version of the problem in linear time. For the third problem, we are given a set of n

non-overlapping intervals on a line and we want to place a point on each interval so that

the minimum pairwise distance of all points are maximized. We present an O(n) time

algorithm for the problem. We also solve its cycle version in O(n) time. The fourth

problem is on multiple barrier coverage, where we are given n sensors in the plane and
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m barriers (represented by intervals) on a line. The goal is to move the sensors onto the

line to cover all the barriers such that the maximum moving distance of all sensors is

minimized. Our algorithm for the problem runs in O(n2 log n log log n+nm logm) time.

In a special case where the sensors are all initially on the line, our algorithm runs in

O((n+m) log(n+m)) time. Finally, for the problem of separating overlapped intervals,

we have a set of n intervals (possibly overlapped) on a line and we want to move them

along the line so that no two intervals properly intersect. The objective is to minimize

the maximum moving distance of all intervals. We propose an O(n logn) time algorithm

for the problem.

The algorithms and techniques developed in this dissertation are quite basic and

fundamental, so they might be useful for solving other related problems on intervals as

well.
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CHAPTER 1

INTRODUCTION

In this dissertation, we study several problems related to intervals and develop effi-

cient algorithms for them. Interval problems have many applications in reality because

many objects, values, and ranges are intervals in nature, such as time intervals, dis-

tances, line segments, probabilities, etc. Problems on intervals are gaining attention

also because intervals are among the most basic geometric objects, and for the same

reason, computational geometry techniques find useful for attacking these problems.

In the rest of this chapter, we first briefly introduce the field of computational

geometry and the topic of intervals, and we then present an overview on the problems

we study in this dissertation. Finally, we will give an outline of the dissertation.

1.1 Computational Geometry

Computational geometry is a branch of computer science focusing on algorithm

design, analysis, and implementation for solving geometric problems. The observations

on the properties of the geometric objects in those problems play a critical role in the

process of developing algorithms. The active research areas in computational geometry

include both purely theoretical problems and problems arose from applications in the

real world. Some important applications of computational geometry include computer

graphics, geographic information systems, computer-aided engineering, computer vision,

robotics, data analysis, facility location, and others. Refer to [1–4] for several great books

on computational geometry.

1.2 Problems on Intervals

Certain objects and values in real applications can be treated as geometric in-

tervals, such as time intervals, line segments, distances, probabilities, etc. Therefore,

computational geometry techniques may be used to solve problems on intervals. Interval
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problems are in general very basic and the topic has been studied extensively in computa-

tional geometry and other fields. Algorithms for interval problems have many important

applications, such as scheduling [5–11], and mobile sensor barrier coverage [12–17].

1.3 An Overview of Our Problems

In this section, we give an overview on the problems we study in this dissertation.

The details can be found in subsequent chapters.

1.3.1 Balanced Splitting on Weighted Intervals

This problem is motivated from load balancing in temporal and multi-version

database systems. The problem can be formulated as follows. Let I be a set of n

intervals on a line L, where each interval has a non-negative weight. For any given in-

teger k ≥ 1, we want to find k points on L to partition L into k+1 segments, such that

the maximum cost of these segments is minimized, where the cost of each segment s is

defined to be the sum of the weights of the intervals in I that intersect s. Previously, an

O(n logn) time algorithm was given for a special case where the weights of all intervals

are the same. We present an O(n logn) time algorithm for the general case where the

intervals may have different weights.

Our results on this problem have been published in a journal [18]. Refer to Chapter 2

for the details.

1.3.2 Minimizing the Movements of Spreading Points

Given a set P of n points sorted on a line L and a distance value δ > 0, the problem

is to move the points of P along L such that the distance of any two points of P is at

least δ and the maximum movement of all points of P is minimized. Using the greedy

strategy, we present an O(n) time algorithm for this problem. Further, we extend our

algorithm to solve (in O(n) time) the cycle version of the problem where all points of P

are on a cycle C. Previously, only weakly polynomial-time algorithms were known for

these problems based on linear programming (of n variables and Θ(n) constraints). In

addition, we present a linear-time algorithm for another similar facility-location moving

problem, which also improves the previous work.
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Our results on this problem have been published in a conference [19]. Refer to

Chapter 3 for the details.

1.3.3 Dispersing Points on Intervals

In certain applications, the movements of the points may be restricted. We consider

a variation of the previous problem by adding some constraints on the movement of

points. Given n pairwise disjoint intervals sorted on a line, we want to find a point in

each interval such that the minimum pairwise distance of these points is maximized. We

present a linear time algorithm for the problem. Further, we also solve in linear time

the cycle version of the problem where the intervals are given on a cycle.

Our results on this problem have been published in a conference [20] and a jour-

nal [21]. Refer to Chapter 4 for the details.

1.3.4 Multiple Barrier Coverage

This problem is motivated from mobile sensor barrier coverage in wireless sensor

networks. Given a set B of m line segments (called “barriers”) on a horizontal line L

and another set S of n horizontal line segments of the same length in the plane, we

want to move all segments of S to L so that their union covers all barriers and the

maximum movement of all segments of S is minimized. Previously, an O(n3 log n)-time

algorithm was given for the problem but only for the case m = 1. In this dissertation,

we propose an O(n2 log n log log n + nm logm)-time algorithm for any value m, which

improves the previous work even for m = 1. We then consider a line-constrained version

of the problem in which the segments of S are all initially on the line L. Previously, an

O(n logn)-time algorithm was known for the case m = 1. We present an algorithm of

O((n+m) log(n+m)) time for any m, which generalizes the previous work.

Our results on this problem have been published in a conference [22]. Refer to

Chapter 5 for the details.

1.3.5 Separating Overlapped Intervals on a Line

This is a general case of the spreading points problem on a line. Given n intervals

on a line ℓ, we consider the problem of moving these intervals on ℓ such that after the
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movement no two intervals overlap and the maximum moving distance of the intervals

is minimized. The difficulty for solving the problem lies in determining the order of the

intervals in an optimal solution. By interesting observations, we show that it is sufficient

to consider at most n “candidate” lists of ordered intervals. Further, although explicitly

maintaining these lists takes Ω(n2) time and space, by more observations and a pruning

technique, we present an algorithm that can compute an optimal solution in O(n logn)

time and O(n) space. We also prove an Ω(n log n) time lower bound for solving the

problem, which implies the optimality of our algorithm.

Our results on this problem has been submitted to a conference and is still under

review. Refer to Chapter 6 for the details.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows. We present our algorithm for

the balanced splitting on weighted intervals problem in Chapter 2. The algorithms for

minimizing the movements of spreading points are discussed in Chapter 3. In Chapter 4,

we give the results on dispersing points on intervals. Our algorithms for covering multiple

barriers are described in Chapter 5. Chapter 6 presents the algorithm for the problem

of separating overlapped intervals. Finally, the future work is discussed in Chapter 7.
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CHAPTER 2

BALANCED SPLITTING ON WEIGHTED INTERVALS

2.1 Introduction

We consider the problem of splitting weighted intervals in a balanced way in this

chapter. The results in this chapter have been published in a journal [18].

2.1.1 Problem Definitions and Our Results

Let I be a set of n intervals on a line L, where each interval has a non-negative

weight. Given an integer k ≥ 1, we want to find k points on L to partition L into k+ 1

segments, such that the maximum cost of these segments is minimized, where the cost of

each segment s is the sum of the weights of the intervals in I that “properly” intersect

s (i.e., the intersection contains more than one point). The formal definition is given

below.

Let I = {I1, I2, . . . , In} be a set of n intervals on a line L, and each interval Ii has a

weight wi ≥ 0. For simplicity, we assume L is the x-axis, and depending on the context,

any real value x ∈ R is also considered as the point on L with coordinate x, and vice

versa. Each interval Ii is represented as [li, ri] with li < ri, where li is its left endpoint

and ri is its right endpoint. Note that we consider each Ii as a closed interval including

both endpoints.

For an integer k ≥ 1, consider any k points x1, x2, . . . , xk on L with x1 < x2 < · · · <

xk, and we refer to these k points as splitters. For simplicity of discussion, let x0 = −∞

and xk+1 = +∞. The above k splitters partition the line L into k + 1 open segments:

si = (xi−1, xi) for i = 1, 2, . . . , k + 1. For each segment si, we define its cost C(si) as

the sum of the weights of the intervals of I that intersect si (e.g., see Fig. 2.1). Note

that since each si is an open segment (i.e., it does not contain its two endpoints) and

each interval of I is closed, if an interval Ii intersects si, then their intersection contains
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x1 x3x2

l1 r1

l2 r2

l3
r3

l4 r4

l5
r5

l6
r6w1

w2

w3

w5

w4w6

C(s1) = w1 + w5 C(s3) = w2 + w3 + w4
C(s2) = w2 + w4 + w5 + w6 C(s4) = w3

x
s1 s2 s3 s4

Figure 2.1. Illustrating an example of the interval splitting problem for k = 3: Finding three points
x1 < x2 < x3 such that the maximum value of {C(s1), C(s2), C(s3), C(s4)} is minimized.

more than one point.

The interval splitting problem is to find k points/splitters x1, x2, . . . , xk to partition

L into k+1 open segments (as defined above) such that the maximum cost of all segments

(i.e., maxk+1
i=1 C(si)) is minimized (e.g., see Fig. 2.1).

Previously, Le et al. [23] gave an O(n logn) time algorithm for a special case of

this problem where wi = 1 for each 1 ≤ i ≤ n. Their algorithm, which is based on

the observation that the maximum cost in any optimal solution must be an integer in

[1, n], does not work for our more general problem (see Section 2.4 for more discussions).

In this chapter, by developing new algorithmic techniques, we solve the general case in

O(n logn) time.

2.1.2 Applications and Related Work

As discussed in [23], the interval splitting problem has applications in load balancing

for storing and processing data in temporal and multi-version databases. If we consider

the x-axis L as the time, each interval represents a time period during which an object

in databases is associated with the same value. Since an object may be associated with

different values during different time periods, the task is to store and process a large

number of intervals in a distributed store. To this end, one can split the intervals into

“buckets” (corresponding to the segments of L in our problem) such that intervals from

the same buckets can be stored in one node and processed by one core from a cluster

of machines. One challenging problem is to achieve load-balancing in this process, i.e.,

no single node and core should store and process too many intervals. This is exactly

(the special case of) our interval splitting problem. If each object has a weight, which

may represent the difficulty or importance for storing and processing the object (and
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its corresponding intervals), then the problem becomes the general case of the interval

splitting problem. Refer to [23] and the references therein for more discussions on

temporal and multi-version databases.

The interval splitting problem is related to the classical interval scheduling prob-

lems. In the interval scheduling, each interval represents the time period during which a

task needs to be executed. A subset of intervals is compatible if no two intervals overlap.

One basic problem is to find a largest compatible set, and the problem can be solved by

a simple greedy algorithm as shown in [7]. There are many other variations of problem;

e.g., see [7, 24–27].

Since problems related to intervals are normally very fundamental, there are many

powerful tools dealing with these problems, such as interval graphs [28], interval trees

[29], segment trees [1], etc. Unfortunately, none of these techniques seems useful for

solving our interval splitting problem.

As discussed in [23], the interval splitting problem is also related to many other

problems, e.g., finding optimal splitters for a set of one dimensional points [30], the

array partitioning problems [31, 32], etc.

2.1.3 Our Approach

We observe that there must exist an optimal solution in which every splitter is at

the endpoint of an interval in I. This observation implies that the objective value (i.e.,

the maximum cost of all segments si) of the optimal solution must be determined by two

interval endpoints along with −∞ and +∞. This immediately gives Θ(n2) candidate

values for the optimal objective value since there are 2n interval endpoints. We can

easily find the optimal objective value from these candidate values if we can solve the

decision version of the problem: Given any value c, determine whether we can find k

splitters such that the maximum cost of all segments si is no more than c.

Assume the 2n interval endpoints have already been sorted. We first present a

greedy algorithm that can solve the decision version in O(n) time. Then we use this

algorithm to find the optimal objective value from the above candidate values. One

difficulty is that since there are Θ(n2) candidate values, computing them needs Ω(n2)

time. To reduce the running time, we manage to implicitly organize all the candidate
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values in O(n) arrays and each array contains O(n) elements in sorted order, and further,

we give a data structure that can compute any candidate value in O(1) time after O(n)

time preprocessing. Using this data structure and our decision algorithm, we apply a

technique, called binary search on sorted arrays [33], to compute the optimal objective

value in the above O(n) sorted arrays. These efforts together lead to an O(n logn) time

algorithm for solving the interval splitting problem.

The rest of this chapter is organized as follows. We introduce some notations,

definitions, and observations in Section 2.2. The algorithm for the decision problem is

given in Section 2.3. In Section 2.4, we solve the interval splitting problem, which is

referred to as the optimization problem. Section 2.5 concludes this chapter.

2.2 Preliminaries

For ease of discussion, we make a general position assumption that no two intervals

of I share the same endpoint, and our techniques can be easily adapted to the degenerate

case.

We use an open segment to refer to a segment on L that does not include its

endpoints. For any open segment s, let I(s) denote the set of intervals of I intersecting

s, and let C(s) denote the sum of the weights of the intervals in I(s) and we also call

C(s) the cost of s. For any point x on L, we let I(x) denote the set of intervals of I

each of which contains x in its interior, and let C(x) denote the sum of the weights of

the intervals in I(x).

Let X = {x1, x2, . . . , xt} be a set of points/splitters on L with x1 < x2 < · · · < xt,

where t may or may not be equal to k. These splitters partition L into t + 1 open

segments, and we denote by C(X) the maximum cost of these open segments and C(X)

is referred to as the cost of X. We use Copt to denote the cost of the set of splitters in

any optimal solution of the interval splitter problem (for k splitters), and Copt is also

referred to as the optimal objective value.

Let E denote the set of all 2n endpoints of the intervals of I. Due to our general

position assumption, no two points of E have the same position. Let e1, e2, . . . , e2n be

the list of the points of E sorted on L from left to right.

We first prove Lemma 2.2.1. A similar observation has been made by Le et al. [23]
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xei ei+1

sl sr

Figure 2.2. Illustrating an example for the proof of Lemma 2.2.1: There are four splitters shown
with the (red) dashed vertical segments, and the splitter x is in (ei, ei+1). sl and sr are the two open
segments bounded by x.

for the special case where the weights of all intervals of I are 1, and here we extend

their result to the general case.

Lemma 2.2.1. For the interval splitting problem, there must exist an optimal solution in

which every splitter is at the endpoint of an interval in I (i.e., every splitter is in E).

Proof. Consider any optimal solution and assume X = {x1, x2, . . . , xk} are the set of

splitters sorted on L from left to right. We assume no two splitters in X have the same

position since otherwise we could consider splitters at the same position as a single

splitter.

If X ⊆ E, then we are done with the proof. Otherwise, consider any splitter x in X

but not in E (i.e., x ∈ X \ E). For ease of discussions, we assume x ∈ (e1, e2n). Hence,

there is some i with 1 ≤ i ≤ k− 1 such that x ∈ (ei, ei+1). If the open interval (ei, ei+1)

contains some other splitters in X, then among such splitters, we let x represent the

one closest to ei. Hence, there is no splitter in the interval (ei, x) (e.g., see Fig. 2.2).

An easy observation is that if we move x to ei, the value C(X) does not increase.

Since X is an optimal solution, we further conclude C(X) does not change and we

have obtained another optimal solution after x moves to ei. Notice that in the new

optimal solution, the size |X \ E| become one less than before. If in the new optimal

solution the size |X \ E| is zero, then we are done with the proof (i.e., we have found

an optimal solution in which all splitters are in E); otherwise, we repeatedly apply the

above “moving technique” until |X \ E| becomes zero. The lemma thus follows.

For any two points p and q on L, let pq be the open line segment whose endpoints

are p and q (but pq does not include its endpoints). Recall that I(pq) is the set of
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intervals of I that intersect pq, and C(pq) is the sum of the weights of the intervals in

I(pq).

From now on, we let E also include the two infinite points −∞ and +∞ on L. Let

SE consists of all values C(pq) for any two points p and q in E. Lemma 2.2.1 implies

the following corollary.

Corollary 2.2.2. Copt ∈ SE.

Proof. By Lemma 2.2.1, there is an optimal solution in which the set X of splitters is

a subset of E. Hence, Copt = C(X). The splitters of X partition L into open segments

and there must be a segment si such that C(X) = C(si). Clearly, both endpoints of si

are in E. By the definition of SE , C(si) = Copt must be in SE .

For any value c, if there exists a set X of at most k splitters such that C(X) ≤ c,

then we call c a feasible value and call X a feasible splitter set with respect to c. For

any given value c, the decision version of our interval splitting problem is to determine

whether c is a feasible value, and if yes, find a feasible splitter set. For differentiation,

we refer to our original interval splitting problem as the optimization version.

In the sequel, we will first present our algorithm for the decision problem in Section

2.3 and then solve the optimization problem in Section 2.4.

2.3 The Decision Problem

In this section, we solve the decision version of the problem. Our algorithm runs

in O(n) time after the points in E are sorted. Note that Le et al. [23] also gave a linear

time algorithm (after the points in E are sorted), but their algorithm only works for

the special case. Our algorithm solves the general case. In the following, we assume the

points of E have been sorted.

Our algorithm uses the greedy approach. Let c be any given value. If c is a feasible

value, the algorithm will find from left to right at most k splitters x1, x2, . . ., that are

feasible for c; otherwise it will report that c is not feasible.

Recall that for any point x ∈ L, I(x) is the set of intervals of I each of which

contains x in its interior, and C(x) is the sum of the weights of the intervals in I(x).
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We first give the following lemma, which will be useful later for proving the correctness

of our algorithm.

Lemma 2.3.1. If there is a point q on L with C(q) > c, then c is not a feasible value.

Proof. Assume to the contrary that c is a feasible value. Let X = {x1, x2, . . . , xk} be a

feasible splitter set. Thus we have C(X) ≤ c. Let x0 = −∞ and xk+1 = +∞. Assume

q is in [xi−1, xi) for some index i. Let si be the open interval (xi−1, xi). Depending on

whether q = xi−1, there are two cases.

1. If q 6= xi−1, then q ∈ si. Based on their definitions, we have I(q) ⊆ I(si),

and thus C(q) ≤ C(si). Note that C(X) ≥ C(si). Since C(q) > c, we obtain

C(X) ≥ C(si) ≥ C(q) > c, which contradicts with that C(X) ≤ c.

2. If q = xi−1, then q is not in si. Let q
′ be a point to the right of q and infinitesimally

close to q. Clearly, q′ ∈ si. Further, it always holds that C(q′) ≥ C(q). Conse-

quently, we obtain C(X) ≥ C(si) ≥ C(q′) ≥ C(q) > c, which again contradicts

with C(X) ≤ c.

The lemma is thus proved.

We first describe the main idea of our algorithm and then flesh out the details. The

algorithm starts with setting x0 to −∞ (note that x0 is not a splitter). Assume xi−1 has

already been computed for any 1 ≤ i ≤ k. Our algorithm sweeps a point x from xi−1 to

the right as far as possible to find xi. For any x > xi−1, recall that C(xi−1x) is the sum

of the weights of the intervals in I that intersect the open segment xi−1x = (xi−1, x).

During the rightward sweeping of x, as long as C(xi−1x) ≤ c, we continue to move x

rightwards. But if moving x rightwards will make the value C(xi−1x) larger than c, then

we stop and put the next splitter xi at the current position of x; if the above situation

happens when x = xi−1, then we terminate the algorithm and conclude that c is not

a feasible solution. If x has moved to the right of all intervals of I, then we terminate

the algorithm and conclude that c is feasible value. In addition, if the algorithm has

already put k splitters (i.e., k = i− 1) but still need to put the next splitter xk+1, then

we conclude that c is not a feasible solution and terminate the algorithm. The details

on how to implement the algorithm are given below.
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Our algorithm will maintain an invariant that each splitter (i.e., xi for 1 ≤ i ≤ k)

computed by the algorithm is at the left endpoint of an interval of I. Assume xi−1 has

just been computed and x is at xi−1. In order to compute the value C(xi−1x) during

the rightward sweeping of x, we need to know the value C(xi−1). We assume C(xi−1)

is already known when x is at xi−1. Initially when i = 1, we set xi−1 = −∞ and

C(−∞) = 0. Further, during the sweeping of x, we will maintain the value C(x), which

will be used to compute C(xi) once the next splitter xi is determined. We will show that

after xi is determined, xi is at the left endpoint of an interval and C(xi) is computed

correctly.

During the sweeping of x, an event happens when x encounters a point of E.

Suppose we have just computed xi−1. For the case where i ≥ 2, before we sweep x

rightwards, we first process this beginning event for x = xi−1 as follows.

For any interval I ∈ I, we use w(I) to denote its weight.

Since i ≥ 2, by our algorithm invariant, xi−1 is the left endpoint of an interval,

denoted by I. Also recall that C(xi−1) is known. If C(xi−1) + w(I) > c, then we

conclude that c is not a feasible solution and terminate the algorithm. The correctness

is proved in the following lemma.

Lemma 2.3.2. If C(xi−1) + w(I) > c, then c is not a feasible value.

Proof. Consider any point q to the right of xi−1 and infinitesimally close to xi−1. Since

xi−1 is the left endpoint of I, it holds that I(q) = I(xi+1) ∪ {I}, and thus, C(q) =

C(xi−1)+w(I). It follows that C(q) > c. By Lemma 2.3.1, c is not a feasible value.

If C(xi−1) + w(I) ≤ c, then we are “safe” to move x rightwards. We also set

C(xi−1x) = C(x) = C(xi−1) + w(I). One can verify that the above values are correct

when x is moving rightwards before the next event happens. This finishes our processing

on the beginning event for x = xi−1.

Below, we discuss the general events after the beginning event. Suppose the next

event is at a point e in E (with xi−1 < e < +∞) and assume that C(x) and C(xi−1x)

have been correctly maintained for x right before x arrives at e. We process the event

e as follows. Let I be the interval for which e is its endpoint. Depending on whether e

is the right or left endpoint of I, there are two cases.
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1. If e is the right endpoint of I, then we update C(x) by setting C(x) = C(x)−w(I)

and continue to move x rightwards and proceed on the next event after e. Note

that we do not need to change the value C(xi−1x).

If e is the rightmost point of E, then we terminate the algorithm and conclude

that c is a feasible value, and the set of i − 1 splitters x1, x2, . . . , xi−1 that have

been computed so far is a feasible splitter set.

2. If e is the left endpoint of I, then we first check whether C(xi−1x) + w(I) ≤ c. If

yes, we set C(x) = C(x) + w(I) and C(xi−1x) = C(xi−1x) + w(I), and continue

to move x rightward and proceed on the next event after e.

If C(xi−1x) +w(I) > c, we need to put the next splitter xi at e. But if i = k + 1,

then we terminate the algorithm and conclude that c is not a feasible value because

we are only allowed to have k splitters. If i < k+1, then we let xi = e and proceed

on finding the next splitter xi+1. Note that xi is at the left endpoint of I, which

maintains the algorithm invariant. Also, it is easy to see that C(xi) = C(x).

This finishes the description of our algorithm. For the running time, since the points

of E have already been sorted, after processing each event, we can find the next event

point in constant time. Also, processing each event takes only constant time. Hence, the

total time of the algorithm is O(n). The correctness of the algorithm can be seen from

Lemma 2.3.2 as well as the fact that our algorithm always tries to push the splitters

rightward on L as far as possible.

As a summary, we have the following result.

Theorem 2.3.3. Suppose the endpoints of all intervals in I have been sorted. The decision

version of the interval splitting problem can be solved in O(n) time.

2.4 The Optimization Problem

In this section, we solve the optimization version of the interval splitting problem,

with the help of Corollary 2.2.2 and Theorem 2.3.3. In the following, we refer to our

algorithm for the decision problem in Theorem 2.3.3 as the decision algorithm.

Recall that Copt is the optimal objective value. If we know the value Copt, then we

can compute an optimal solution by using our decision algorithm. Specifically, we apply
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our decision algorithm on c = Copt, and the algorithm will find a feasible splitter set,

which is an optimal solution. Hence, to solve the optimization problem, the key is to

compute Copt, which is our focus below.

Note that in the special case where the weight of each interval of I is 1, an easy

observation is that Copt must be an integer in [1, n]. Thus, using the decision algorithm,

we can easily compute Copt in O(n logn) time by doing binary search on the integer

sequence from 1 to n. This is exactly the approach used in [23] (by using their own

decision algorithm, which works only for the special case). In our general problem,

however, this approach does not work because Copt may not be an integer. We propose

a new approach, as follows.

2.4.1 Computing the Optimal Objective Value Copt

Recall that the set SE consists of all values C(pq) for any two points p and q in

E. By Corollary 2.2.2, we have Copt ∈ SE . One straightforward way to compute Copt

is to first compute all values in the set SE and sort them. Then, using our decision

algorithm in Theorem 2.3.3, we can compute Copt by doing binary search on the sorted

list of the values in SE . However, since |SE | = Θ(n2), this approach takes Ω(n2) time.

In the following, we give an O(n logn) time algorithm.

Recall that E also includes −∞ and +∞. We first organize the values in SE into

O(n) sorted arrays and each array has O(n) elements. Note that our algorithm does not

do this organization explicitly.

Let e0, e1, . . . , e2n+1 be the list of the values of E sorted on L from left to right,

with e0 = −∞ and e2n+1 = +∞. For any i and j with 0 ≤ i < j ≤ 2n + 1, define

w(i, j) = C(eiej). Clearly, SE = {w(i, j) | 0 ≤ i < j ≤ 2n+ 1}. Below is a self-evident

observation that shows a monotonicity property of w(i, j).

Observation 2.4.1. For any i, if i < j1 ≤ j2, then w(i, j1) ≤ w(i, j2).

For each i = 0, 1, . . . , 2n+ 1, we define an array Ai[0 · · · 2n+ 1] of 2n+ 2 elements

as follows. For each j with 0 ≤ j ≤ 2n + 1, define Ai[j] to be w(i, j) if i < j and

0 otherwise. By Observation 2.4.1, elements in each array Ai are sorted in ascending
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order. It is not difficult to see that SE is the union of all elements in the arrays Ai,

0 ≤ i ≤ 2n+ 1, i.e., SE =
⋃2n+1

i=0 Ai.

Since Copt ∈ SE , our goal is to find Copt in
⋃2n+1

i=0 Ai. To this end, although we

cannot afford to explicitly compute all elements of these arrays, based on the following

Lemma 2.4.2, with linear time preprocessing, we can obtain any element of these arrays

in constant time whenever we need it.

Lemma 2.4.2. With O(n) time preprocessing, for any query (i, j) with i < j, we can

compute the value w(i, j) = Ai[j] in constant time.

Before proving Lemma 2.4.2, we show how to compute Copt with the help of Lemma

2.4.2. We use a technique, called binary search on sorted arrays, which was developed

in [33]. We first briefly discuss this technique.

Assume there is a “black-box” decision procedure σ available such that given any

value α, σ can report whether α is a feasible value in O(T ) time, and further, if α is

a feasible value, then any value larger than α is also a feasible value. Given a set of

M arrays Bi, 1 ≤ i ≤ M , each containing N elements in sorted order, the goal is to

find the smallest feasible value δ in
⋃M

i=1Bi. Suppose given its indices, any element of

these arrays can be obtained in constant time. An algorithm is presented in [33] with

the following result.

Lemma 2.4.3. [33] The smallest feasible value δ in
⋃M

i=1Bi can be found in O((M +

T ) log(MN)) time.

For solving our problem, we can use the above result to find Copt in
⋃2n+1

i=0 Ai as

follows. The following observation is self-evident.

Observation 2.4.4. If a value c is a feasible value for the decision problem, then any value

larger than c is also a feasible value.

Hence, Copt is the smallest feasible value in
⋃2n+1

i=0 Ai. Our linear time decision

algorithm in Theorem 2.3.3 can play the role of the black-box σ with T = O(n). Further,

we have already shown that given any i and j, we can compute the element Ai[j] in

constant time. Therefore, we can apply the technique in Lemma 2.4.3 (with M = N =

2n+ 2 and T = O(n)) to compute Copt in O(n logn) time.
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In summary, we have the following result.

Theorem 2.4.5. The optimization version of the interval splitting problem can be solved

in O(n logn) time.

2.4.2 Proving Lemma 2.4.2

It remains to prove Lemma 2.4.2. Consider any query (i, j) with i < j. Our goal is

to compute w(i, j) = C(eiej). We begin with some observations.

Recall that e0, e1, . . . , e2n+1 are the sorted list of points of E. For each t with

0 ≤ t ≤ 2n+ 1, define It to be the set of intervals of I whose left endpoints are strictly

to the left of et. Recall that for any point x on L, I(x) is the set of intervals of I each

of which contains x in its interior. Also recall that I(eiej) is the set of intervals of I

that intersect the open segment eiej . We have the following lemma.

Lemma 2.4.6. I(eiej) = I(ei) ∪ (Ij \ Ii) and I(ei) ∩ (Ij \ Ii) = ∅.

Proof. We first prove I(eiej) = I(ei) ∪ (Ij \ Ii). To this end, we show below that any

interval in I(eiej) must be in I(ei) ∪ (Ij \ Ii), and vice versa.

1. Consider any interval I ∈ I(eiej). We prove that I must be in I(ei) ∪ Ij \ Ii.

Let l and r be the left and right endpoints of I, respectively. By definition, I

intersects the open segment eiej . Hence, l < ej , implying that I ∈ Ij . If I 6∈ Ii, it

is vacuously true that I ∈ I(ei)∪(Ij \Ii). Otherwise, it must be that l < ei. Since

I intersects the open segment eiej , we can also get r > ei. Therefore, it holds that

l < ei < r, implying that ei is contained in the interior of I, and thus I ∈ I(ei).

Therefore, in any case, we obtain I ∈ I(ei) ∪ (Ij \ Ii).

2. Consider any interval I ∈ I(ei) ∪ (Ij \ Ii). We prove that I must be in I(eiej).

Let l and r be the left and right endpoints of I, respectively.

If I ∈ Ij \ Ii, then due to I ∈ Ij , we obtain l < ej , and due to I 6∈ Ii, we obtain

ei ≤ l. Hence, we have ei ≤ l < ej . Since l < r, I must intersect the open segment

eiej , and thus I ∈ I(eiej).

If I 6∈ Ij \ Ii, then I must be in I(ei), implying that ei ∈ (l, r). Therefore, I must

intersect the open segment eiej , and I ∈ I(eiej).
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The above proves that I(eiej) = I(ei) ∪ (Ij \ Ii).

Next, we show that I(ei)∩ (Ij \ Ii) = ∅. Indeed, for any interval I = [l, r] ∈ Ij \ Ii,

as discussed above, it holds that ei ≤ l < ej , implying that ei cannot be in the interior

of I, and thus, I 6∈ I(ei). On the other hand, for any interval I = [l, r] ∈ I(ei), since ei

is in the interior of I, we have l < ei; thus, I must be in Ii, implying that I cannot be

in Ij \ Ii.

The lemma thus follows.

The preceding lemma implies the following approach for computing the value C(eiej).

For each t with 0 ≤ t ≤ 2n+1, let Ct be the sum of the weights of the intervals in It. By

Lemma 2.4.6, we can obtain C(eiej) = C(ei)+(Cj−Ci). Hence, if the values C(ei), Cj ,

and Ci are already known, we can compute C(eiej) in constant time. In the sequel, we

present an algorithm that can compute C(et) and Ct for all t = 0, 1, . . . , 2n+ 1 in O(n)

time. The algorithm is similar to our decision algorithm in Section 2.3 (the decision

algorithm can compute C(et), but here we also need to compute Ct).

The algorithm sweeps a point x from −∞ to +∞. An event happens when x

encounters a point, say, et, in E, and for processing the event, we will compute C(et)

and Ct. During the sweeping of x, we will maintain two values for x: C(x), i.e., the sum

of the weights of the intervals of I that contain x in their interior, and C ′(x), which is

the sum of the weights of the intervals whose left endpoints are strictly to the left of x.

Initially, when x = −∞, we have C(x) = C ′(x) = 0. Consider a general step that

the next event is at et. We assume that the values C(x) and C ′(x) have been correctly

maintained right before x arrives at et. Note that et is an endpoint of an interval of I,

and let I denote the interval (and let w(I) be the weight of I). Depending on whether

et is the left or the right endpoint of et, there are two cases.

If et is the right endpoint of I, we first set C(et) = C(x) − w(I) and Ct = C ′(x).

Then we update C(x) = C(x) − w(I), and we do not need to change C ′(x). One can

verify that all these values have been correctly computed. We then proceed on the next

event after et.

If et is the left endpoint of I, then we set C(et) = C(x) and Ct = C ′(x). We also

update C(x) = C(x) + w(I) and C ′(x) = C ′(x) + w(I) because once x crosses et, et is
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strictly to the left of x. We proceed on the next event after et.

The algorithm is done once x passes the rightmost point of E. Since the points of

E have already been sorted, the algorithm runs in O(n) time.

As a summary, in O(n) time we can compute C(et) and Ct for all t = 0, 1, . . . , 2n+1,

after which, given any query (i, j) with i < j, we can compute w(i, j) in constant time.

Lemma 2.4.2 is thus proved.

2.5 Conclusions

In this chapter, we present an efficient algorithm for solving the interval splitting

problem. While the previous work [23] only deals with the special/unweighted case, our

algorithm works for the general/weighted case. Besides its applications in load balancing

for storing and processing data in temporal and multi-version databases, the interval

splitting problem itself is an interesting and basic problem on intervals. Our techniques

may be used for solving other related problems as well.
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CHAPTER 3

MINIMIZING THE MOVEMENTS OF SPREADING POINTS

3.1 Introduction

We consider the following points-spreading problem in this chapter. The results in

this chapter have been published in a conference [19].

3.1.1 Problem Definitions and Our Results

Given a set P of n points sorted on a line L and a distance value δ ≥ 0, we wish to

move the points of P along L such that the distance of any two points of P is at least

δ and the maximum movement of all points of P is minimized. The above is the line

version. We also consider the cycle version of the problem, where all points of P are

given sorted cyclically on a cycle (one may view C as a simple closed curve). We wish

to move the points of P on C such that the distance of any two points of P along C is

at least δ and the maximum movement of all points of P along C is minimized. Note

that since C is a cycle, the distance of any two points of C is defined to be the length

of the shortest path on C between the two points.

Both versions of the problem have been studied before. By modeling them as

linear programming problems (with n variables and Θ(n) constraints), Dumitrescu and

Jiang [34] gave the first-known polynomial-time algorithms for both problems. Since

there only exist weakly polynomial-time algorithms for linear programming [35, 36],

it would be interesting to design strongly polynomial-time algorithms for the points-

spreading problem. In this chapter, we solve both versions of the problem not only in

strongly polynomial time but also in O(n) time (which is optimal). Our algorithms are

based on a greedy strategy.

In addition, we consider a somewhat related problem, called the facility-location

movement problem, defined as follows. Suppose we have a set of k “server” points and
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another set of n “client” points sorted on L. We wish to move all servers and all clients

on L such that each client co-locates with a server and the maximum moving distance

of all servers and clients is minimized. Dumitrescu and Jiang [34] solved this problem

in O((n + k) log(n + k)) time. We present an O(n + k) time algorithm based on their

approach.

3.1.2 Related Work

The 2D version of the points-spreading problem was proposed by Demaine et al. [37]

(also called “movement to independence” problem in [34, 37]). The problem in 2D is

NP-hard and an approximation algorithm was given in [37]; the algorithm was improved

later by Dumitrescu and Jiang [34].

The points-spreading problem is related to the points dispersion problems which

involve arranging a set of points as far away from each other as possible subject to

certain constraints. For example, Fiala et al. in [38] studied such a problem in which

one wants to place n given points, each inside its own, prespecified disk, with the objec-

tive of maximizing the distance between the closest pair of these points. The problem

was shown to be NP-hard [38]. Approximation algorithms were given for this problem

by Cabello [39]. Dumitrescu and Jiang [40] gave improvement on the approximation

algorithms and also proposed algorithms for the problem in high-dimensional spaces. In

fact, Fiala et al. [38] studied the dispersion problems on a more general problem settings.

Another variation of the dispersion problems is to select a subset of facilities from a set

of given facilities to maximize the minimum distance (or some other distance function)

among all pairs of selected facilities [41,42]. The problem is generally NP-hard (e.g., in

2D) but polynomial time algorithms are available in the one-dimensional space [41,42].

In addition, Chandra and Halldórsson [43] studied dispersion problems in other problem

settings.

The facility-location movement problem was first introduced by Demaine et al. [37]

in graphs, which was proved to be NP-hard. A 2-approximation algorithm was presented

in [37] for this problem in graphs, and later it was shown that the 2-approximation ratio

cannot be improved unless P=NP [44]. Dumitrescu and Jiang [34] studied the geometric

version of this problem in the plane, and they showed that the problem is NP-hard to
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approximate within 1.8279. Fixed parameter algorithms (with k as the parameter) were

also given in [34].

3.1.3 Our Approach

For solving the line version of the points-spreading problem, essentially we first

solve a “one-direction” case of the problem in which points are only allowed to move

rightwards, by using a simple greedy algorithm. Suppose d is the maximum movement

in the solution of the above one-direction case. Then, we show that an optimal solution

to the original problem can be obtained by shifting each point of P leftwards by the

distance d/2.

For solving the cycle version of the problem, essentially we also first solve a one-

direction case in which points are only allowed to move counterclockwise on C. If d is

the maximum movement in the solution of the one-direction case, then we also show that

an optimal solution to the original problem can be obtained by shifting each point of P

clockwise by d/2. However, unlike the line version, the one-direction case of the problem

becomes more difficult on the cycle. One straightforward idea is to cut the cycle C at a

point of P (and extend C as a line) and then apply the algorithm for the one-direction

case of the line version. However, the issue is that the last point may be too close to or

even “cross” the first point if we put all points back on C. By observations, we show

that if such a case happens, we can run the line-version algorithm for another round

and the second round is guaranteed to find an optimal solution. Overall, the algorithm

is still simple, but it is challenging to discover the idea and prove the correctness.

For solving the facility-location movement problem, Dumitrescu and Jiang [34] pre-

sented an O((n+k) log(n+k)) time algorithm using dynamic programming. By discov-

ering a monotonicity property on the dynamic programming, we improve Dumitrescu

and Jiang’s algorithm to O(n+ k) time.

The rest of this chapter is organized as follows. In Section 3.2, we present our

algorithm for the line version of the points-spreading problem. The cycle version of

the problem is solved in Section 3.3. Section 3.4 discusses our solution for the facility-

location movement problem.
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3.2 The Line Version of the Points-Spreading Problem

In the line version, the points of P are given sorted on the line L. Without loss

of generality, we assume L is the x-axis and P = {p1, p2, . . . , pn} are sorted by their

x-coordinates from left to right. For each i ∈ [1, n], let xi denote the location (or x-

coordinate) of pi on L. For any two locations x and x′ of L, denote by |xx′| the distance

between x and x′, i.e., |xx′| = |x− x′|.

Our goal is to move each point pi ∈ P to a new location x′i on L such that the

distance of any pair of two points of P is at least δ and the maximum moving distance,

i.e., max1≤i≤n |xix
′
i|, is minimized. For simplicity of discussion, we make a general

position assumption that no two points of P are at the same location in the input. The

degenerate case can also be handled by our techniques but the discussions would be

more tedious.

We refer to a configuration as a specification of the location of each point pi of P

on L. For example, in the input configuration each pi is at xi. Let F0 denote the input

configuration. A configuration is feasible if the distance between any pair of points of P

is at least δ.

Denote by dopt the maximum moving distance in any optimal solution. If the input

configuration F0 is feasible, then we do not need to move any point, implying that

dopt = 0. Since the points of P are sorted, we can check whether F0 is feasible in O(n)

time by checking the distance between every adjacent pair of points of P . If F0 is not

feasible, then dopt > 0. In the following, we assume F0 is not feasible, and thus dopt > 0.

We first present some observations, based on which our algorithm will be developed.

3.2.1 Observations

For any two indices i < j in [1, n], define

w(i, j) = (j − i) · δ − |xixj |.

As discussed in Dumitrescu and Jiang [34], there exists an optimal solution in which

the order of all points of P is the same as that in the input configuration F0. Based on

this property, we prove Lemma 3.2.1 regarding the value dopt.
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Lemma 3.2.1. dopt ≥ max1≤i<j≤n
w(i,j)

2 .

Proof. Consider any optimal solution OPT in which the order of all points of P is the

same as that in F0. For each 1 ≤ i ≤ n, let x∗i be the location of pi in OPT .

Consider any i and j with 1 ≤ i < j ≤ n. Our goal is to prove dopt ≥ w(i, j)/2.

Since the points of P in OPT have the same order as in F0, for each k with

i < k ≤ j, we have |x∗k−1x
∗
k| ≥ δ because OPT is a feasible solution. Hence, |x∗ix

∗
j | =

∑j
k=i+1 |x

∗
k−1x

∗
k| ≥ (j − i) · δ.

If |x∗ix
∗
j | − |xixj | ≤ 0, then |xixj | ≥ |x

∗
ix

∗
j | ≥ (j − i) · δ. Thus, w(i, j) ≤ 0. Since

dopt > 0, dopt ≥ w(i, j)/2 holds.

If |x∗ix
∗
j | − |xixj | > 0, then the difference of |x∗ix

∗
j | and |xixj | are due to the moving

of pi and pj . It is not difficult to see that max{|xix
∗
i |, |xjx

∗
j |} ≥ (|x∗ix

∗
j | − |xixj |)/2

(the equality happens when pi moves leftwards by distance (|x∗ix
∗
j | − |xixj |)/2 and pj

moves rightwards by the same distance). Since dopt ≥ max{|xix
∗
i |, |xjx

∗
j |}, it holds that

dopt ≥ (|x∗ix
∗
j | − |xixj |)/2. Due to |x∗ix

∗
j | ≥ (j − i) · δ, we obtain that dopt ≥ w(i, j)/2.

The lemma thus follows.

Lemma 3.2.2. If there exist i and j with 1 ≤ i < j ≤ n and a feasible configuration F ′

in which each point pk ∈ P moves rightwards to x′k (i.e., xk ≤ x′k) such that w(i, j) =

max1≤k≤n |xkx
′
k|, then we can obtain an optimal solution by shifting each point of P in

F ′ leftwards by distance w(i, j)/2.

Proof. Let F ′′ denote the configuration obtained by shifting each point of P in F ′

leftwards by distance w(i, j)/2.

Consider any point pk ∈ P . Let x′′k denote the location of pk in F ′′, i.e., x′′k =

x′k − w(i, j)/2. In order to prove that F ′′ is an optimal solution, by Lemma 3.2.1, it is

sufficient to show that |xkx
′′
k| ≤ w(i, j)/2, as follows.

Indeed, since 0 ≤ x′k − xk ≤ w(i, j), i.e., x′k is to the right of xk at most w(i, j),

after pk is moved leftwards by w(i, j)/2 to x′′k, x
′′
k must be within distance w(i, j)/2 from

xk. Hence, |xkx
′′
k| ≤ w(i, j)/2. The lemma thus follows.

We call a feasible configuration that satisfies the condition in Lemma 3.2.2 a canoni-

cal configuration (such as F ′ in Lemma 3.2.2). Due to Lemma 3.2.2, to solve the problem
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Figure 3.1. Illustrating our algorithm for computing the configuration F .

in linear time, it is sufficient to find a canonical configuration in linear time, which is

our focus below.

3.2.2 Computing a Canonical Configuration

In this section, we present a linear-time algorithm that can find a canonical con-

figuration. Comparing with the original problem, now we only need to consider the

rightward movements.

Initially, we set x′1 = x1. Then we consider the rest of the points p2, p3, . . . , pn

from left to right. For each i with 2 ≤ i ≤ n, suppose we have already moved pi−1 to

x′i−1. Then, we set x′i = max{xi, x
′
i−1 + δ}, and move pi to x′i. Refer to Fig. 3.1 for an

example. The algorithm finishes after all points of P have been considered. Clearly, the

algorithm runs in O(n) time. Let F ′ denote the resulting configuration (i.e., each pi is

at x′i).

In the following lemma, we show that F ′ is a canonical configuration.

Lemma 3.2.3. F ′ is a canonical configuration.

Proof. First of all, based on our way of setting x′i for i = 1, 2, . . . , n, it can be easily

seen that every two points of P in F ′ are at least δ away from each other. Thus, F ′ is

a feasible configuration. Note that x′i ≥ xi for any i ∈ [1, n].

Next, we show that there exist i and j with 1 ≤ i < j ≤ n such that w(i, j) = dmax,

where dmax = max1≤k≤n |xkx
′
k|.

Recall that dmax > 0. Suppose the moving distance of pj is the maximum, i.e.,

dmax = |xjx
′
j |. Let i be the largest index such that i < j and pi does not move in the

algorithm (i.e., xi = x′i). Note that such a point pi must exist as x1 = x′1 and x′j > xj .

For any point pk ∈ P , if pk is moved (rightwards) in F ′ (i.e., xk < x′k), then

according to our way of setting x′k, it must hold that x′k − x′k−1 = δ. By the definition
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of i, for each point pk with k ∈ [i + 1, j], pk is moved in F ′, and thus x′k − x′k−1 = δ.

Therefore, we obtain

|x′ix
′
j | = x′j − x′i =

∑

i+1≤k≤j

(x′k − x′k−1) = (j − i) · δ.

Since x′i = xi and xj < x′j , we have |xix
′
j | = |xixj |+ |xjx

′
j |. Hence, dmax = |xjx

′
j | =

|xix
′
j | − |xixj | = (j − i) · δ − |xixj | = w(i, j).

This proves the lemma.

Combining Lemmas 3.2.2 and 3.2.3, we conclude this section with the following

theorem.

Theorem 3.2.4. The line version of the points-spreading problem is solvable in O(n) time.

Remark: One may verify that our algorithm for computing the canonical configu-

ration F ′ essentially solves the following one-direction case of the line version problem:

Move the points of P rightwards such that any pair of points of P are at least δ away

from each other and the maximum moving distance of all points of P is minimized.

3.3 The Cycle Version of the Points-Spreading Problem

In the cycle version, the points of P = {p1, p2, . . . , pn} are on a cycle C sorted

cyclically, say, in the counterclockwise order. We use |C| to denote the length of C.

For any two locations x and x′ on C, the distance between x and x′, denoted by |xx′|,

is the length of the shortest path between x and x′ on C. Clearly, |xx′| ≤ |C|/2. For

each i ∈ [1, n], we use xi to denote the location of pi on C in the input. Our goal is to

move each point pi ∈ P to a new location x′i such that the distance of any pair of two

points of P on C is at least δ and the maximum moving distance, i.e., max1≤i≤n |xix
′
i|,

is minimized.

We assume |C| ≥ δ · n since otherwise there would be no solution. Again, for

simplicity of discussion, we make a general position assumption that no two points of P

are at the same location on C in the input.
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As in the line version, we refer to a configuration as a specification of the location

of each point of P on C. A configuration is feasible if the distance between any pair of

points of P is at least δ. Let F0 denote the input configuration.

Denote by dopt the maximum moving distance in any optimal solution. If F0 is

feasible, then dopt = 0. We can also check whether F0 is feasible in O(n) time. If F0

is not feasible, then dopt > 0. In the following, we assume F0 is not feasible, and thus

dopt > 0.

To solve the cycle version of the problem, we extend our algorithm (and observa-

tions) for the line version in Section 3.2. Namely, we first move all points of P on C

counterclockwise to obtain a “canonical configuration”, and then shift all points clock-

wise. However, as will be seen later, the problem becomes much more difficult on the

cycle.

Consider any two locations x and x′ on C. We define C(x, x′) as the portion of C

from x to x′ counterclockwise. We use |C(x, x′)| to denote the length of C(x, x′). Note

that |xx′| = min{|C(x, x′)|, |C(x′, x)|}.

As in the line version, we first give some observations, based on which our algorithms

will be developed.

3.3.1 Observations

For any two indices i 6= j in [1, n], define

w(i, j) =
[
(n+ j − i) mod n

]
· δ − |C(xi, xj)|.

In words, if i < j, then w(i, j) = (j − i) · δ − |C(xi, xj)|; otherwise, w(i, j) =

(n+ j − i) · δ − |C(xi, xj)|. Since |C| ≥ δ · n, it can be verified that w(i, j) ≤ |C|.

As discussed in [34], there exists an optimal solution in which the order of all points

of P is the same as that in the input configuration F0. Using this property, we prove

Lemma 3.3.1, which is analogous to Lemma 3.2.2 for the line version.

Lemma 3.3.1. dopt ≥ max1≤i,j≤n
w(i,j)

2 .
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Proof. Consider any optimal solution OPT in which the order of all points of P is the

same as that in the input configuration F0. For each 1 ≤ k ≤ n, let x∗k be the location

of xk in OPT .

Consider any two indices i 6= j in [1, n]. To prove the lemma, the goal is to show

that dopt ≥ w(i, j)/2. Depending on whether i < j, there are two cases. Below we only

prove the case i < j, and the other case is very similar.

First of all, we claim that |C(x∗i , x
∗
j )| ≥ (j − i) · δ. Indeed, consider any k ∈

[i + 1, j]. Since OPT is an optimal solution, |x∗k−1x
∗
k| ≥ δ holds. Because |x∗k−1x

∗
k| =

min{|C(x∗k−1, x
∗
k)|, |C(x∗k, x

∗
k−1)|}, we obtain that |C(x∗k−1, x

∗
k)| ≥ δ. Since the order of

the points of P in OPT is the same as that in F0, we have C(x∗i , x
∗
j ) = ∪

j
k=i+1C(x∗k−1, x

∗
k)

and |C(x∗i , x
∗
j )| =

∑j
k=i+1 |C(x∗k−1, x

∗
k)| ≥ (j − i) · δ. The claim is thus proved.

In the sequel, we prove dopt ≥ w(i, j)/2 = [(j − i) · δ − |C(xi, xj)|]/2.

If |C(x∗i , x
∗
j )| − |C(xi, xj)| ≤ 0, then since |C(x∗i , x

∗
j )| ≥ (j − i) · δ, it holds that

|C(xi, xj)| ≥ (j − i) · δ. Hence, w(i, j) ≤ 0, and it follows that dopt ≥ w(i, j)/2.

If |C(x∗i , x
∗
j )| − |C(xi, xj)| > 0, then the difference of |C(x∗i , x

∗
j )| and |C(xi, xj)|

is due to the moving of pi and pj . Because the order the points of P in OPT is the

same as that in F0, the smallest moving distance of these two points happens when

xi and xj move towards opposite directions (i.e., xi moves clockwise and xj moves

counterclockwise) by the same distance (|C(x∗i , x
∗
j )|−|C(xi, xj)|)/2. Therefore, we obtain

max{|xix
∗
i |, |xjx

∗
j |} ≥ (|C(x∗i , x

∗
j )| − |C(xi, xj)|)/2. Since dopt ≥ max{|xix

∗
i |, |xjx

∗
j |}, it

holds that dopt ≥ (|C(x∗i , x
∗
j )| − |C(xi, xj)|)/2. Finally, because |C(x∗i , x

∗
j )| ≥ (j − i) · δ,

we obtain dopt ≥ w(i, j)/2.

Based on Lemma 3.3.1, we obtain the following lemma, which is analogous to

Lemma 3.2.3 for the line version.

Lemma 3.3.2. If there exist i 6= j in [1, n] and a feasible configuration F ′ in which

each point pk ∈ P is at location x′k such that w(i, j) = max1≤k≤n |C(xk, x
′
k)|, then we

can obtain an optimal solution by shifting every point of P in F ′ clockwise by distance

w(i, j)/2.

Proof. Let F ′′ denote the configuration obtained by shifting every point of P in F ′

clockwise by distance w(i, j)/2.
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Consider any point pk ∈ P . Let x′′k denote the location of xk in F ′′. On the one hand,

|C(xk, x
′
k)| ≤ w(i, j) since w(i, j) = max1≤k≤n |C(xk, x

′
k)|. On the other hand, since the

above shifting moves pk from x′k clockwise to x′′k by distance w(i, j)/2 ≤ |C|/2 (recall

that w(i, j) ≤ |C|), it holds that either |C(xk, x
′′
k)| ≤ w(i, j)/2 or |C(x′′k, xk)| ≤ w(i, j)/2.

Consequently, |xkx
′′
k| = min{|C(xk, x

′′
k)|, |C(x′′k, xk)|} ≤ w(i, j)/2.

The above shows that max1≤k≤n |C(xk, x
′′
k)| ≤ w(i, j)/2, i.e., the maximum moving

distance of all points of P in F ′′ is no more than w(i, j)/2. By Lemma 3.3.1, F ′′ is an

optimal solution. The lemma is thus proved.

We call a feasible configuration that satisfies the condition in Lemma 3.3.2 a canon-

ical configuration. In light of Lemma 3.3.2, to solve the problem in linear time, it is

sufficient to find a canonical configuration in linear time, which is our focus below.

3.3.2 Computing a Canonical Configuration

In this section, we present a linear-time algorithm that can find a canonical con-

figuration. Comparing with the original problem, now we only need to consider the

counterclockwise movements.

Recall that the points p1, p2, . . . , pn are ordered on C counterclockwise in the input

configuration F0. For convenience of discussion, we define coordinates for locations on

C in the following way. We define x1 as the origin with coordinate zero. For any other

location x ∈ C, the coordinate of x is defined to be |C(x1, x)|. Hence each location of

C has a coordinate no greater than |C|.

Our algorithm has two rounds. In the first round, we will use the same approach

as for the line version of the problem, and let F1 denote the resulting configuration.

However, the issue is that in F1 the new location of pn may be too close to p1 or

pn may even “cross” p1, which might make F1 not feasible. If pn does not cross p1

and pn is at least δ away from p1 in F1, then we will show that F1 is a canonical

configuration. Otherwise, we will proceed to the second round, which is to (starting

from the configuration F1) consider all points again from p1 and use the same strategy

to set the new locations of the points. We will show that the configuration F2 obtained

after the second round is a canonical configuration. The details are given below.
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The first round

In the first round, we will move each point pi ∈ P from xi along C counterclockwise

to a new location x′i. The way we set x′i here is similar to that in the line version and

the difference is that we have to take care of the cycle situation. Specifically, x′1 = x1,

i.e., p1 does not move. For each i ∈ [2, n], suppose we have already moved pi−1 to x′i−1,

then we define x′i as follows:

x′i =





xi if xi ≥ x′i−1 + δ

(x′i−1 + δ) mod |C| if xi < x′i−1 + δ.

(3.1)

This finishes the first round of our algorithm. Denote by F1 the resulting configuration.

Note that if x′i−1 + δ > |C|, then since xi ≤ |C|, according to Equation (3.1),

x′i = (x′i−1 + δ) mod |C|, which is equal to x′i−1 + δ − |C|; in this case, we say that the

counterclockwise movement of pi crosses the origin x1.

Lemma 3.3.3. If pn does not cross x1 (= x′1) in the first round of the algorithm and

|C(x′n, x
′
1)| ≥ δ, then F1 is a canonical configuration.

Proof. First of all, we show that F1 is a feasible configuration, i.e., the distance between

any two points of P in F1 is at least δ. Consider any two indices i and j. Without

loss of generality, assume i < j. Our goal is to show that |x′ix
′
j | ≥ δ. To this end, it is

sufficient to show that |C(x′i, x
′
j)| ≥ δ and |C(x′j , x

′
i)| ≥ δ.

On the one hand, C(x′i, x
′
j) contains x

′
i+1, implying that C(x′i, x

′
i+1) ⊆ C(x′i, x

′
j) and

thus |C(x′i, x
′
i+1)| ≤ |C(x′i, x

′
j)|. According to our first round algorithm (i.e., Equation

(3.1)), it holds that |C(x′i, x
′
i+1)| ≥ δ. Thus, |C(x′i, x

′
j)| ≥ δ.

On the other hand, since pn does not cross x1 = x′1, C(x′j , x
′
i) contains both x′n

and x′1, and in other words, C(x′n, x
′
1) ⊆ C(x′j , x

′
i). Due to |C(x′n, x

′
1)| ≥ δ, we obtain

|C(x′j , x
′
i)| ≥ |C(x′n, x

′
1)| ≥ δ.

Therefore, F1 is a feasible configuration.

Let d′max be the maximum counterclockwise movement of all points of P in the first

round, i.e., d′max = max1≤k≤n |C(xk, x
′
k)|. To show that F1 is canonical configuration,

we also need to show that there exist i and j such that d′max = w(i, j). In the following,
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we will find two indices i and j with i < j such that d′max = w(i, j). Recall that when

i < j, w(i, j) = (j − i) · δ − |C(xi, xj)|.

Since the input configuration F0 is not feasible, it must hold that d′max > 0. Let j

be the index such that d′max = |C(xj , x
′
j)|. Let i be the largest index such that i < j

and x′i = xi. Note that such an index i must exist since x1 = x′1.

According to the definition of i, each point xk with i + 1 ≤ k ≤ j is moved in

the first round algorithm, which implies that |C(x′k−1, x
′
k)| = δ according to Equation

(3.1). Hence, we obtain |C(x′i, x
′
j)| =

∑j
k=i+1 |C(x′k−1, x

′
k)| = (j − i) · δ. On the other

hand, since the movement of pn does not cross x1 and pi does not move, the movement

of pj does not cross xi = x′i. Thus, C(x′i, x
′
j) = C(xi, xj) ∪ C(xj , x

′
j) and |C(x′i, x

′
j)| =

|C(xi, xj)|+ |C(xj , x
′
j)|.

Therefore, we obtain d′max = |C(xj , x
′
j)| = |C(x′i, x

′
j)| − |C(xi, xj)| = (j − i) · δ −

|C(xi, xj)| = w(i, j).

We conclude that F1 is a canonical configuration.

According to Lemma 3.3.3, if pn does not cross x1 = x′1 in the first round and

|C(x′n, x
′
1)| ≥ δ in F1, then we have found a canonical configuration and our algorithm

stops. Otherwise, we proceed to the second round, as follows.

The second round

In the second round, we will move each point pi ∈ P from x′i counterclockwise to a

new location x′′i , defined as follows.

We first define x′′1. Recall that we proceed to the second round because either pn

crosses x1 = x′1 in the first round or |C(x′n, x
′
1)| < δ. In either case we define

x′′1 = (x′n + δ) mod |C|. (3.2)

Hence, |C(x′n, x
′′
1)| = δ.

For each i = 2, 3, . . . , n, suppose pi−1 has been moved to x′′i−1; then we move pi

from x′i counterclockwise to x′′i , with

x′′i = max{x′i, (x
′′
i−1 + δ) mod |C|} (3.3)
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This finishes the second round of our algorithm. Let F2 be the resulting configura-

tion. In the sequel we show that F2 is a canonical configuration.

Recall that |C| ≥ n · δ. We first have the following observation on the first round

of the algorithm.

Observation 3.3.4. There must be a point pi with i ∈ [2, n] such that pi does not move in

the first round of the algorithm (i.e., xi = x′i).

Proof. Assume to the contrary that every point pi with i ∈ [2, n] is moved in the first

round. Then, by our first round algorithm (i.e., Equation (3.1)), |C(x′i−1, x
′
i)| = δ for

each 2 ≤ i ≤ n. Hence, |C(x′1, x
′
n)| =

∑n
i=2 |C(x′i−1x

′
i)| = (n − 1) · δ. Further, since

either pn crosses x1 = x′1 or |C(x′n, x
′
1)| < δ, we obtain that n ·δ > |C|, which contradicts

with the fact that |C| ≥ n · δ.

Observation 3.3.5. If a point pi does not move in the second round, then for each point

pj with j ∈ [i, n], pj does not move in the second round either.

Proof. If i = n, then the observation trivially follows. We assume i < n.

According to the first round algorithm, it holds that |C(x′k−1, x
′
k)| ≥ δ for any k ∈

[2, n]. Since pi does not move in the second round, x′′i = x′i holds. Due to |C(x′i, x
′
i+1)| ≥

δ, according to our second round algorithm (e.g., Equation (3.3)), x′′i+1 = x′i+1. By the

same reasoning, x′′j = x′j for any j ∈ [i+ 1, n], which leads to the observation.

With Observations 3.3.4 and 3.3.5, we can prove the following lemma.

Lemma 3.3.6. Suppose k is the largest index such that pk does not move in the first round

of the algorithm; then pk does not move in the second round of the algorithm either, i.e.,

xk = x′k = x′′k.

Proof. According to the first round algorithm, it holds that |C(x′i−1, x
′
i)| ≥ δ for any

i ∈ [2, n].

By Observation 3.3.4, k ∈ [2, n]. We first discuss the case where k ∈ [3, n − 1].

Indeed, this is the most general case. As shown later, the case where k = 2 or k = n

can by proved by similar but simpler techniques.
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By the definition of k, the points pk+1, pk+2, . . . , pn are moved in the first round.

Hence, for each i ∈ [k + 1, n], according to our first round algorithm (i.e., Equation

(3.1)), |C(x′i−1, x
′
i)| = δ. Thus,

|C(x′k, x
′
n)| =

n∑

i=k+1

|C(x′i−1, x
′
i)| = (n− k) · δ. (3.4)

Recall that p1 is moved in the second round, and according to Equation (3.2),

|C(x′n, x
′′
1)| = δ. (3.5)

If there is any i ∈ [2, k − 1] such that pi does not move in the second round, then

by Observation 3.3.5, pk does not move in the second round either, which leads to the

lemma.

Otherwise, since every point pi with i ∈ [2, k − 1] is moved in the second round,

according to our second round algorithm (i.e., Equation (3.3)), |C(x′′i−1, x
′′
i )| = δ holds.

Hence, we obtain

|C(x′′1, x
′′
k−1)| =

k−1∑

i=2

|C(x′′i−1, x
′′
i )| = (k − 2) · δ. (3.6)

Based on Equations (3.4), (3.5), and (3.6), we obtain |C(x′k, x
′
n)| + |C(x′n, x

′′
1)| +

|C(x′′1, x
′′
k−1)| = (n− 1) · δ. This implies that in the second round the counterclockwise

movement of pk−1 from x′k−1 to x′′k−1 does not cross xk = x′k, due to |C| ≥ n ·δ. Further,

|C(x′′k−1, x
′
k)| = |C| − |C(x′k, x

′′
k−1)| = |C| − (|C(x′k, x

′
n)|+ |C(x′n, x

′′
1)|+ |C(x′′1, x

′′
k−1)|) =

|C| − (n − 1) · δ ≥ δ. According to our second round algorithm (i.e., Equation (3.3)),

x′′k = x′k, i.e., pk does not move in the second round.

The above proves the lemma for the case where k ∈ [3, n− 1].

If k = 2 or k = n, the proof is very similar.

If k = 2, then we still have Equations (3.4) and (3.5). Thus, |C(x′2, x
′
n)|+|C(x′n, x

′′
1)| =

(n − 1) · δ. This implies that in the second round the counterclockwise movement of

p1 from x′1 to x′′1 does not cross x2 = x′2, due to |C| ≥ n · δ. Further, |C(x′′1, x
′
2)| =

|C| − |C(x′2, x
′′
1)| = |C| − (|C(x′2, x

′
n)| + |C(x′n, x

′′
1)|) = |C| − (n − 1) · δ ≥ δ. According
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to our second round algorithm (i.e., Equation (3.3)), x′′2 = x′2, i.e., p2 does not move in

the second round. Hence, the lemma is proved.

If k = n, then we still have Equations (3.5) and (3.6). Thus, |C(x′n, x
′′
1)| +

|C(x′′1, x
′′
n−1)| = (n−1) ·δ. This implies that in the second round when pn−1 moved from

x′n−1 to x′′n−1, pn−1 does not cross xn = x′n, due to |C| ≥ n · δ. Further, |C(x′′n−1, x
′
n)| =

|C|−|C(x′n, x
′′
n−1)| = |C|−(|C(x′n, x

′′
1)|+ |C(x′′1, x

′′
n−1)|) = |C|−(n−1) ·δ ≥ δ. According

to our second round algorithm (i.e., Equation (3.3)), x′n = x′′n, i.e., pn does not move in

the second round. Hence, the lemma follows.

In summary, pk does not move in the second round of the algorithm.

Recall that F2 is the configuration after the second round of the algorithm. Our

goal is to prove that F2 is a canonical configuration. Based on the proof of Lemma 3.3.6,

we have the following two corollaries.

Corollary 3.3.7. The configuration F2 is feasible.

Proof. Suppose pk is the point specified in Lemma 3.3.6. Hence, k ∈ [2, n] and pk does

not move in the two rounds of our algorithm. We only prove the case where k ∈ [2, n−1],

and the case k = n can be proved by similar (but simpler) techniques.

After the first round, it holds that |C(x′i−1, x
′
i)| ≥ δ for each i ∈ [k + 1, n]. Since

xk does not move in the second round, by Observation 3.3.5, x′′i = x′i for any i ∈ [k, n].

Hence, for each i ∈ [k + 1, n], it holds that |C(x′′i−1, x
′′
i )| ≥ δ.

On the other hand, according to our second round algorithm, |C(x′n, x
′′
1)| ≥ δ

and |C(x′′i−1, x
′′
i )| ≥ δ for each i ∈ [2, k]. Since x′n = x′′n, it holds that |C(x′′n, x

′′
1)| =

|C(x′n, x
′′
1)| ≥ δ.

The above discussion leads to the following observation: x′′1, x
′′
2, . . . , x

′′
n are or-

dered counterclockwise on C, and further, for each i ∈ [2, n], |C(x′′i−1, x
′′
i )| ≥ δ, and

|C(x′′n, x
′′
1)| ≥ δ.

To show that F2 is feasible, our goal is to prove that |x′′i x
′′
j | ≥ δ for any i 6= j ∈ [1, n].

Consider any i 6= j ∈ [1, n]. Without loss of generality, we assume i < j. To prove

|x′′i x
′′
j | ≥ δ, it is sufficient to show that |C(x′′i , x

′′
j )| ≥ δ and |C(x′′j , x

′′
i )| ≥ δ.
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The above observation implies that C(x′′i , x
′′
i+1) ⊆ C(x′′i , x

′′
j ) and |C(x′′i , x

′′
j )| ≥

|C(x′′i , x
′′
i+1)| ≥ δ. On the other hand, C(x′′n, x

′′
1) ⊆ C(x′′j , x

′′
i ). Since |C(x′′n, x

′′
1)| ≥ δ, we

have |C(x′′j , x
′′
i )| ≥ |C(x′′n, x

′′
1)| ≥ δ.

Therefore, |x′′i x
′′
j | ≥ δ holds. The corollary thus follows.

Corollary 3.3.8. The total counterclockwise moving distance of each point of P in the

two rounds of the algorithm is at most |C| − δ, which implies that |C(xi, x
′′
i )| ≤ |C| − δ

for each 1 ≤ i ≤ n.

Proof. By Lemma 3.3.6, suppose pk does not move in the two rounds of our algorithm.

For each other point pi with i 6= k, since pk does not move in the algorithm, the

counterclockwise movement of pi in the two rounds of the algorithm does not cross xk.

Further, as shown in the proof of Corollary 3.3.7, both |C(xk, x
′′
i )| ≥ δ and |C(x′′i , xk)| ≥

δ hold. Hence, the maximum counterclockwise movement of pi in the two rounds is no

more than |C| − δ. The corollary follows.

Finally, the next lemma shows that F2 is a canonical configuration.

Lemma 3.3.9. The configuration F2 is a canonical configuration.

Proof. Corollary 3.3.7 has already shown that F2 is a feasible configuration. To prove the

lemma, it is sufficient to prove that there exist i and j in [1, n] such that dmax = w(i, j),

where dmax = max1≤k≤n |C(xk, x
′′
k)|.

Let j be the index such that dmax = |C(xj , x
′′
j )|. We define another index i as

follows. If j = 1, or j > 1 but all points of p1, p2, . . . , pj−1 are moved in the two rounds

of the algorithm, let i be the largest index in [j + 1, n] such that pi does not move

in the two rounds of the algorithm; otherwise (i.e., j > 1 and at least one point of

p1, p2, . . . , pj−1 does not move in the two rounds of the algorithm), let i be the largest

index in [1, j − 1] such that pi does not move in the two rounds of the algorithm. By

Lemma 3.3.6, such an index imust exists. In the following, we prove that dmax = w(i, j).

Depending on whether i ∈ [1, j − 1] or i ∈ [j + 1, n], there are two cases.

1. If i ∈ [1, j − 1], then by the definition of i, all points pi+1, pi+2, . . . , pj are moved

in the algorithm. Since pi does not move in the second round, by Observation

3.3.5, for each k ∈ [i + 1, n], xk does not move in the second round. This implies
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that every point of pi+1, pi+2, . . . , pj is moved in the first round of the algorithm.

According to our first round algorithm, |C(x′k−1, x
′
k)| = δ for each k ∈ [i + 1, j].

Hence, |C(xi, x
′′
j )| = |C(x′′i , x

′′
j )| =

∑j
k=i+1 |C(x′′k−1, x

′′
k)| = (j − i) · δ (because

x′′k = x′k for each k ∈ [i, n]).

Since i < j and xi = x′i = x′′i , C(xi, x
′′
j ) = C(xi, xj)∪C(xj , x

′′
j ). Thus, |C(xj , x

′′
j )| =

|C(xi, x
′′
j )| − |C(xi, xj)| = (j − i) · δ − |C(xi, xj)|, which is equal to w(i, j) since

i < j.

Hence, the lemma is proved for this case.

2. If i ∈ [j + 1, n], we only discuss the general case where i < n. The special case

where i = n can be proved by similar (but simpler) techniques.

Consider any point pk with k ∈ [i+1, n]. Since pi does not move in the two rounds

of the algorithm, by Observation 3.3.5, pk does not move in the second round.

According to the definition of i, pk is moved in the algorithm. Hence, pk is moved

in the first round. According to our first round algorithm (i.e., Equation (3.1)),

|C(x′k−1, x
′
k)| = δ. Further, since x′′k = x′k, |C(x′′k−1, x

′′
k)| = δ holds. Therefore,

|C(x′′i , x
′′
n)| =

∑n
k=i+1 |C(x′′k−1, x

′′
k)| = (n− i) · δ.

Since p1 is moved in the second round, by Equation (3.2), |C(x′n, x
′′
1)| = δ. We

have shown above that pk does not move in the second round for any k ∈ [i+1, n].

Hence, x′′n = x′n and |C(x′′n, x
′′
1)| = δ.

If j = 1, then |C(x′′i , x
′′
1)| = |C(x′′i , x

′′
n)| + |C(x′′n, x

′′
1)| = (n + 1 − i) · δ. Further,

since pi does not move in the algorithm (i.e., x′′i = x′i = xi), dmax = |C(x1, x
′′
1)| =

|C(xi, x
′′
1)|− |C(xi, x1)| = (n+1− i) · δ−|C(xi, x1)|, which is equal to w(i, 1). The

lemma thus follows.

In the following, we discuss the case j > 1.

Consider any point pk with k ∈ [2, j].

We claim that pk is moved in the second round (i.e., x′k 6= x′′k). We prove the claim

by induction. Indeed, by the definition of i, pk is moved in the two rounds of the

algorithm. Recall that p1 is moved in the second round. For any k ∈ [2, j], suppose

pk−1 is moved in the second round. Assume to the contrary that pk does not move
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in the second round. Then, pk must be moved in the first round. According to

our first round algorithm (i.e., Equation (3.1)), |C(x′k−1, x
′
k)| = δ. Since pk−1 is

moved in the second round, pk must be moved as well.

In light of the above claim and according to our second round algorithm, |C(x′′k−1, x
′′
k)| =

δ for each k ∈ [2, j]. Therefore, we derive |C(x′′1, x
′′
j )| =

∑j
k=2 |C(x′′k−1, x

′′
k)| =

(j − 1) · δ.

Based on the above discussions, |C(x′′i , x
′′
j )| = |C(x′′i , x

′′
n)|+|C(x′′n, x

′′
1)|+|C(x′′1, x

′′
j )| =

(n + j − i) · δ. Since xi = x′′i , dmax = |C(xj , x
′′
j )| = |C(xi, x

′′
j )| − |C(xi, xj)| =

(n+ j − i) · δ − |C(xi, xj)|, which is equal to w(i, j).

As a summary, F2 is a canonical configuration.

Clearly, both rounds of our algorithm run in O(n) time. Combining Lemmas 3.3.2,

3.3.3, and 3.3.9, we have the following result.

Theorem 3.3.10. The cycle version of the points-spreading problem is solvable in O(n)

time.

Remark: One may verify that our algorithm for computing the canonical configu-

ration F2 essentially solves the following one-direction case of the cycle version problem:

Move the points of P counterclockwise such that any pair of points of P are at least δ

away from each other and the maximum counterclockwise moving distance of all points

of P is minimized.

3.4 The Facility-Location Movement Problem

In this section, we present our linear-time algorithm for the facility-location move-

ment problem. In this problem, we are given a set S of k “server” points and a set Q of

n “client” points sorted on a line L, and the goal is to move all servers and clients on L

such that each client co-locates with a server and the maximum moving distance of all

servers and clients is minimized.

As shown by Dumitrescu and Jiang [34], the problem is equivalent to finding k

intervals (i.e., line segments) on L such that each interval contains at least one server,

each client is covered by at least one interval, and the maximum length of these intervals
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is minimized. In the following, we will focus on solving this interval coverage problem

(also called constrained k-center problem in [34]).

Dumitrescu and Jiang [34] presented an O((n+ k) log(n+ k)) time algorithm using

dynamic programming. We discover a monotonicity property on their dynamic pro-

gramming scheme, and consequently improve their algorithm to O(n+ k) time. Below,

we first review the algorithm in [34] and then show our improvement.

3.4.1 Preliminaries

Without loss of generality, we assume L is the x-axis. For any two points p and q

on L with p to the left of q, we use [p, q] to denote the interval on L with left endpoint at

p and right endpoint at q. An easy observation is that there exists an optimal solution

consisting of k intervals in {[p, q] | p, q ∈ S ∪ P}. For any two points p and q on L, let

d(p, q) denote the distance between them.

Let S = {s1, s2, . . . , sk} be the set of servers sorted on L from left to right. Let

Q = {q1, q2, . . . , qn} be the set of clients sorted on L from left to right. For ease of

exposition, we assume no two points in S ∪Q are at the same location.

The servers of S partition the clients of Q into k + 1 subsets, defined as follows.

For each i ∈ [1, k− 1], let Qi be the subset of the clients of Q between si and si+1 on L.

In addition, we let Q0 be the subset of the clients of Q to the left of s1, and let Qk be

the subset of the clients of Q to the right of sk. Since both S and Q are already given

sorted, we can obtain the subsets Q0, Q1, . . . , Qk in O(n+ k) time. In the following, for

simplicity of discussion, we assume Qi is not empty for each i ∈ [0, k]. This implies that

the rightmost client qn is to the right of the rightmost server sk and the leftmost client

q1 is to the left of the leftmost server s1. For each i ∈ [1, k], let Q′
i = {si} ∪Qi.

3.4.2 A Dynamic Programming Algorithm

Consider any Q′
i with 1 ≤ i ≤ k. Let q be any point in Q′

i. Consider the subproblem

at q: Finding i intervals on L such that each interval contains at least one server of

{s1, s2, . . . , si}, each client to the left of q (including q if q 6= si) must be covered by at

least one interval, and the maximum length of these i intervals is minimized. Define α(q)

as the maximum length of the intervals in an optimal solution of the above subproblem
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at q. Our goal for the interval coverage problem is to solve the subproblem at qn and

compute the value α(qn).

For any point q ∈ S ∪ Q, we use r(q) to denote right neighboring point of q on L

in S ∪Q (i.e., the closest point of S ∪Q to q strictly to the right of q). Note that after

merging S and Q into one sorted list, we can obtain r(q) for each q ∈ S ∪Q in constant

time.

Initially, for each q ∈ Q′
1, α(q) = d(q1, q) (recall that q1 is to the left of s1).

In general, consider any q ∈ Q′
i for any 2 ≤ i ≤ k. It holds that

α(q) = min
q′∈Q′

i−1

max{α(q′), d(r(q′), q)}.

In words, in order to solve the subproblem at q, we use the i−1 intervals for the subprob-

lem at q′ along with an additional interval [r(q′), q]. To compute α(q), Dumitrescu and

Jiang [34] used the following observation: As we consider the points q′ of Q′
i−1 from left

to right, α(q′) is monotonically increasing and d(r(q′), q) is monotonically decreasing.

Hence, if α(q′) for all q′ ∈ Q′
i−1 are known, α(q) can be computed in O(log |Q′

i−1|) time

by binary search.

In this way, the value α(qn) can be computed in O((n+ k) log(n+ k)) time (more

precisely, O((n+ k) log n) time) and an optimal solution can be found correspondingly.

3.4.3 An Improved Implementation

We give an O(n + k) time implementation for the above dynamic programming

scheme. To this end, we find a new monotonicity property in Lemma 3.4.1.

Consider any point q ∈ Q′
i such that r(q) is still in Q′

i. For any point q′ ∈ Q′
i−1,

define f(q′) = max{α(q′), d(r(q′), q)}. Hence, α(q) = minq′∈Q′

i−1
f(q′). Let g(q) be the

point in Q′
i−1 such that α(q) = f(g(q)) (if there is more than one such point, we let g(q)

refer to the rightmost one).

Lemma 3.4.1. Either g(r(q)) = g(q) or g(r(q)) is strictly to the right of g(q).

Proof. We only give an “intuitive” proof. Recall that as we consider the points q′ of

Q′
i−1 from left to right, α(q′) is monotonically increasing and d(r(q′), q) is monotonically

decreasing. Intuitively, g(q) corresponds to the intersection of the two functions α(q′)
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q′

α(q′)

g(q) g(r(q))

d(r(q′), r(q))

d(r(q′), q)

Figure 3.2. Illustrating the three functions α(q′), d(r(q′), q), and d(r(q′), r(q)) for q′ ∈ Q′

i−1.

and d(r(q′), q) for q′ ∈ Q′
i−1 (e.g., see Fig. 3.2). Similarly, for the point r(q), which is still

in Q′
i, g(r(q)) corresponds to the intersection of the two functions α(q′) and d(r(q′), r(q))

for q′ ∈ Q′
i−1. An observation is that we can obtain the function d(r(q′), r(q)) by shifting

d(r(q′), q) upwards by the value d(q, r(q)) (e.g., see Fig. 3.2). This implies that g(r(q))

cannot be strictly to the left of g(q). The lemma thus follows.

Lemma 3.4.1 essentially says that if we consider all points q ∈ Q′
i from left to

right, then g(q) in Q′
i−1 are also sorted on L from left to right. Due to this monotonicity

property on g(q), we can compute g(q) and α(q) for all q ∈ Q′
i in a total ofO(|Q′

i−1|+|Q
′
i|)

time by scanning the points of Q′
i−1 from left to right. More specifically, suppose we

have computed g(q) and α(q) for some q ∈ Q′
i; then if r(q) is still in Q′

i, we can compute

g(r(q)) and α(r(q)) by scanning the points of Q′
i−1 starting from g(q) to the right.

In this way, the value α(qn) can be computed in O(n + k) time, and an optimal

solution can be found correspondingly. Hence, we have the following theorem.

Theorem 3.4.2. If all servers and clients are sorted on the line L, then the facility-location

movement problem can be solved in O(n+ k) time.

As an application, our algorithm for Theorem 3.4.2 can be used to solve the cycle

version of the same problem, where all servers and clients are given on a cycle. Du-

mitrescu and Jiang [34] showed that the cycle version can be solved by solving at most

(n + k)/k instances of the above line version of the problem (more specifically, there

must be an adjacent pair of servers such that there are at most n/k clients between

them; cutting the cycle between each adjacent pair of the above clients will result in an

instance of the line version, with a total of no more than (n+ k)/k instances). By using

their line-version algorithm of O((n + k) log(n + k)) time, Dumitrescu and Jiang [34]
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solved the cycle version of the problem in O( 1
k
(n+k)2 log(n+k)) time. By applying our

improved algorithm for the line version, the cycle version can be solved in O( 1
k
(n+ k)2)

time.
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CHAPTER 4

DISPERSING POINTS ON INTERVALS

4.1 Introduction

The problems of dispersing points have been extensively studied and can be clas-

sified to different categories by their different constraints and objectives, e.g., [41, 42,

45–48]. In this chapter, we consider problems of dispersing points on intervals in linear

domains including lines and cycles. The results in this chapter have been published in

a conference [20] and a journal [21].

4.1.1 Problem Definitions and Our Results

Let I be a set of n intervals on a line ℓ, and no two intervals of I intersect. The

problem is to find a point in each interval of I such that the minimum distance of any

pair of points is maximized. We assume the intervals of I are given sorted on ℓ. In this

chapter we present an O(n) time algorithm for this problem.

As an application of the problem, consider the following scenario. Suppose we are

given n pairwise disjoint intervals on ℓ and we want to build a facility on each interval.

As the facilities can interfere with each other if they are too close (e.g., if the facilities

are hazardous), the goal is to choose locations for these facilities such that the minimum

pairwise distance among these facilities is minimized. Clearly, this is an instance of our

problem.

We also consider the cycle version of the problem where the intervals of I are given

on a cycle C. The intervals of I are also pairwise disjoint and are given sorted cyclically

on C. Note that the distance of two points on C is the length of the shorter arc of C

between the two points. By making use of our “line version” algorithm, we solve this

cycle version problem in linear time as well.
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4.1.2 Related Work

To the best of our knowledge, we have not found any previous work on the two

problems studied in this chapter. Our problems essentially belong to a family of geo-

metric dispersion problems, which are NP-hard in general in two and higher dimensional

space. For example, Baur and Fekete [49] studied the problems of distributing a number

of points within a polygonal region such that the points are dispersed far away from

each other, and they showed that the problems cannot be approximated arbitrarily well

in polynomial time, unless P=NP.

Wang and Kuo [42] considered the following two problems. Given a set S of points

and a value d, find a largest subset of S in which the distance of any two points is at least

d. Given a set S of points and an integer k, find a subset of k points of S to maximize

the minimum distance of all pairs of points in the subset. It was shown in [42] that both

problems in 2D are NP-hard but can be solved efficiently in 1D. Refer to [50–54] for other

geometric dispersion problems. Dispersion problems in various non-geometric settings

were also considered [41,45–48]. These problems are in general NP-hard; approximation

and heuristic algorithms were proposed for them.

On the other hand, problems on intervals usually have applications in other areas.

For example, some problems on intervals are related to scheduling because the time

period between the release time and the deadline of a job or task in scheduling problems

can be considered as an interval on the line. From the interval point of view, Garey et

al. [6] studied the following problem on intervals: Given n intervals on a line, determine

whether it is possible to find a unit-length sub-interval in each input interval, such that

these sub-intervals do not intersect. An O(n logn) time algorithm was given in [6] for

this problem. The optimization version of the above problem was also studied [55, 56],

where the goal is to find a maximum number of intervals that contain non-intersecting

unit-length sub-intervals. Chrobak et al. [55] gave an O(n5) time algorithm for the

problem, and later Vakhania [56] improved the algorithm to O(n2 log n) time. The

online version of the problem was also considered [5]. Other optimization problems on

intervals have also been considered, e.g., see [6, 8, 10, 11].
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4.1.3 Our Approach

For the line version of the problem, our algorithm is based on a greedy strategy.

We consider the intervals of I incrementally from left to right, and for each interval, we

will “temporarily” determine a point in the interval. During the algorithm, we maintain

a value dmin, which is the minimum pairwise distance of the “temporary” points that

so far have been computed. Initially, we put a point at the left endpoint of the first

interval and set dmin =∞. During the algorithm, the value dmin will be monotonically

decreasing. In general, when the next interval is considered, if it is possible to put a point

in the interval without decreasing dmin, then we put such a point as far left as possible.

Otherwise, we put a point on the right endpoint of the interval. In the latter case, we

also need to adjust the points that have been determined temporarily in the previous

intervals that have been considered. We adjust these points in a greedy way such that

dmin decreases the least. A straightforward implementation of this approach can only

give an O(n2) time algorithm. In order to achieve the O(n) time performance, during

the algorithm we maintain a “critical list” L of intervals, which is a subset of intervals

that have been considered. This list has some properties that help us implement the

algorithm in O(n) time.

We should point out that our algorithm is fairly simple and easy to implement. In

contrast, the rationale of the idea is quite involved and it is not an easy task to argue

its correctness. Indeed, discovering the critical list is the most challenging work and it

is the key idea for solving the problem in linear time.

To solve the cycle version, the main idea is to convert the problem to a problem

instance on a line and then apply our line version algorithm. More specifically, we make

two copies of the intervals of I to a line and then apply our line version algorithm on

these 2n intervals on the line. The line version algorithm will find 2n points in these

intervals and we show that a particular subset of n consecutive points of them correspond

to an optimal solution for the original problem on C.

In the following, we will present our algorithms for the line version in Section 4.2.

The cycle version is discussed in Section 4.3. Section 4.4 concludes.
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4.2 The Line Version

Let I = {I1, I2, . . . , In} be the set of intervals sorted from left to right on ℓ. For

any two points of p and q on ℓ, we use |pq| to denote their distance. Our goal is to find

a point pi in Ii for each 1 ≤ i ≤ n, such that the minimum pairwise distance of these

points, i.e., min1≤i<j≤n |pipj |, is maximized.

For each interval Ii, 1 ≤ i ≤ n, we use li and ri to denote its left and right endpoints,

respectively. We assume ℓ is the x-axis. With a little abuse of notation, for any point

p ∈ ℓ, depending on the context, p may also refer to its coordinate on ℓ. Therefore, for

each 1 ≤ i ≤ n, it is required that li ≤ pi ≤ ri.

For simplicity of discussion, we make a general position assumption that no two

endpoints of the intervals of I have the same location (our algorithm can be easily

extended to the general case). Note that this implies li < ri for any interval Ii.

The rest of this section is organized as follows. In Section 4.2.1, we discuss some

observations. In Section 4.2.2, we give an overview of our algorithm. The details of the

algorithm are presented in Section 4.2.3. Finally, we discuss the correctness and analyze

the running time in Section 4.2.4.

4.2.1 Observations

Let P = {p1, p2, . . . , pn} be the set of sought points. Since all intervals are disjoint,

p1 < p2 < . . . < pn. Note that the minimum pairwise distance of the points of P is also

the minimum distance of all pairs of adjacent points.

Denote by dopt the minimum pairwise distance of P in an optimal solution, and dopt

is called the optimal objective value. We have the following lemma.

Lemma 4.2.1. dopt ≤
rj−li
j−i

for any 1 ≤ i < j ≤ n.

Proof. Assume to the contrary that this is not true. Then there exist i and j with

i < j such that dopt >
rj−li
j−i

. Consider any optimal solution OPT. Note that in OPT,

pi, pi+1, . . . , pj are located in the intervals Ii, Ii+1, . . . , Ij , respectively, and |pipj | ≥ dopt ·

(j − i). Hence, |pipj | > rj − li. On the other hand, since li ≤ pi and pj ≤ rj , it holds

that |pipj | ≤ rj − li. We thus obtain contradiction.

The preceding lemma leads to the following corollary.
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Corollary 4.2.2. Suppose we find a solution (i.e., a way to place the points of P ) in which

the minimum pairwise distance of P is equal to
rj−li
j−i

for some 1 ≤ i < j ≤ n. Then the

solution is an optimal solution.

Our algorithm will find such a solution as stated in the corollary.

4.2.2 The Algorithm Overview

Our algorithm will consider and process the intervals of I one by one from left

to right. Whenever an interval Ii is processed, we will “temporarily” determine pi in

Ii. We say “temporarily” because later the algorithm may change the location of pi.

During the algorithm, a value dmin and two indices i∗ and j∗ will be maintained such

that dmin = (rj∗ − li∗)/(j
∗ − i∗) always holds.

Initially, we set p1 = l1 and dmin = ∞, with i∗ = j∗ = 1. In general, suppose the

first i − 1 intervals have been processed; then dmin is equal to the minimum pairwise

distance of the points p1, p2, . . . , pi−1, which have been temporarily determined. In fact,

dmin is the optimal objective value for the sub-problem on the first i − 1 intervals.

During the execution of algorithm, dmin will be monotonically decreasing. After all

intervals are processed, dmin is dopt. When we process the next interval Ii, we temporarily

determine pi in a greedy manner as follows. If pi−1 + dmin ≤ li, we put pi at li. If

li < pi−1 + dmin ≤ ri, we put pi at pi−1 + dmin. If pi−1 + dmin > ri, we put pi at ri. In

the first two cases, dmin does not change. In the third case, however, dmin will decrease.

Further, in the third case, in order to make the decrease of dmin as small as possible, we

need to move some points of {p1, p2, . . . , pi−1} leftwards. By a straightforward approach,

this moving procedure can be done in O(n) time. But this will make the entire algorithm

run in O(n2) time.

To have any hope of obtaining an O(n) time algorithm, we need to perform the

above moving “implicitly” in O(1) amortized time. To this end, we need to find a way

to answer the following question: Which points of p1, p2, . . . , pi−1 should move leftwards

and how far should they move? To answer the question, the crux of our algorithm is to

maintain a “critical list” L of interval indices, which bears some important properties

that eventually help us implement our algorithm in O(n) time.
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︸ ︷︷ ︸
dmin

l1 l2 l3r1 r2 r3

p1 p2

Case 1: p2 + dmin ≤ l3

︸ ︷︷ ︸
dmin

l1 l2 l3r1 r2 r3

p1 p2

Case 2: l3 < p2 + dmin ≤ r3

︸ ︷︷ ︸
dmin

l1 l2 l3r1 r2 r3

p1 p2

Case 3: r3 < p2 + dmin

Figure 4.1. Illustrating the three cases when I3 is being processed.

In fact, our algorithm is fairly simple. The most “complicated” part is to use a

linked list to store L so that the following three operations on L can be performed

in constant time each: remove the front element; remove the rear element; add a new

element to the rear. Refer to Algorithm 1 for the pseudocode.

Although the algorithm is simple, the rationale of the idea is rather involved and it

is also not obvious to see the correctness. Indeed, discovering the critical list is the most

challenging task and the key idea for designing our linear time algorithm. To help in

understanding and give some intuition, below we use an example of only three intervals

to illustrate how the algorithm works.

Initially, we set p1 = l1, dmin =∞, i∗ = j∗ = 1, and L = {1}.

To process I2, we first try to put p2 at p1 + dmin. Clearly, p1 + dmin > r2. Hence,

we put p2 at r2. Since p1 is already at l1, which is the leftmost point of I1, we do not

need to move it. We update j∗ = 2 and dmin = r2 − l1. Finally, we add 2 to the rear of

L . This finishes the processing of I2.

Next we process I3. We try to put p3 at p2+dmin. Depending on whether p2+dmin

is to the left of I3, in I3, or to the right of I3, there are three cases (e.g., see Fig. 4.1).

1. If p2 + dmin ≤ l3, we set p3 = l3. We reset L to {3}. None of dmin, i
∗, and j∗

needs to be changed in this case.

2. If l3 < p2 + dmin ≤ r3, we set p3 = p2 + dmin. None of dmin, i
∗, and j∗ needs to be

changed. Further, the critical list L is updated as follows.

We first give some “motivation” on why we need to update L . Assume later in

the algorithm, say, when we process the next interval, we need to move both p2

and p3 leftwards simultaneously so that |p1p2| = |p2p3| during the moving (this is

for making dmin as large as possible). The moving procedure stops once either p2
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arrives at l2 or p3 arrives at l3. To determine which case happens first, it suffices

to determine whether l2 − l1 >
l3−l1
2 .

(a) If l2 − l1 > l3−l1
2 , then p2 will arrive at l2 first, after which p2 cannot move

leftwards any more in the rest of the algorithm but p3 can still move leftwards.

(b) Otherwise, p3 will arrive at l3 first, after which p3 cannot move leftwards any

more. However, although p2 can still move leftwards, doing that would not

help in making dmin larger.

We therefore update L as follows. If l2 − l1 > l3−l1
2 , we add 3 to the rear of L .

Otherwise, we first remove 2 from the rear of L and then add 3 to the rear.

3. If r3 < p2 + dmin, we set p3 = r3. Since |p2p3| < dmin, dmin needs to be decreased.

To make dmin as large as possible, we will move p2 leftwards until either |p1p2|

becomes equal to |p2p3| or p2 arrives at l2. To determine which event happens

first, we only need to check whether l2 − l1 >
r3−l1

2 .

(a) If l2 − l1 > r3−l1
2 , the latter event happens first. We set p2 = l2 and update

dmin = r3 − l2 (= |p2p3|), i
∗ = 2, and j∗ = 3. Finally, we remove 1 from the

front of L and add 3 to the rear of L , after which L = {2, 3}.

(b) Otherwise, the former event happens first. We set p2 = l1+
r3−l1

2 and update

dmin = (r3 − l1)/2 (= |p1p2| = |p2p3|) and j∗ = 3 (i∗ is still 1). Finally, we

update L in the same way as the above second case. Namely, if l2−l1 >
l3−l1
2 ,

we add 3 to the rear of L ; otherwise, we remove 2 from L and add 3 to the

rear.

One may verify that in any case the above obtained dmin is an optimal objective

value for the three intervals.

As another example, Fig. 4.2 illustrates the solution found by our algorithm on six

intervals.

4.2.3 The Algorithm

We are ready to present the details of our algorithm. For any two indices i < j, let

P (i, j) = {pi, pi+1, . . . , pj}.
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︸ ︷︷ ︸
dmin

︸ ︷︷ ︸
dmin

l1 l2 l3 l4 l5 l6r1 r2 r3 r4 r5 r6

p1 p2 p3 p4 p5 p6︸ ︷︷ ︸
dmin

︸ ︷︷ ︸
dmin

Figure 4.2. Illustrating the solution computed by our algorithm, with i∗ = 2 and j∗ = 5.

Initially we set p1 = l1, dmin = ∞, i∗ = j∗ = 1, and L = {1}. Suppose interval

i − 1 has just been processed for some i > 1. Let the current critical list be L =

{ks, ks+1, . . . kt} with 1 ≤ ks < ks+1 < · · · < kt ≤ i − 1, i.e., L consists of t − s + 1

sorted indices in [1, i− 1]. Our algorithm maintains the following invariants.

1. The “temporary” location of pi−1 is known.

2. dmin = (rj∗ − li∗)/(j
∗ − i∗) with 1 ≤ i∗ ≤ j∗ ≤ i− 1.

3. kt = i− 1.

4. pks = lks , i.e., pks is at the left endpoint of the interval Iks .

5. The locations of all points of P (1, ks) have been explicitly computed and finalized

(i.e., they will never be changed in the later algorithm).

6. For each 1 ≤ j ≤ ks, pj is in Ij .

7. The distance of every pair of adjacent points of P (1, ks) is at least dmin.

8. For each j with ks +1 ≤ j ≤ i− 1, pj is “implicitly” set to lks + dmin · (j− ks) and

pj ∈ Ij . In other words, the distance of every pair of adjacent points of P (ks, i−1)

is exactly dmin.

9. The critical list L has the following priority property: If L has more than one

element (i.e., s < t), then for any h with s ≤ h ≤ t− 1, Inequality (4.1) holds for

any j with kh + 1 ≤ j ≤ i− 1 and j 6= kh+1.

lkh+1
− lkh

kh+1 − kh
>

lj − lkh
j − kh

. (4.1)

We give some intuition on what the priority property implies. Suppose we move all

points in P (ks+1, i− 1) leftwards simultaneously such that the distances between
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all adjacent pairs of points of P (ks, i − 1) keep the same (by the above eighth

invariant, they are the same before the moving). Then, Inequality (4.1) with

h = s implies that pks+1 is the first point of P (ks+1, i− 1) that arrives at the left

endpoint of its interval. Once pks+1 arrives at the interval left endpoint, suppose

we continue to move the points of P (ks+1+1, i− 1) leftwards simultaneously such

that the distances between all adjacent pairs of points of P (ks+1, i − 1) are the

same. Then, Inequality (4.1) with h = s+1 makes sure that pks+2 is the first point

of P (ks+1 + 1, i− 1) that arrives at the left endpoint of its interval. Continuing

the above can explain the inequality for h = s+ 2, s+ 3, . . . , t− 1.

The priority property further leads to the following observation.

Observation 4.2.3. For any h with s ≤ h ≤ t− 2, the following holds:

lkh+1
− lkh

kh+1 − kh
>

lkh+2
− lkh+1

kh+2 − kh+1
.

Proof. Note that kh+1 ≤ kh+1 < kh+2 ≤ i−1. Let j = kh+2. By Inequality (4.1),

we have

lkh+1
− lkh

kh+1 − kh
>

lkh+2
− lkh

kh+2 − kh
. (4.2)

Note that for any four positive numbers a, b, c, d such that a < c, b < d, and

a
b
> c

d
, it holds that a

b
> c−a

d−b
. Applying this to Inequality (4.2) will obtain the

observation.

Remark.. By Corollary 4.2.2, Invariants (2), (6), (7), and (8) together imply that

dmin is the optimal objective value for the sub-problem on the first i− 1 intervals.

One may verify that initially after I1 is processed, all invariants trivially hold (we

finalize p1 at l1). In the following we describe the general step of our algorithm to

process the interval Ii. We will also show that all algorithm invariants hold after Ii is

processed.

Depending on whether pi−1 + dmin is to the left of Ii, in Ii, or to the right of Ii,

there are three cases.
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The case pi−1 + dmin ≤ li

In this case, pi−1 + dmin is to the left of Ii. We set pi = li and finalize it. We do

not change dmin, i
∗, or j∗. Further, for each j ∈ [ks + 1, i − 1], we explicitly compute

pj = lks + dmin · (j − ks) and finalize it. Finally, we reset L = {i}.

Lemma 4.2.4. In the case pi−1 + dmin ≤ li, all algorithm invariants hold after Ii is

processed.

Proof. Recall that L = {i} after Ii is processed. Hence, ks = kt = i. For the sake

of differentiation, we use L ′ = {k′s, k
′
s+1, . . . , k

′
t′} to denote the critical list before we

process Ii.

1. Since pi is known, Invariant (1) hold.

2. For Invariant (2), since the same invariant holds before we process Ii and none of

dmin, i
∗, and j∗ is changed when we process Ii, Invariant (2) trivially holds after

we process Ii.

3. Since kt = i, the third invariant holds.

4. Recall that pks = pi = li, which is the fourth invariant.

5. To prove Invariant (5), since the same invariant holds before Ii is processed, it is

sufficient to show that the points of P (k′s + 1, i) have been explicitly computed

and finalized in the step of processing Ii, which is clearly true according to our

algorithm.

6. To prove Invariant (6), since the same invariant holds before Ii is processed, it is

sufficient to show that each point pj of P (k′s + 1, i) is in Ij .

Indeed, consider any j ∈ [k′s +1, i]. If j = i, then since pj = lj , it is true that pj is

in Ij . If j < i, then by Invariant (8) of L ′, lk′s+dmin ·(j−k′s) is in Ij . According to

our algorithm, in the step of processing Ii, pj is explicitly set to lk′s +dmin ·(j−k′s).

Hence, pj is in Ij .

7. To prove Invariant (7), since the same invariant holds before Ii is processed, it

is sufficient to show that |pi−1pi| ≥ dmin, which is clearly true according to our

algorithm.
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8. Invariant (8) trivially holds since ks + 1 > i (i.e., there is no j such that ks + 1 ≤

j ≤ i).

9. Invariant (9) also holds since L has only one element.

This proves that all algorithm invariants hold. The lemma thus follows.

The case li < pi−1 + dmin ≤ ri

In this case, pi−1+dmin is in Ii. We set pi = pi−1+dmin. We do not change dmin, i
∗,

or j∗. We update the critical list L by the following rear-processing procedure (because

the elements of L are considered from the rear to the front).

If s = t, i.e., L only has one element, then we simply add i to the rear of L .

Otherwise, we first check whether the following inequality is true.

lkt − lkt−1

kt − kt−1
>

li − lkt−1

i− kt−1
. (4.3)

If it is true, then we add i to the end of L .

If it is not true, then we remove kt from L and decrease t by 1. Next, we continue

to check whether Inequality (4.3) (with the decreased t) is true and follow the same

procedure until either the inequality becomes true or s = t. In either case, we add i to

the end of L . Finally, we increase t by 1 to let kt refer to i.

This finishes the rear-processing procedure for updating L .

Lemma 4.2.5. In the case li < pi−1 + dmin ≤ ri, all algorithm invariants hold after Ii is

processed.

Proof. For the sake of differentiation, we use L ′ = {k′s, k
′
s+1, . . . , k

′
t′} to denote the

critical list before we process Ii. After Ii is processed, we have L = {ks, ks+1, . . . , kt}.

According to our algorithm, L is obtained from L ′ by possibly removing some elements

of L ′ from the rear and then adding i to the end. Hence, kh = k′h for any h ∈ [s, t− 1]

and kt = i. In particular, ks = k′s since L has at least two elements (i.e., s < t).

1. Since the “temporary” location of pi is computed, the first invariant holds.

2. The second invariant trivially holds since none of dmin, i
∗, and j∗ is changed when

we process Ii.
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3. Since kt = i, Invariant (3) holds.

4. To prove Invariant (4), we need to show that pks = lks . Since the same invariant

holds for L ′, pk′s = lk′s . Due to ks = k′s, we obtain pks = lks .

5. Invariant (5) trivially holds since ks = k′s and the same invariant holds before Ii

is processed.

6. Similarly, since ks = k′s, Invariant (6) holds.

7. Similarly, since ks = k′s, Invariant (7) holds.

8. To prove Invariant (8), we need to show that pj is implicitly set to lks+dmin ·(j−ks)

and pj ∈ Ij for each j ∈ [ks + 1, i].

Recall that ks = k′s and dmin does not change when we process Ii. Since the same

invariant holds before Ij is processed, for j ∈ [ks + 1, i − 1], it is true that pj is

implicitly set to lks + dmin · (j − ks) and pj ∈ Ij . For j = i, since pi = pi−1 + dmin

and pi ∈ Ii, pi = lks + dmin · (i− ks).

Hence, this invariant also holds.

The above has proved that the first eight invariants hold. It remains to prove

the last invariant, i.e., the priority property of L . Our goal is to show that for any

h ∈ [s, t− 1], Inequality (4.1) holds for any j ∈ [kh + 1, i] with j 6= kh+1.

Consider any h ∈ [s, t − 1] and any j ∈ [kh + 1, i] with j 6= kh+1. Since h ≤ t − 1,

k′h = kh. Depending on whether h ≤ t− 2 or h = t− 1, there are two cases.

The case h ≤ t− 2.. In this case, h+ 1 ≤ t− 1 and thus k′h+1 = kh+1.

If j ≤ i − 1, then j ∈ [kh + 1, i − 1] = [k′h + 1, i − 1]. Since the priority property

holds for L ′, we have
lk′

h+1
−lk′

h

k′
h+1−k′

h

>
lj−lk′

h

j−k′
h

. As k′h = kh and k′h+1 = kh+1, Inequality (4.1)

hold for j and h.

If j = i, then Inequality (4.1) can be proved with the help of Observation 4.2.3, as

follows.

Since h ≤ t − 2 and s ≤ h < t − 1, ks is not kt−1. Since kt−1 is not removed from

L , according to our algorithm, Inequality (4.3) must be true with replacing t by t− 1,

i.e.,
lkt−1

−lkt−2

kt−1−kt−2
>

li−lkt−2

i−kt−2
.
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Further, recall that km = k′m for all m ∈ [s, t− 1]. Due to the priority property of

L ′ and by Observation 4.2.3, we obtain
lkh+1

−lkh
kh+1−kh

>
lkt−1

−lkt−2

kt−1−kt−2
.

Combining the above two inequalities gives us

lkh+1
− lkh

kh+1 − kh
>

li − lkt−2

i− kt−2
. (4.4)

Depending on whether h < t− 2, there are further two subcases.

1. If h = t − 2, then Inequality (4.4) is Inequality (4.1) for j = i. So we are done

with the proof.

2. If h < t− 2, then, kh < kt−2 ≤ i− 1. Recall that k′h = kh and k′t−2 = kt−2. Due to

the priority property of L ′ and by setting j = k′t−2 in Inequality (4.1), we obtain
lk′

h+1
−lk′

h

k′
h+1−k′

h

>
lk′

t−2
−lk′

h

k′t−2−k′
h

.

Again, because k′h = kh, k
′
h+1 = kh+1, and k′t−2 = kt−2, we have

lkh+1
− lkh

kh+1 − kh
>

lkt−2 − lkh
kt−2 − kh

. (4.5)

Note that for any positive numbers x, a, b, c, d such that x > a
b
and x > c

d
, it

always holds that x > a+c
b+d

. Applying this to Inequalities (4.4) and (4.5) leads to

lkh+1
−lkh

kh+1−kh
>

li−lkh
i−kh

, which is Inequality (4.1) for j = i.

This proves Inequality (4.1) for the case h ≤ t− 2.

The case h = t− 1.. In this case, kh+1 = kt = i. Due to j 6= kh+1, j 6= i.

If none of the elements of L ′ was removed when we updated L , i.e., L = L ′∪{i},

then kt−1 = k′t′ . Since k′t′ = i − 1, kh = kt−1 = k′t′ = i − 1. Therefore, kh + 1 = i, and

there is no j with kh + 1 ≤ j ≤ i and j 6= kh+1 (= kt = i). Hence, we have nothing to

prove for Inequality (4.1) in this case.

In the following, we assume at least one element was removed from L ′ when we

updated L . Since k′t−1 = kt−1 is the last element of L ′ remaining in L , k′t is the
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last element removed from L ′ when we process Ii. According to the algorithm, k′t was

removed because Inequality (4.3) was not true, i.e., the following holds

lk′t − lk′t−1

k′t − k′t−1

≤
li − lk′t−1

i− k′t−1

. (4.6)

Recall that kh + 1 ≤ j ≤ i, j 6= i, and kh = kt−1 = k′t−1. Due to the priority

property of L ′ and by setting h = t− 1 in Inequality (4.1), we obtain

lk′t − lk′t−1

k′t − k′t−1

>
lj − lk′t−1

j − k′t−1

. (4.7)

Combining Inequalities (4.6) and (4.7), we obtain
li−lk′

t−1

i−k′t−1
>

lj−lk′
t−1

j−k′t−1
, which is In-

equality (4.1) for h and j since h = t− 1, k′t = kt = i, and k′t−1 = kt−1.

The above proves that the priority property holds for the updated list L .

This proves that all algorithm invariants hold after Ii is processed.

The case pi−1 + dmin > ri

In this case, pi−1 + dmin is to the right of Ii. We first set pi = ri. Then we perform

the following front-processing procedure (because it processes the elements of L from

the front to the rear).

If L has only one element (i.e., s = t), then we stop.

Otherwise, we check whether the following is true

lks+1 − lks
ks+1 − ks

>
ri − lks
i− ks

. (4.8)

If it is true, then we perform the following finalization step: for each j = ks+1, ks+

2, . . . , ks+1, we explicitly compute pj = lks +
lks+1

−lks
ks+1−ks

· (j − ks) and finalize it. Further,

we remove ks from L and increase s by 1. Next, we continue the same procedure as

above (with the increased s), i.e., first check whether s = t, and if not, check whether

Inequality (4.8) is true. The front-processing procedure stops if either s = t (i.e., L

only has one element) or Inequality (4.8) is not true.

After the front-processing procedure, we update dmin = (ri − lks)/(i− ks), i
∗ = ks,

and j∗ = i. Finally, we update the critical list L using the rear-processing procedure,
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in the same way as in the above second case where li < pi−1 + dmin ≤ ri. We also

“implicitly” set pj = lks + dmin · (j − ks) for each j ∈ [ks + 1, i] (this is only for the

analysis and our algorithm does not do so explicitly).

This finishes the processing of Ii.

Lemma 4.2.6. In the case pi−1 + dmin > ri, all algorithm invariants hold after Ii is

processed.

Proof. Let L = {ks, ks+1, . . . , kt} be the critical list after Ii is processed. For the sake

of differentiation, we use L ′ = {k′s, k
′
s+1, . . . , k

′
t′} to denote the critical list before we

process Ii.

According to our algorithm, L is obtained from L ′ by the following two main

steps: (1) the front-processing step that possibly removes some elements of L ′ from the

front; (2) the rear-processing step that possibly removes some elements of L ′ from the

rear and then adds i to the rear. Hence, kt = i.

Let w be the index of L ′ such that ks = k′w. If w 6= s, then k′s, k
′
s+1, . . . , k

′
w−1 are

not in L .

The first invariant.. Since the “temporary” location of pi is computed with pi = ri,

the first invariant holds.

The second invariant.. By our way of updating dmin, i∗, and j∗, it holds that

dmin = (rj∗ − li∗)/(j
∗ − i∗), with 1 ≤ i∗ ≤ j∗ ≤ i. Hence, the invariant holds.

The third invariant.. Since kt = i, the third invariant trivially holds.

The fourth invariant.. We need to show that pks = lks .

If s = w, then ks = k′s and ks is also the first element of L ′. Since the fourth

invariant holds before Ii is processed, pk′s = lk′s . Thus, we obtain pks = lks .

If s 6= w, then when k′w−1 was removed from L in the algorithm, the finalization

step explicitly computed pj = lk′w−1
+

lk′w
−lk′

w−1

k′w−k′w−1
· (j − k′w−1) for each j ∈ [k′w−1 + 1, k′w].

Once can verify that pk′w = lk′w . Since k′w = ks, we obtain pks = lks .

This proves that the fourth invariant also holds.

The fifth invariant.. Our goal is to show that all points in P (1, ks) have been

finalized. Since all points in P (1, k′s) have been finalized before we process Ii, it is
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sufficient to show that the points for P (k′s+1, ks) were finalized in the step of processing

Ii.

If w = s, then ks = k′s and we are done with the proof. Otherwise, for each

h ∈ [s, w − 1], when k′h was removed from L , the finalization step finalized the points

in P (k′h + 1, k′h+1). Hence, all points of P (k′s + 1, k′w) (= P (k′s + 1, ks)) were finalized.

Hence, the fifth invariant holds.

The sixth invariant.. Our goal is to show that for any pj with j ∈ [1, ks], pj is in

Ij .

Note that the position of pj is not changed for any j ≤ k′s when we process the

interval Ii. Since the same invariant holds before we process Ii, pj is in Ij for any

j ∈ [1, k′s]. Hence, if ks = k′s, we are done with proof. Otherwise, it is sufficient to show

that pj is in Ij for any j ∈ [ks′ + 1, ks].

For j = ks, since pj = lj , it is trivially true that pj is in Ij . In the following, we

assume j ∈ [k′h, k
′
h+1) for some h ∈ [s, w − 1] (recall that ks = k′w).

According to our algorithm, pj = lk′
h
+

lk′
h+1

−lk′
h

k′
h+1−k′

h

· (j − k′h). Let d′min be the value

of dmin before Ii is processed. Let p′j be the original “temporary” location of pj before

Ii is processed. Since the eighth invariant holds before Ii is processed, we have p′j =

lk′s + d′min · (j − k′s) and p′j ∈ Ij .

We first show that pj ≤ p′j , i.e., comparing with its original location, pj has been

moved leftwards in the step of processing Ii. This can be easily seen from the intuitive

understanding of the algorithm. We provide a formal proof below.

Since Invariant (8) holds before Ii is processed, pk′s+1
was implicitly set to lk′s +

d′min · (k
′
s+1 − k′s), which is in Ik′s+1

. Hence, lk′s + d′min · (k
′
s+1 − k′s) ≥ lk′s+1

. Thus,

d′min ≥
lk′

s+1
−lk′s

k′s+1−k′s
. Consequently, p′j = lk′s + d′min · (j − k′s) ≥ lk′s +

lk′
s+1

−lk′s

k′s+1−k′s
· (j − k′s).

Since the priority property holds for L ′, by Observation 4.2.3,
k′s+1−k′s
lk′

s+1
−lk′s
≥

lk′
h+1

−lk′
h

k′
h+1−k′

h

.

Hence, pj = lk′
h
+

lk′
h+1

−lk′
h

k′
h+1−k′

h

· (j − k′h) ≤ lk′
h
+

k′s+1−k′s
lk′

s+1
−lk′s
· (j − k′h).

Now to prove pj ≤ p′j , it is sufficient to prove
k′s+1−k′s
lk′

s+1
−lk′s

≥
lk′

h
−lk′s

k′
h
−k′s

, which is true by

Inequality (4.1) (replacing h and j in Inequality (4.1) by s and k′h, respectively) due to

the priority property of L ′.
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The above proves that pj ≤ p′j . Since p′j ∈ Ij , p
′
j ≤ rj , and thus, pj ≤ rj . To prove

pj ∈ Ij , it remains to prove pj ≥ lj .

If j = k′h, then pj = lj and we are done with the proof. Otherwise, due to the

priority property of L ′ and by applying Inequality (4.1), we have
lk′

h+1
−lk′

h

k′
h+1−k′

h

>
lj−lk′

h

j−k′
h

.

Therefore, pj = lk′
h
+

lk′
h+1

−lk′
h

k′
h+1−k′

h

· (j − k′h) > lj .

This proves that pj is in Ij . Thus, the sixth invariant holds.

The seventh invariant.. The goal is to show that the distance of any pair of adjacent

points of P (1, ks) is at least dmin.

Let d′min be the value of dmin before we process Ii. We first prove d′min > dmin.

Indeed, if ks = k′s, then since the eighth invariant holds before Ii is processed,

d′min =
p′i−1−lks
i−1−ks

, where p′i−1 is the location of pi−1 before we process Ii. Recall that

p′i−1 + d′min > ri. Hence, we have d′min >
ri−d′min−lks

i−1−ks
. We can further deduce d′min >

ri−lks
i−ks

. Since dmin =
ri−lks
i−ks

, we obtain d′min > dmin.

If ks 6= k′s, since k
′
w−1 was removed from L , Inequality (4.8) must hold for s = w−1,

i.e.,
lk′w

−lk′
w−1

k′w−k′w−1
>

ri−lk′
w−1

i−k′w−1
. Note that for any four positive numbers a, b, c, d with a

b
> c

d
,

a < c, and b < d, it always holds that a
b
> c−a

d−b
. Applying this to the above inequality

gives us
lk′w

−lk′
w−1

k′w−k′w−1
>

ri−lk′w
i−k′w

.

Since dmin =
ri−lks
i−ks

and ks = k′w, we obtain
lk′w

−lk′
w−1

k′w−k′w−1
> dmin.

On the other hand, before Ii is processed, according to the eighth invariant, lk′s +

d′min · (k
′
s+1 − k′s) is in Ik′s+1

. Hence, lk′s + d′min · (k
′
s+1 − k′s) ≥ lk′s+1

and d′min ≥
lk′

s+1
−lk′s

k′s+1−k′s
.

Further, due to the priority property of L ′ and by Observation 4.2.3, it holds that

k′s+1−k′s
lk′

s+1
−lk′s
≥

lk′w
−lk′

w−1

k′w−k′w−1
.

Combining our above discussions, we obtain d′min > dmin.

Next, we proceed to prove Invariant (7).

Since Invariant (7) holds before Ii is processed, the distance of every pair of adjacent

points of P (1, k′s) is at least d′min. To prove that the distance of every pair of adjacent

points of P (1, ks) is at least dmin, since d′min > dmin, if ks = k′s, then we are done with

the proof, otherwise it is sufficient to show that the distance of every pair of adjacent

points of P (k′s, ks) is at least dmin.
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Consider any h ∈ [s, w−1]. When k′h is removed from L , according to the finaliza-

tion step, every pair of adjacent points of P (k′h, k
′
h+1) is

lk′
h+1

−lk
h′

k′
h+1−k′

h

. Due to the priority

property of L ′ and by Observation 4.2.3,
lk′

h+1
−lk′

h

k′
h+1−k′

h

≥
lk′w

−lk′
w−1

k′w−k′w−1
. Recall that we have

proved above that
lk′w

−lk′
w−1

k′w−k′w−1
> dmin. Hence, we obtain that the distance of every pair

of adjacent points of P (k′h, k
′
h+1) is at least dmin. This further implies that the distance

of every pair of adjacent points of P (k′s, k
′
w) (= P (k′s, ks)) is at least dmin.

Hence, the seventh invariant holds.

The eighth invariant.. Consider any j ∈ [ks, i]. Based on our algorithm, pj is

implicitly set to lks + dmin · (j − ks). Hence, to prove the invariant, it remains to show

that pj is in Ij .

If j = i, then since pi = ri, it is true that pj ∈ Ij . In the following, we assume

j ≤ i− 1.

Let p′j be the “temporary” location of pj before Ii is processed. Since the eighth

invariant holds before Ii is processed, p′j = lk′s + d′min · (j − k′s) and p′j ∈ Ij . Again, let

d′min be the value of dmin before we process Ii. Recall that we have proved above that

d′min > dmin.

We claim that pj ≤ p′j . Indeed, if ks = k′s, then pj ≤ p′j follows from d′min > dmin.

Otherwise, note that p′j = lk′s + d′min · (k
′
w − k′s) + d′min · (j − k′w) = p′k′w + d′min · (j − k′w),

where p′k′w is the “temporary” location of pk′w before Ii is processed. Since k′w = ks, we

have p′j = p′ks + d′min · (j − ks).

Since Invariant (8) holds before Ii is processed, p′ks is in Iks . Hence, p′ks ≥ lks .

Therefore, we obtain p′j ≥ lks + d′min · (j − ks) ≥ lks + dmin · (j − ks) = pj .

This proves the above claim that pj ≤ p′j .

Since p′j ∈ Ij and pj ≤ p′j , we obtain pj ≤ rj . To prove pj ∈ Ij , it remains to show

pj ≥ lj , as follows.

According to our algorithm, ks was not removed from L either because ks is the

last element of L ′ or because Inequality (4.8) is not true.

In the former case, it holds that ks = i − 1. Since j ∈ [ks, i − 1], j = ks. Due to

pks = lks , we obtain pj ≥ lj .

In the latter case, ks is not the last element of L ′ that is in L . Since k′w = ks,

we have k′w+1 = ks+1. Due to the priority property of L ′ and by Inequality (4.1) (with
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h = w), we have
lk′

w+1
−lk′w

k′w+1−k′w
≥

lj−lk′w
j−k′w

. Since ks = k′w and ks+1 = k′w+1, it holds that

lks+1
−lks

ks+1−ks
≥

lj−lks
j−ks

. Since Inequality (4.8) is not true, we further obtain
ri−lks
i−ks

≥
lj−lks
j−ks

.

Recall that dmin =
ri−lks
i−ks

. Hence, dmin ≥
lj−lks
j−ks

and pj = lks + dmin · (j − ks) ≥ lj .

This proves that the eighth invariant holds.

The ninth invariant.. Our goal is to prove that the priority property holds for L .

Since the priority property holds for L ′, intuitively we only need to take care of the

“influence” of i (i.e., some elements were possibly removed from the rear of L ′ and i was

added to the rear in the rear-processing procedure). Note that although some elements

were also possibly removed from the front of L ′ in the front-processing procedure, this

does not affect the priority property of the remaining elements of the list. Hence, to

prove that the priority property holds for L , we have exactly the same situation as in

Lemma 4.2.5. Hence, we can use the same proof as that for Lemma 4.2.5. We omit the

details.

This proves that all algorithm invariants hold after Ii is processed. The lemma thus

follows.

The above describes a general step of the algorithm for processing the interval Ii.

In addition, if i = n and ks < n, we also need to perform the following additional

finalization step: for each j ∈ [ks + 1, n], we explicitly compute pj = lks + dmin · (j − ks)

and finalize it. This finishes the algorithm.

4.2.4 The Correctness and the Time Analysis

Based on the algorithm invariants and Corollary 4.2.2, the following lemma proves

the correctness of the algorithm.

Lemma 4.2.7. The algorithm correctly computes an optimal solution.

Proof. Suppose P = {p1, p2, . . . , pn} is the set of points computed by the algorithm.

Let dmin be the value and L = {ks, ks+1, . . . , kt} be the critical list after the algorithm

finishes.

We first show that for each j ∈ [1, n], pj is in Ij . According to the sixth algorithm

invariant of L , for each j ∈ [1, ks], pj is in Ij . If ks = n, then we are done with the

proof. Otherwise, for each j ∈ [ks + 1, n], according to the additional finalization step
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after In is processed, pj = lks + dmin · (j − ks), which is in Ij by the eighth algorithm

invariant.

Next we show that the distance of every pair of adjacent points of P is at least

dmin. By the seventh algorithm invariant, the distance of every pair of adjacent points

of P (1, ks) is at least dmin. If ks = n, then we are done with the proof. Otherwise, it is

sufficient to show that the distance of every pair of adjacent points of P (ks, n) is at least

dmin, which is true according to the additional finalization step after In is processed.

The above proves that P is a feasible solution with respect to dmin, i.e., all points of

P are in their corresponding intervals and the distance of every pair of adjacent points

of P is at least dmin.

To show that P is also an optimal solution, based on the second algorithm invariant,

it holds that dmin =
rj∗−li∗

j∗−i∗
. By Corollary 4.2.2, dmin is an optimal objective value.

Therefore, P is an optimal solution.

The running time of the algorithm is analyzed in the proof of Theorem 4.2.8. The

pseudocode is given in Algorithm 1.

Theorem 4.2.8. Our algorithm computes an optimal solution of the line version of points

dispersion problem in O(n) time.

Proof. In light of Lemma 4.2.7, we only need to show that the running time of the

algorithm is O(n).

To process an interval Ii, according to our algorithm, we only spend O(1) time in

addition to two possible procedures: a front-processing procedure and a rear-processing

procedure. Note that the front-processing procedure may contain several finalization

steps. There may also be an additional finalization step after In is processed. For the

purpose of analyzing the total running time of the algorithm, we exclude the finalization

steps from the front-processing procedures.

For processing Ii, the front-processing procedure (excluding the time of the final-

ization steps) runs in O(k+1) time where k is the number of elements removed from the

front of the critical list L . An easy observation is that any element can be removed from

L at most once in the entire algorithm. Hence, the total time of all front-processing

procedures in the entire algorithm is O(n).
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Algorithm 1: The algorithm for the line version of the problem

Input: n intervals I1, I2, . . . , In sorted from left to right on ℓ
Output: n points p1, p2, . . . , pn with pi ∈ Ii for each 1 ≤ i ≤ n

1 p1 ← l1, i
∗ ← 1, j∗ ← 1, dmin ←∞, L ← {1};

2 for i← 2 to n do

3 if pi−1 + dmin ≤ li then
4 pi ← li, L ← {i};
5 else

6 if li < pi−1 + dmin ≤ ri then
7 pi ← pi−1 + dmin;
8 else /* pi−1 + dmin > ri */

9 pi ← ri, ks ← the front element of L ;
10 while |L | > 1 do /* the front-processing procedure */

11 if
lks+1

−lks
ks+1−ks

>
ri−lks
i−ks

then

12 for j ← ks + 1 to ks+1 do

13 pj ← lks +
lks+1

−lks
ks+1−ks

· (j − ks);

14 remove ks from L , ks ← the front element of L ;

15 else

16 break;

17 i∗ ← ks, j
∗ ← i, dmin ←

rj∗−li∗

j∗−i∗
;

18 while |L | > 1 do /* the rear-processing procedure */

19 kt ← the rear element of L ;

20 if
lkt−lkt−1

kt−kt−1
>

li−lkt−1

i−kt−1
then break ;

21 remove kt from L ;

22 add i to the rear of L ;

23 ks ← the front element of L ;
24 if ks < n then

25 for j ← ks + 1 to n do

26 pj ← lks + dmin · (j − ks);

Similarly, for processing Ii, the rear-processing procedure runs in O(k + 1) time

where k is the number of elements removed from the rear of L . Again, since any

element can be removed from L at most once in the entire algorithm, the total time of

all rear-processing procedures in the entire algorithm is O(n).

Clearly, each point is finalized exactly once in the entire algorithm. Hence, all

finalization steps in the entire algorithm together take O(n) time.

Therefore, the algorithm runs in O(n) time in total.
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4.3 The Cycle Version

In the cycle version, the intervals of I = {I1, I2, . . . , In} in their index order are

sorted cyclically on C. Recall that the intervals of I are pairwise disjoint.

For each i ∈ [1, n], let li and ri denote the two endpoints of Ii, respectively, such

that if we move from li to ri clockwise on C, we will always stay on Ii.

For any two points p and q on C, we use |−→pq| to denote the length of the arc of C

from p to q clockwise, and thus the distance of p and q on C is min{|−→pq|, |−→qp|}.

For each interval Ii ∈ I, we use |Ii| to denote its length; note that |Ii| = |
−→
liri|. We

use |C| to denote the total length of C.

Our goal is to find a point pi in Ii for each i ∈ [1, n] such that the minimum distance

between any pair of these points, i.e., min1≤i<j≤n |pipj |, is maximized.

Let P = {p1, p2, . . . , pn} and let dopt be the optimal objective value. It is obvi-

ous that dopt ≤
|C|
n
. Again, for simplicity of discussion, we make a general position

assumption that no two endpoints of the intervals have the same location on C.

4.3.1 The Algorithm

The main idea is to convert the problem to a problem instance on a line and then

apply our line version algorithm. More specifically, we copy all intervals of I twice to a

line ℓ and then apply our line version algorithm on these 2n intervals. The line version

algorithm will find 2n points in these intervals. We will show that a subset of n points

in n consecutive intervals correspond to an optimal solution for our original problem on

C. The details are given below.

Let ℓ be the x-axis. For each 1 ≤ i ≤ n, we create an interval I ′i = [l′i, r
′
i] on ℓ with

l′i = |
−→
l1li| and r′i = l′i + |Ii|, which is actually a copy of Ii. In other words, we first put

a copy I ′1 of I1 at ℓ such that its left endpoint is at 0 and then we continuously copy

other intervals to ℓ in such a way that the pairwise distances of the intervals on ℓ are the

same as the corresponding clockwise distances of the intervals of I on C. The above only

makes one copy for each interval of I. Next, we make another copy for each interval of

I in a similar way: for each 1 ≤ i ≤ n, we create an interval I ′i+n = [l′i+n, r
′
i+n] on ℓ with

l′i+n = l′i + |C| and r′i+n = r′i + |C|. Let I
′ = {I ′1, I

′
2, . . . , I

′
2n}. Note that the intervals of

I ′ in their index order are sorted from left to right on ℓ.
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We apply our line version algorithm on the intervals of I ′. However, a subtle

change is that here we initially set dmin = |C|
n

instead of dmin = ∞. The rest of the

algorithm is the same as before. We want to emphasize that this change on initializing

dmin is necessary to guarantee the correctness of our algorithm for the cycle version. A

consequence of this change is that after the algorithm finishes, if dmin is still equal to

|C|
n
, then |C|

n
may not be the optimal objective value for the above line version problem,

but if dmin < |C|
n
, then dmin must be the optimal objective value. As will be clear

later, this does not affect our final solution for our original problem on the cycle C. Let

P ′ = {p′1, . . . , p
′
2n} be the points computed by the line version algorithm with p′i ∈ I ′i for

each i ∈ [1, 2n].

Let k be the largest index in [1, n] such that p′k = l′k. Note that such an index

k always exists since p′1 = l′1. Due to that we initialize dmin = |C|
n

in our line version

algorithm, we can prove the following lemma.

Lemma 4.3.1. It holds that p′k+n = l′k+n.

Proof. We prove the lemma by contradiction. Assume to the contrary that p′k+n 6= l′k+n.

Since p′k+n ∈ I ′k+n, it must be that p′k+n > l′k+n. Let p′i be the rightmost point of P ′

to the left of p′k+n such that p′i is at the left endpoint of its interval I ′i. Depending on

whether i ≤ n, there are two cases.

1. If i > n, then let j = i − n. Since i < k + n, j < k. We claim that |p′jp
′
k| <

|p′j+np
′
n+k|.

Indeed, since p′j ≥ l′j and p′k = l′k, we have |p′jp
′
k| ≤ |l

′
jl
′
k|. Note that |l′jl

′
k| =

|l′j+nl
′
k+n|. On the other hand, since p′j+n = l′j+n and p′k+n > l′k+n, it holds that

|p′j+np
′
k+n| > |l

′
j+nl

′
k+n|. Therefore, the claim follows.

Let d be the value of dmin right before the algorithm processes I ′i. Since during the

execution of our line version algorithm dmin is monotonically decreasing, it holds

that |p′jp
′
k| ≥ d·(k−j). Further, by the definition of i, for anym ∈ [i+1, k+n], p′m >

l′m. Thus, according to our line version algorithm, the distance of every adjacent

pair of points of p′i, p
′
i+1 . . . , p

′
k+n is at most d. Thus, |p′ip

′
k+n| ≤ d·(k+n−i). Since

j = i− n, we have |p′j+np
′
k+n| ≤ d · (k − j). Hence, we obtain |p′jp

′
k| ≥ |p

′
j+np

′
k+n|.

However, this contradicts with our above claim.
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2. If i ≤ n, then by the definition of k, we have i = k. Let d be the value of dmin

right before the algorithm processes I ′i. By the definition of i, the distance of every

adjacent pair of points of p′k, p
′
k+1 . . . , p

′
k+n is at most d. Hence, |p′kp

′
k+n| ≤ n · d.

Since p′k = l′k and p′n+k > l′n+k, we have |p′kp
′
n+k| > |l

′
kl

′
n+k| = |C|. Therefore, we

obtain that n · d > |C|.

However, since we initially set dmin = |C|/n and the value dmin is monotonically

decreasing during the execution of the algorithm, it must hold that n ·d ≤ |C|. We

thus obtain contradiction.

Therefore, it must hold that p′n+k = l′n+k. The lemma thus follows.

We construct a solution set P for our cycle version problem by mapping the points

p′k, p
′
k+1, . . . , p

′
n+k−1 back to C. Specifically, for each i ∈ [k, n], we put pi at a point on

C with a distance p′i − l′i clockwise from li; for each i ∈ [1, k − 1], we put pi at a point

on C at a distance p′i+n − l′i+n clockwise from li. Clearly, pi is in Ii for each i ∈ [1, n].

Hence, P is a “feasible” solution for our cycle version problem. Below we show that P

is actually an optimal solution.

Consider the value dmin returned by the line version algorithm after all intervals of

I ′ are processed. Since the distance of every pair of adjacent points of p′k, p
′
k+1, . . . , p

′
n+k

is at least dmin, p
′
k = l′k, p

′
n+k = l′n+k (by Lemma 4.3.1), and |l′kl

′
n+k| = |C|, by our way

of constructing P , the distance of every pair of adjacent points of P on C is at least

dmin.

Recall that dopt is the optimal object value of our cycle version problem. The

following lemma implies that P is an optimal solution.

Lemma 4.3.2. dmin = dopt.

Proof. Since P is a feasible solution with respect to dmin, dmin ≤ dopt holds.

If dmin = |C|/n, since dopt ≤ |C|/n, we obtain dopt ≤ dmin. Therefore, dopt = dmin,

which leads to the lemma.

In the following, we assume dmin 6= |C|/n. Hence, dmin < |C|/n. According to our

line version algorithm, there must exist i∗ < j∗ such that dmin =
r′
j∗

−l′
i∗

j∗−i∗
. We assume

there is no i with i∗ < i < j∗ such that dmin =
r′
j∗

−l′i
j∗−i

since otherwise we could change
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i∗ to i. Since dmin =
r′
j∗

−l′
i∗

j∗−i∗
, it is necessary that p′i∗ = l′i∗ and p′j∗ = r′j∗ . By the above

assumption, there is no i ∈ [i∗, j∗] such that p′i = l′i. Since p′k = l′k and p′k+n = l′k+n (by

Lemma 4.3.1), one of the following three cases must be true: j∗ < k, k ≤ i∗ < j∗ < n+k,

or n+ k ≤ i∗. In any case, j∗ − i∗ < n. By our way of defining r′j∗ and l′i∗ , we have the

following:

dmin =
r′j∗ − l′i∗

j∗ − i∗
=





|
−−−→
li∗rj∗ |/(j

∗ − i∗), if j∗ ≤ n,

|
−−−−−→
li∗rj∗−n|/(j

∗ − i∗), if i∗ ≤ n < j∗,

|
−−−−−−−→
li∗−nrj∗−n|/(j

∗ − i∗) if n < i∗.

We claim that dopt ≤ dmin in all three cases: j∗ ≤ n, i∗ ≤ n < j∗, and n < i∗. In

the following we only prove the claim in the first case where j∗ ≤ n since the other two

cases can be proved analogously (e.g., by re-numbering the indices).

Our goal is to prove dopt ≤
|
−−−→
li∗rj∗ |

j∗−i∗
. Consider any optimal solution in which the

solution set is P = {p1, p2, . . . , pn}. Consider the points pi∗ , pi∗+1, . . . , pj∗ , which are in

the intervals Ii∗ , Ii∗+1, . . . , Ij∗ . Clearly, |
−−−−→pkpk+1| ≥ dopt for any k ∈ [i∗, j∗−1]. Therefore,

we have |−−−→pi∗pj∗ | ≥ dopt · (j
∗ − i∗). Note that |−−−→pi∗pj∗ | ≤ |

−−−→
li∗rj∗ |. Consequently, we obtain

dopt ≤
|
−−−→
li∗rj∗ |

j∗−i∗
.

Since both dmin ≤ dopt and dopt ≤ dmin, it holds that dopt = dmin. The lemma thus

follows.

The above shows that P is an optimal solution with dopt = dmin. The running time

of the algorithm is O(n) because the line version algorithm runs in O(n) time. As a

summary, we have the following theorem.

Theorem 4.3.3. The cycle version of the points dispersion problem is solvable in O(n)

time.

4.4 Concluding Remarks

In this chapter we present a linear time algorithm for the point dispersion problem

on disjoint intervals on a line. Further, by making use of this algorithm, we also solve

the same problem on a cycle in linear time.

It would be interesting to consider the general case of the problem in which the

intervals may overlap. In fact, for the line version, if we know the order of the intervals
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in which the sought points in an optimal solution are sorted from left to right, then we

can apply our algorithm to process the intervals in that order and the obtained solution is

an optimal solution. For example, if no interval is allowed to contain another completely,

then there must exist an optimal solution in which the sought points from left to right

correspond to the intervals ordered by their left (or right) endpoints. Hence, to solve

the general case of the line version problem, the key is to find an order of intervals. This

is also the case for the cycle version.
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CHAPTER 5

MULTIPLE BARRIER COVERAGE

5.1 Introduction

In this chapter, we study algorithms for the problems for covering multiple barriers.

These are basic geometric problems and have applications in barrier coverage of mobile

sensors in wireless sensor networks. For convenience, in the following we introduce and

discuss the problems from the mobile sensor barrier coverage point of view. The results

in this chapter have been published in a conference [22].

5.1.1 Problem Definitions and Our Results

Let L be a line, say, the x-axis. Let B be a set of m pairwise disjoint segments,

called barriers, sorted on L from left to right. Let S be a set of n sensors in the plane,

and each sensor si ∈ S is represented by a point (xi, yi). If a sensor is moved on L, it

has a sensing/covering range of length r, i.e., if a sensor s is located at x on L, then all

points of L in the interval [x − r, x + r] are covered by s and the interval is called the

covering interval of s. The problem is to move all sensors of S onto L such that each

point of every barrier is covered by at least one sensor and the maximum movement

of all sensors of S is minimized, i.e., the value maxsi∈S

√
(xi − x′i)

2 + y2i is minimized,

where x′i is the location of si on L in the solution (its y-coordinate is 0 since L is the

x-axis). We call it the multiple-barrier coverage problem, denoted by MBC.

We assume that covering range of the sensors is long enough so that a coverage of

all barriers is always possible. Note that we can check whether a coverage is possible in

O(m + n) time by an easy greedy algorithm (e.g., try to cover all barriers one by one

from left to right using sensors in such a way that their covering intervals do not overlap

except at their endpoints).

Previously, only the special case m = 1 was studied and the problem was solved in
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O(n3 log n) time [57]. In this chapter, we propose an O(n2 log n log log n + nm logm)-

time algorithm for any m, which improves the algorithm in [57] by almost a linear factor

even for the special case m = 1.

We further consider a line-constrained version of the problem where all sensors of S

are initially on L. Previously, only the special case m = 1 was studied and the problem

was solved in O(n logn) time [33]. We present an O((n+m) log(n+m)) time algorithm

for any m, and the running time matches that of the algorithm in [33] when m = 1.

5.1.2 Related Work

Sensors are basic units in wireless sensor networks. The advantage of allowing the

sensors to be mobile increases monitoring capability compared to those static ones. One

of the most important applications in mobile wireless sensor networks is to monitor a

barrier to detect intruders in an attempt to cross a specific region. Barrier coverage [57,

58], which guarantees that every movement crossing a barrier of sensors will be detected,

is known to be an appropriate model of coverage for such applications. Mobile sensors

normally have limited battery power and therefore their movements should be as small

as possible.

Dobrev et al. [59] studies several problems on covering multiple barriers in the

plane. They showed that these problems are generally NP-hard when sensors have

different ranges. They also proposed polygonal-time algorithms for several special cases

of the problems, e.g., barriers are parallel or perpendicular to each other, and sensors

have some constrained movements. In fact, if sensors have different ranges, by an easy

reduction from the Partition Problem as in [59], we can show that our problem MBC is

NP-hard even for the line-constrained version and m = 2.

Other previous work has been focused on the line-constrained problem with m = 1.

Czyzowicz et al. [60] first gave an O(n2) time algorithm, and later, Chen et al. [33]

solved the problem in O(n logn) time. If sensors have different ranges, Chen et al. [33]

presented an O(n2 logn) time algorithm. For the weighted case where sensors have

weights such that the moving cost of a sensor is its moving distance times its weight,

Wang and Zhang [61] gave an O(n2 log n log log n) time algorithm for the case where

sensors have the same range.
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The min-sum version of the line-constrained problem with m = 1 has also been

studied, where the objective is to minimize the sum of the moving distances of all sensors.

If sensors have different ranges, then the problem is NP-hard [62]. Otherwise, Czyzowicz

et al. [62] gave an O(n2) time algorithm, and Andrews and Wang [63] improved the

algorithm to O(n logn) time. The min-num version of the problem was also studied,

where the goal is to move the minimum number of sensors to form a barrier coverage.

Mehrandish et al. [16, 17] proved that the problem is NP-hard if sensors have different

ranges and gave polynomial time algorithms otherwise.

Bhattacharya et al. [13] studied a circular barrier coverage problem in which the

barrier is a circle and the sensors are initially located inside the circle. The goal is

to move sensors to the circle to form a regular n-gon (so as to cover the circle) such

that the maximum sensor movement is minimized. An O(n3.5 log n)-time algorithm was

given in [13] and later Chen et al. [14] improved the algorithm to O(n log3 n) time. The

min-sum version of the problem was also studied [13, 14].

5.1.3 Our Approach

To solve the problem MBC, one major difficulty is that we do not know the order

of the sensors of S on L in an optimal solution. Therefore, our main effort is to find

such an order. To this end, we first develop a decision algorithm that can determine

whether λ ≥ λ∗ for any value λ, where λ∗ is the maximum sensor movement in an

optimal solution. Our decision algorithm runs in O(m + n logn) time. Then, we solve

the problem MBC by “parameterizing” the decision algorithm in a way similar in spirit

to parametric search [64]. The high-level scheme of our algorithm is very similar to

those in [33, 61], but many low-level computations are different.

The line-constrained version of the problem is much easier due to an order preserving

property: there exists an optimal solution in which the order of the sensors is the same

as in the input. This leads to a linear-time decision algorithm using the greedy strategy.

Also based on this property, we can find a set Λ of O(n2m) “candidate values” such that

Λ contains λ∗. To avoid computing Λ explicitly, we implicitly organize the elements of

Λ into O(n) sorted arrays such that each array element can be found in O(logm) time.

Finally, by applying the matrix search technique in [65], along with our linear-time
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decision algorithm, we compute λ∗ in O((n + m) log(n + m)) time. We should point

out that implicitly organizing the elements of Λ into sorted arrays is the key and also

the major difficulty for solving the problem, and our technique may be interesting in its

own right.

The rest of this chapter is organized as follows. We introduce some notation in

Section 6.3. In Section 5.3, we present our algorithm for the line-constrained problem.

In Section 5.4, we present our decision algorithm for the problem MBC. Section 5.5

solves the problem MBC. We conclude this chapter in Section 5.6, with remarks that

our techniques can be used to reduce the space complexities of some previous algorithms

in [33, 61].

5.2 Preliminaries

We denote the barriers of B by B1, B2, . . . , Bm sorted on L from left to right. For

each Bi, let ai and bi denote the left and right endpoints of Bi, respectively. For ease

of exposition, we make a general position assumption that ai 6= bi for each Bi. The

degenerated case can also be handled by our techniques, but the discussions would be

more tedious.

With a little abuse of notation, for any point x on L (the x-axis), we also use x to

denote its x-coordinate, and vice versa. We assume that the left endpoint of B1 is at 0,

i.e., a1 = 0. Let β denote the right endpoint of Bm, i.e., β = bm.

We denote the sensors of S by s1, s2, . . . , sn sorted by their x-coordinates. For each

sensor si located on a point x of L, x− r and x+ r are the left and right endpoints of

the covering interval of si, respectively, and we call them the left and right extensions

of si, respectively.

Again, let λ∗ be the maximum sensor movement in an optimal solution. Given λ,

the decision problem is to determine whether λ ≥ λ∗, or equivalently, whether we can

move each sensor with distance at most λ such that all barriers can be covered. If yes,

we say that λ is a feasible value. Thus, we also call it a feasibility test on λ.

5.3 The Line-Constrained Version of MBC

In this section, we present our algorithm for the line-constrained MBC. As in the
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special case m = 1 [60], a useful observation is that the order preserving property holds:

There exists an optimal solution in which the order of the sensors is the same as in the

input. Due to this property, we first give a linear-time greedy algorithm for feasibility

tests.

Lemma 5.3.1. Given any λ > 0, we can determine whether λ is a feasible value in

O(n+m) time.

Proof. We first move every sensor rightwards for distance λ. Then, every sensor is

allowed to move leftwards at most 2λ but is not allowed to move rightwards any more.

Next we use a greedy strategy to move sensors leftwards as small as possible to cover the

currently uncovered leftmost barrier. To this end, we maintain a point p on a barrier

that we need to cover such that all barrier points to the left of p are covered but the

barrier points to the right of p are not. We consider the sensors si and the barriers Bj

from left to right.

Initially, i = j = 1 and p = a1. In general, suppose p is located at a barrier Bj and

we are currently considering si. If p is at β, then we are done and λ is feasible. If p is

located at bj and j 6= m, then we move p rightwards to aj+1 and proceed with j = j+1.

In the following, we assume that p is not at bj . Let xri = xi + λ, i.e., the location of si

after it is moved rightwards by λ.

1. If xri + r ≤ p, then we proceed with i = i+ 1.

2. If xri − r ≤ p < xri + r, we move p rightwards to xri + r.

3. If xri − 2λ− r ≤ p < xri − r, then we move si leftwards such that the left extension

of si is at p, and we then move p to the right extension of si.

4. If p < xri − 2λ− r, then we stop the algorithm and report that λ is not feasible.

Suppose the above moved p rightwards (i.e., in the second and third cases). Then,

if p ≥ β, we report that λ is feasible. Otherwise, if p is not on a barrier, then we move

p rightwards to the left endpoint of the next barrier. In either case, p is now located at

a barrier, denoted by Bj , and we increase i by one. We proceed as above with Bj and

si. It is easy to see that the algorithm runs in O(n+m) time.
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Let OPT be an optimal solution that preserves the order of the sensors. For each

i ∈ [1, n], let x′i be the position of si in OPT . We say that a set of k sensors are in

attached positions if the union of their covering intervals is a single interval of length

equal to 2rk. The following lemma is self-evident and is an extension of a similar

observation for the case m = 1 in [60].

Lemma 5.3.2. There exists a sequence of sensors si, si+1, . . . , sj in attached positions in

OPT such that one of the following three cases holds. (a) The sensor sj is moved to

the left by distance λ∗ and x′i = ak + r for some barrier Bk (i.e., the sensors from si to

sj together cover the interval [ak, ak +2r(j − i+1)]). (b) The sensor si is moved to the

right by λ∗ and x′j = bk − r for some barrier Bk. (c) The sensor si is moved rightwards

by λ∗ and sj is moved leftwards by λ∗.

Cases (a) and (b) are symmetric in the above lemma. Let Λ1 be the set of all possible

distance values introduced by sj in Case (a). Specifically, for any pair (i, j) with 1 ≤ i ≤

j ≤ n and any barrier Bk with 1 ≤ k ≤ m, define λ(i, j, k) = xj−(ak+2r(j−i)+r). Let

Λ1 consists of λ(i, j, k) for all such triples (i, j, k). We define Λ2 symmetrically be the

set of all possible values introduced by si in Case (b). We define Λ3 as the set consisting

of the values [xj − xi − 2r(j − i)]/2 for all pairs (i, j) with 1 ≤ i < j ≤ n. Clearly,

|Λ3| = O(n2) and both |Λ1| and |Λ2| are O(mn2). Let Λ = Λ1 ∪ Λ2 ∪ Λ3.

By Lemma 5.3.2, λ∗ is in Λ, and more specifically, λ∗ is the smallest feasible value of

Λ. Hence, we can first compute Λ and then find the smallest feasible value in Λ by using

the decision algorithm. However, that would take Ω(mn2) time. To reduce the time,

we will not compute Λ explicitly, but implicitly organize the elements of Λ into certain

sorted arrays and then apply the matrix search technique proposed in [65], which has

been widely used, e.g., [66,67]. Since we only need to deal with sorted arrays instead of

more general matrices, we review the technique with respect to arrays in the following

lemma.

Lemma 5.3.3. [65] Given a set of N sorted arrays of size at most M each, we can compute

the smallest feasible value of these arrays with O(logN +logM) feasibility tests and the

total time of the algorithm excluding the feasibility tests is O(τ ·N · log 2M
N

), where τ is
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the time for evaluating each array element (i.e., the number of array elements that need

to be evaluated is O(N · log 2M
N

)).

With Lemma 5.3.3, we can compute the smallest feasible values in the three sets

Λ1, Λ2, and Λ3, respectively, and then return the smallest one as λ∗. For Λ3, Chen et

al. [33] (see Lemma 14) gave an approach to order in O(n logn) time the elements of

Λ3 into O(n) sorted arrays of O(n) elements each such that each array element can be

obtained in O(1) time. Consequently, by applying Lemma 5.3.3, the smallest feasible

value of Λ3 can be computed in O((n+m) log n) time.

For Λ1 and Λ2, in the case m = 1, the elements of each set can be easily ordered

into O(n) sorted arrays of O(n) elements each [33]. However, in our problem for general

m, the problem becomes significantly more difficult if we want to obtain a subquadratic-

time algorithm. Indeed, this is the main challenge of our method. In what follows, our

main effort is to prove the following lemma.

Lemma 5.3.4. For the set Λ1, in O(m logm) time, we can implicitly form a set A of O(n)

sorted arrays of O(m2n) elements each such that each array element can be computed

in O(logm) time and every element of Λ1 is contained in one of the arrays. The same

applies to the set Λ2.

We note that our technique for Lemma 5.3.4 might be interesting in its own right

and may find other applications as well. Before proving Lemma 5.3.4, we first prove the

following result..

Theorem 5.3.5. The line-constrained version of MBC can be solved in O((n+m) log(n+

m)) time.

Proof. It is sufficient to compute λ∗, after which we can apply the decision algorithm

on λ∗ to obtain an optimal solution.

Let Λ′
1 denote the set of all elements in the arrays of A specified in Lemma 5.3.4.

Define Λ′
2 similarly with respect to Λ2. By Lemma 5.3.4, Λ1 ⊆ Λ′

1 and Λ2 ⊆ Λ′
2. Since

λ∗ ∈ Λ1∪Λ2∪Λ3, we also have λ∗ ∈ Λ′
1∪Λ

′
2∪Λ3. Hence, λ

∗ is the smallest feasible value

in Λ′
1∪Λ

′
2∪Λ3. Let λ1, λ2, and λ3 be the smallest feasible values in the sets Λ′

1, Λ
′
2, and

Λ3, respectively. As discussed before, λ3 can be computed in O((n+m) log n) time. By
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Lemma 5.3.4, applying the algorithm in Lemma 5.3.3 can compute both λ1 and λ2 in

O((n+m)(logm+log n)) time. Note that (n+m)(logm+log n) = Θ((n+m) log(n+m)).

The theorem thus follows.

5.3.1 Proving Lemma 5.3.4

In this section, we prove Lemma 5.3.4. We will only prove the case for Λ1, since the

other case for Λ2 is symmetric. Recall that Λ1 = {λ(i, j, k) | 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ m},

where λ(i, j, k) = xj − (ak + 2r(j − i) + r).

For any j and k, let A[j, k] denote the list λ(i, j, k) for i = 1, 2, . . . , j, which is sorted

in increasing order. With a little abuse of notation, let A[j] denote the union of the

elements in A[j, k] for all k ∈ [1,m]. Clearly, Λ1 is the union of A[j] for all 1 ≤ j ≤ n.

In the following, we will organize the elements in each A[j] into a sorted array B[j] of

size O(nm2) such that given any index t, the t-th element of B[j] can be computed in

O(logm) time, which will prove Lemma 5.3.4. Our technique replies on the following

property: the difference of every two adjacent elements in each list A[j, k] is the same,

i.e., 2r.

Notice that for any k ∈ [1,m− 1], the first element of A[j, k] is larger than the first

element of A[j, k + 1], and similarly, the last element of A[j, k] is larger than the last

element of A[j, k+ 1]. Hence, the first element of A[j,m], i.e., λ(1, j,m), is the smallest

element of A[j] and the last element of A[j, 1], i.e., λ(j, j, 1), is the largest element of

A[j]. Let λmin[j] = λ(1, j,m) and λmax[j] = λ(j, j, 1).

For each k ∈ [1,m], we extend the list A[j, k] to a new sorted list B[j, k] with the

following property: (1) A[j, k] is a sublist of B[j, k]; (2) the difference every two adjacent

elements of B[j, k] is 2r; (3) the first element of B[j, k] is in [λmin[j], λmin[j] + 2r); (4)

the last element of B[j, k] is in (λmax[j] − 2r, λmax[j]]. Specifically, B[j, k] is defined

as follows. Note that λ(1, j, k) and λ(j, j, k) are the first and last elements of A[j, k],

respectively. We let λ(1, j, k)− ⌊λ(1,j,k)−λmin[j]
2r ⌋ · 2r and λ(j, j, k) + ⌊λmax[j]−λ(j,j,k)

2r ⌋ · 2r

be the first and last elements of B[j, k], respectively. Then, the h-th element of B[j, k]

is equal to λ(1, j, k) − ⌊λ(1,j,k)−λmin[j]
2r ⌋ · 2r + 2r · (h − 1) for any h ∈ [1, α[j]], where

α[j] = 1+ ⌈λmax[j]−λmin[j]
2r ⌉. Hence, B[j, k] has α[j] elements. One can verify that B[j, k]

has the above four properties. Note that we can implicitly create the lists B[j, k] in
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O(1) time so that given any k ∈ [1,m] and h ∈ [1, α[j]], we can obtain the h-th element

of B[j, k] in O(1) time. Let B[j] be the sorted list of all elements of B[j, k] for all

1 ≤ k ≤ m. Hence, B[j] has α[j] ·m elements.

Let σj be the permutation of 1, 2, . . . ,m following the sorted order of the first

elements of B[j, k]. For any k ∈ [1,m], let σj(k) be the k-th index in σj . We have the

following lemma.

Lemma 5.3.6. For any t with 1 ≤ t ≤ α[j] ·m, the t-th smallest element of B[j] is the

ht-th element of the list B[j, σj(kt)], where ht = ⌈
t
m
⌉ and kt = t mod m.

Proof. Consider any h with 1 ≤ h ≤ α[j]. Denote by Bh[j, k] the h-th element of B[j, k]

for each k ∈ [1,m]. By our definition of B[j, k], Bh[j, k] ∈ [λmin[j] + 2r(h− 1), λmin[j] +

2rh). Therefore, for any h′ < h, it holds that Bh′ [j, k] < Bh[j, k
′] for any k and k′ in

[1,m]. On the other hand, by the definition of σj , Bh[j, σ(k)] < Bh[j, σ(k
′)] for any

1 ≤ k < k′ ≤ m.

Based on the above discussion, one can verify that the lemma statement holds.

By the preceding lemma, if the permutation σj is known, we can obtain the t-th

smallest element of B[j] in O(1) time for any index t. Computing σj can be done in

O(m logm) time by sorting. If we apply the sorting algorithm on every j ∈ [1, n], then

we wound need O(nm logm) time. Fortunately, the following lemma implies that we

only need to do the sorting once.

Lemma 5.3.7. The permutation σj is unique for all j ∈ [1, n].

Proof. Consider any j1, j2 in [1, n] with j1 6= j2 and any k1, k2 in [1,m] with k1 6= k2.

For any j and k, let B1[j, k] denote the first element of B[j, k]. To prove the lemma, it

is sufficient to show that B1[j1, k1] < B1[j1, k2] if and only if B1[j2, k1] < B1[j2, k2].

Recall that B1[j, k] = λ(1, j, k) − ⌊λ(1,j,k)−λmin[j]
2r ⌋ · 2r and λ(1, j, k) = xj − (ak +

2rj − r). Thus, B1[j, k] = xj − ak + r − ⌊
xj−ak+r−λmin[j]

2r ⌋ · 2r. Further, since λmin[j] =

λ(1, j,m) = xj − (am + 2rj − r), B1[j, k] = xj − ak + r − ⌊am−ak+2rj
2r ⌋ · 2r = xj − ak +

r − ⌊am−ak
2r ⌋ · 2r − 2rj.

Therefore, B1[j1, k1] − B1[j1, k2] = ak2 − ak1 + (⌊
am−ak2

2r ⌋ − ⌊
am−ak1

2r ⌋) · 2r and

B1[j2, k1] − B1[j2, k2] = ak2 − ak1 + (⌊
am−ak2

2r ⌋ − ⌊
am−ak1

2r ⌋) · 2r. Hence, B1[j1, k1] −
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B1[j1, k2] = B1[j2, k1]− B1[j2, k2], which implies that B1[j1, k1] < B1[j1, k2] if and only

if B1[j2, k1] < B1[j2, k2].

In summary, after O(m logm) time preprocessing to compute the permutation σj

for any j, we can form the arrays B[j] for all j ∈ [1, n] such that given any j ∈ [1, n] and

t ∈ [1, α[j] ·m], we can compute t-th smallest element of B[j] in O(1) time. However, we

are not done yet, because we do not have a reasonable upper bound for α[j], which is

equal to 1+⌈λmax[j]−λmin[j]
2r ⌉ = 1+⌈λ(j,j,1)−λ(1,j,m)

2r ⌉ = j+⌈am−a1
2r ⌉. To address the issue,

in the sequel, we will partition the indices k ∈ [1,m] into groups and then apply our

above approach to each group so that the corresponding α[j] values can be bounded,

e.g., by O(mn).

The Group Partition Technique.. We consider any index j ∈ [1,m].

We partition the indices 1, 2, . . . ,m into groups each consisting of a sequence of con-

secutive indices, such that each group has the following intra-group overlapping property:

For any index k that is not the largest index in the group, the first element of A[j, k]

is smaller than or equal to the last element of A[j, k + 1], i.e., λ(1, j, k) ≤ λ(j, j, k + 1).

Further, the groups have the following inter-group non-overlapping property: For the

largest index k in a group that is not the last group, the first element of A[j, k] is larger

than the last element of A[j, k + 1], i.e., λ(1, j, k) > λ(j, j, k + 1).

We compute the groups in O(m) time as follows. Initially, add 1 into the first group

G1. Let k = 1. While the first element of A[j, k] is smaller than or equal to the last

element of A[j, k + 1], we add k + 1 into G1 and reset k = k + 1. After the while loop,

G1 is computed. Then, starting from k + 1, we compute G2 and so on until index m is

included in the last group. Let G1, G2, . . . , Gl be the l groups we have computed. Note

that l ≤ m.

Consider any group Gg with 1 ≤ g ≤ l. We process the lists A[j][k] for all k ∈ Gg

in the same way as discussed before. Specifically, for each k ∈ Gg, we create a new

list B[j][k] from A[j][k]. Based on the new lists in the group Gg, we form the sorted

array Bg[j] with a total of |Gg| · αg[j] elements, where |Gg| is the number of indices of

Gg and αg[j] is corresponding α[j] value as defined before but only on the group Gg,

i.e., if k1 and k2 are the smallest and largest indices of Gg respectively, then αg[j] =
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1 + ⌈λ(j,j,k1)−λ(1,j,k2)
2r ⌉. Let B[j] be the sorted list of all elements in the lists Bg[j] for

all groups. Due to the intra-group overlapping property of each group, it holds that

αg ≤ |Gg| · n. Thus, the size of B[j] is at most
∑l

g=1 |Gg|
2 · n, which is at most m2n

since
∑l

g=1 |Gg| = m.

Suppose we want to find the t-th smallest element of B[j]. As preprocessing, we

compute a sequence of values βg[j] for g = 1, 2, . . . , l, where βg[j] =
∑g

g′=1 αg′ [j] · |Gg′ |,

in O(m) time. To compute the t-th smallest element of B[j], we first do binary search

on the sequence β1[j], β2[j], . . . , βl[j] to find in O(log l) time the index g such that t ∈

(βg−1[j], βg[j]]. Due to the inter-group non-overlapping property of the groups, the t-th

smallest element of B[j] is the (t− βg−1[j])-th element in the array Bg[j], which can be

found in O(1) time. As l ≤ m, the total time for computing the t-th smallest element

of B[j] is O(logm).

The above discussion is on any single index j ∈ [1, n]. With O(m logm) time

preprocessing, given any t, we can find the t-th smallest value of B[j] in O(logm) time.

For all indices j ∈ [1, n], it appears that we have to do the group partition for every

j ∈ [1, n], which would take quadratic time. To resolve the problem, we show that it is

sufficient to only use the group partition based on j = n for all other j ∈ [1, n− 1]. The

details are given below.

Suppose from now on G1, G2, . . . , Gl are the groups computed as above with respect

to j = n. We know that the inter-group non-overlapping property holds respect to the

index n. The following lemma shows that the property also holds with respect to any

other index j ∈ [1, n− 1].

Lemma 5.3.8. The inter-group non-overlapping property holds for any j ∈ [1, n− 1].

Proof. Consider any j ∈ [1, n−1] and any k that is the largest index in a group Gg with

g ∈ [1, l− 1]. The goal is to show that the first element of A[j, k] is larger than the last

element of A[j, k + 1], i.e., λ(1, j, k) > λ(j, j, k + 1). Since the groups are defined with

respect to the index n, it holds that λ(1, n, k) > λ(n, n, k + 1).

Recall that λ(i, j, k) = xj−(ak+2r(j− i)+r). Therefore, λ(1, j, k)−λ(j, j, k+1) =

ak+1 − ak + 2r(1 − j) and λ(1, n, k) − λ(n, n, k + 1) = ak+1 − ak + 2r(1 − n). Since
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λ(1, n, k) > λ(n, n, k+1), ak+1−ak+2r(1−n) > 0. As j < n, ak+1−ak+2r(1−j) > 0,

and thus λ(1, j, k) > λ(j, j, k + 1).

Consider any group Gg with 1 ≤ g ≤ l and any j ∈ [1, n]. For each k ∈ Gg, we

create a new list B[j][k] based on A[j][k] in the same way as discussed before. Based on

the new lists, we form the sorted array Bg[j] of |Gg| ·αg[j] elements. We also define the

value βg[j] in the same way as before. The following lemma shows that αg[j] and βg[j]

can be computed based on αg[n] and βg[n].

Lemma 5.3.9. For any j ∈ [1, n − 1] and g ∈ [1, l], αg[j] = αg[n] − n + j and βg[j] =

βg[n] + δg · g · (j − n), where δg =
∑g

g′=1 |Gg′ |.

Proof. Consider any g ∈ [1, l]. Let k1 and k2 be the smallest and the largest indices in

Gg, respectively. By definition, αg[j] = 1 + ⌈λ(j,j,k1)−λ(1,j,k2)
2r ⌉ = 1+ ⌈

ak2−ak1+2r(j−1)

2r ⌉ =

j + ⌈
ak2−ak1

2r ⌉. Therefore, for any j ∈ [1, n− 1], αg[j] = αg[n]− n+ j.

By definition, βg[j] = α1[j]·|G1|+α2[j]·|G2|+· · ·+αg[j]·|Gg| = (α1[n]−n+j)·|G1|+

(α2[n]−n+j)·|G2|+· · ·+(αg[n]−n+j)·|Gg| = βg[n]+(j−n)·g·(|G1|+|G2|+· · ·+|Gg|) =

βg[n] + δg · g · (j − n).

For each group Gg, we compute the permutation for the lists B[n, k] for all k in

the group. Computing the permutations for all groups takes O(m logm) time. Also as

preprocessing, we first compute δg, αg(n) and βg(n) for all g ∈ [1, l] in O(m) time. By

Lemma 5.3.9, for any j ∈ [1, n] and any g ∈ [1, l], we can compute αg[j] and βg[j] in

O(1) time. Because the lists B[n, k] for all k in each group Gg have the intra-group

overlapping property, it holds that αg[n] ≤ |Gg| · n. Hence,
∑l

g=1 αg[n] ≤ mn. For any

j ∈ [1, n − 1], by Lemma 5.3.9, αg[j] < αg[n], and thus
∑l

g=1 αg[j] ≤ mn. Recall that

B[j] is the sorted array of all elements in Bg[j] for g ∈ [1, l]. Thus, B[j] has at most

m2n elements.

For any j ∈ [1, n] and any t ∈ [1,
∑l

g=1 |Gg| · αg[j]], suppose we want to compute

the t-th smallest element of B[j]. Due to the inter-group non-overlapping property in

Lemma 5.3.8, we can still use the previous binary search approach. For the running

time, since we can obtain each βg[j] for any g ∈ [1, l] in O(1) time by Lemma 5.3.9, we

can still compute the t-th smallest element of B[j] in O(logm) time.

This proves Lemma 5.3.4.
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5.4 The Decision Problem of MBC

In this section, we present an O(m+n logn)-time algorithm for the decision problem

of MBC: given any value λ > 0, determine whether λ ≥ λ∗. Our algorithm for MBC

in Section 5.5 will make use of this decision algorithm. The decision problem may have

independent interest because in some applications each sensor has a limited energy λ

and we want to know whether their energy is enough for them to move to cover all

barriers.

Consider any value λ > 0. We assume that λ ≥ max1≤i≤n |yi| since otherwise some

sensor cannot reach L by moving λ (and thus λ is not feasible). For any sensor si ∈ S,

define xri = xi+
√
λ2 − y2i and xli = xi−

√
λ2 − y2i . Note that x

r
i and xli are respectively

the rightmost and leftmost points of L si can reach with respect to λ. We call xri the

rightmost (resp., leftmost) λ-reachable location of si on L. For any point x on L, we use

p+(x) to denote a point x′ such that x′ > x and x′ is infinitesimally close to x.

The high-level scheme of our algorithm is similar to that in [61]. We first describe

the algorithm and then show its correctness. Finally, we discuss its implementation.

5.4.1 The Algorithm Description

We use a configuration to refer to a specification on where each sensor si ∈ S is

located. For example, in the input configuration, each si is at (xi, yi).

We begin with moving each sensor si to xri on L. Let C0 denote the resulting

configuration. In C0, each sensor si is not allowed to move rightwards but can move

leftwards on L by a maximum distance 2
√

λ2 − y2i .

If λ ≥ λ∗, our algorithm will compute a subset of sensors with their new locations

to cover all barriers of B and the maximum movement of each sensor of in the subset is

at most λ.

For each step i with i ≥ 1, let Ci−1 be the configuration right before the i-th

step. Our algorithm maintains the following invariants. (1) We have a subset of sensors

Si−1 = {sg(1), sg(2), . . . , sg(i−1)}, where for each 1 ≤ j ≤ i − 1, g(j) is the index of the

sensor sg(j) in S. (2) In Ci−1, each sensor sk of Si−1 is at a new location x′k ∈ [xlk, x
r
k],

and all other sensors are still in their locations of C0. (3) A value Ri−1 is maintained

such that 0 ≤ Ri−1 < β, Ri−1 is on a barrier, every barrier point x < Ri−1 is covered by
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a sensor of Si−1 in Ci−1. (4) If Ri−1 is not at the left endpoint of a barrier, then Ri−1

is covered by a sensor of Si−1 in Ci−1. (5) The point p+(Ri−1) is not covered by any

sensor in Si−1.

Initially when i = 1, we let S0 = ∅ and R0 = 0, and thus all algorithm invariants

hold for C0. The i-th step of the algorithm finds a sensor sg(i) ∈ S \ Si−1 and moves

it to a new location x′
g(i) ∈ [xl

g(i), x
r
g(i)] and thus obtains a new configuration Ci. The

details are given below.

Define Si1 to be the set of sensors that cover the point p+(Ri−1) in Ci−1, i.e.,

Si1 = {sk | x
r
k − r ≤ Ri−1 < xrk + r}. By the algorithm invariant (5), no sensor in Si−1

covers p+(Ri−1). Thus, Si1 ⊆ S \Si−1. If Si1 6= ∅, then we choose an arbitrary sensor in

Si1 as sg(i) (e.g., see Fig. 5.1) and let x′
g(i) = xr

g(i). We then set Ri = x′
g(i) + r, i.e., Ri is

at the right endpoint of the covering interval of sg(i). Note that Ci is Ci−1 because sg(i)

is not moved.

If Si1 = ∅, then we define Si2 = {sk | x
l
k − r ≤ Ri−1 < xrk − r} (i.e., Si2 consists of

those sensors sk that does not cover Ri−1 when it is at xrk but is possible to do so when

it is at some location in [xlk, x
r
k]). If Si2 6= ∅, we choose the leftmost sensor of Si2 as sg(i)

(e.g., see Fig. 5.2), and let x′
g(i) = Ri−1 + r (i.e., we move sg(i) to x′

g(i) and thus obtain

Ci). If Si2 = ∅, then we conclude that λ < λ∗ and terminate the algorithm.

Hence, if Si1 = Si2 = ∅, the algorithm will stop and report λ < λ∗. Otherwise,

a sensor sg(i) is found from either Si1 or Si2, and it is moved to x′
g(i). In either case,

Ri = x′
g(i) + r and Si = Si−1 ∪ {sg(i)}. If Ri ≥ β, then we terminate the algorithm and

report λ ≥ λ∗. Otherwise, we further perform the following jump-over procedure: We

check whether Ri is located at the interior of any barrier; if not, then we set Ri to the

left endpoint of the barrier right after Ri.

This finishes the i-th step of our algorithm. One can verify that all algorithm

invariants are maintained. As there are n sensors in S, the algorithm will finish in at

most n steps.

5.4.2 The Algorithm Correctness

The correctness proof is similar to that for the algorithm in [61], so we briefly discuss

it.
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xRi−1

Figure 5.1. Illustrating the set Si1.
The covering intervals of sensors are
shown with segments (the red thick seg-
ments correspond to the sensors in Si1).
Every sensor in Si1 can be sg(i).

x

Ri−1

s
g(i)

Figure 5.2. Illustrating the set Si2. The segments are the
covering intervals of sensors. The red thick segments corre-
spond to the sensors in Si2. The four black points correspond-
ing to the values xl

k − r of the four sensors xk to the right of
Ri−1. The sensor sg(i) is labeled.

If the decision algorithm reports λ ≥ λ∗, say, in the i-th step, then according to

our algorithm, the configuration Ci is a feasible solution. Below, we show that if the

algorithm reports λ < λ∗, then λ is indeed not a feasible value.

We first note that due to our jump-over procedure and our general position assump-

tion, Ri cannot be at the right endpoint of a barrier, and thus p+(Ri) must be a point

of a barrier.

An interval on L is said to be left-aligned if its left side is closed and equal to 0 and

its right side is open. The algorithm correctness will be easily shown with the following

Lemma 5.4.1. The proof of the lemma is very similar to Lemma 1 in [61], so we omit it.

Lemma 5.4.1. Consider any configuration Ci. Suppose S′
i is the set of sensors in S

whose right extensions are at most Ri in Ci. Then, the interval [0, Ri) is the largest

possible left-aligned interval such that all barrier points in the interval can be covered by

the sensors of S′
i with respect to λ (i.e., the moving distance of each sensor of S′

i is at

most λ).

Suppose our algorithm reports λ < λ∗ in the i-th step. We show that λ is not a

feasible value. Indeed, according to our algorithm, Ri−1 < β and Si1 = Si2 = ∅ in the

configuration Ci−1. Let S′
i−1 be the set of sensors whose right extensions are at most

Ri−1 in Ci−1. On the one hand, by Lemma 5.4.1 (replacing index i in the lemma by i−1),

[0, Ri−1) is the largest left-aligned interval such that all barrier points in the interval

that can be covered by the sensors in S′
i−1. On the other hand, since both Si1 and Si2

are empty, no sensor in S \ S′
i−1 can cover the point p+(Ri−1). Recall that p

+(Ri−1) is

a barrier point not covered by any sensor in Si−1. Due to Ri−1 < β, we conclude that

sensors of S cannot cover all barrier points in the interval [0, p+(Ri−1)] ⊆ [0, β] with
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respect to λ. Thus, λ is not a feasible value. This establishes the correctness of our

decision algorithm.

5.4.3 The Algorithm Implementation

The implementation is similar to that in [61] and we briefly discuss it. We first

implement the algorithm in O(m+n logn) time, and then we reduce the time to O(m+

n log log n) under certain assumption.

We first move each sensor si to xri and thus obtain the configuration C0. Then, we

sort the extensions of all sensors in C0 together with the endpoints of all barriers. To

maintain the set Si1 during the algorithm, we sweep a point p on L from left to right.

During the sweeping, when p encounters the left (resp., right) extension of a sensor, we

insert the sensor into Si1 (resp., delete it from Si1). In this way, in each i-th step of the

algorithm, when p is at Ri−1, Si1 is available.

If Si1 6= ∅, we pick an arbitrary sensor in Si1 as sg(i). To store the set Si1, since

sensors have the same range, the earlier a sensor is inserted into Si1, the earlier it is

deleted from Si1. Thus, we can simply use a first-in-first-out queue to store Si1 such

that each insertion/deletion can be done in constant time. We can always pick the front

sensor in the queue as sg(i).

If Si1 = ∅, then we need to compute Si2. To maintain Si2 during the sweeping of

p, we do the following. Initially when we do the sorting as discussed above, we also sort

the n values xli − r for all 1 ≤ i ≤ n. During the sweeping of p, if p encounters a point

xlk − r for some sensor sk, we insert sk to Si2, and if p encounters a left extension of

some sensor sk, we delete sk from Si2. In this way, when p is at Ri−1, Si2 is available. If

Si2 6= ∅, we need to find the leftmost sensor in Si2 as sg(i), for which we use a balanced

binary search tree T to store all sensors of Si2 where the “key” of each sensor sk is

the value xrk. T can support each of the following operations on Si2 in O(log n) time:

inserting a sensor, deleting a sensor, finding the leftmost sensor.

If sg(i) is from Si1, then we do not need to move sg(i). We proceed to sweep p as

usual. If sg(i) is from Si2, we need to move sg(i) leftwards to x′
g(i) = Ri−1+ r. Since sg(i)

is moved, we should also update the original sorted list including the extensions of all

sensors in C0 to guide the future sweeping of p. To avoid the explicit update, we use a
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flag table for all sensor extensions in C0. Initially, every table entry is valid. If sg(i) is

moved, then we set the table entries of the two extensions of the sensor invalid. During

the sweeping of p, when p encounters a sensor extension, we first check the table to see

whether the extension is still valid. If yes, then we proceed as usual; otherwise we ignore

the event. This only costs extra constant time for each event. In addition, we calculate

Ri as discussed before, and the jump-over procedure can be implemented in O(1) time

since the barrier endpoints are also sorted.

To analyze the running time, since the barriers are given sorted on L, the sorting

step takes O(m+n logn). Since there are O(n) operations on the tree T , the total time

of the algorithm is O(m+ n log n). Thus we obtain the following result.

Theorem 5.4.2. Given any value λ, we can determine whether λ ≥ λ∗ in O(m+ n logn)

time.

Our algorithm in Section 5.5 will perform feasibility tests multiple times, for which

we have the following result.

Lemma 5.4.3. Suppose the values xri for all i = 1, 2, . . . , n are already sorted, we can

determine whether λ ≥ λ∗ in O(m+ n log log n) time for any λ.

Proof. Our O(m + n logn) time implementation is dominated by two parts. The first

part is the sorting. The second part is on performing the operations on the set Si2,

each taking O(logn) time by using the tree T . The rest of the algorithm together takes

O(n + m) time. Now that the values xri for all i = 1, 2, . . . , n are already sorted, the

sorting step takes O(n+m) time since the barriers are already given sorted.

Recall that the keys of the sensors of T are the values xrk. Let Q = {xrk | 1 ≤ k ≤ n}.

For each sensor sk, we use rank(sk) to denote the rank of xrk in Q (i.e., rank(sk) = t if

xrk is the t-th smallest value in Q). Since Q is already sorted, all sensor ranks can be

computed in O(n) time. It is easy to see that the leftmost sensor of T is the sensor with

the smallest rank. Therefore, we can also use the ranks as the keys of sensors of T , and

the advantage of doing so is that the rank of each sensor is an integer in [1, n]. Hence,

instead of using a balanced binary search tree, we can use an integer data structure, e.g.,

the van Emde Boas Tree (or vEB tree for short) [29], to maintain Si2. The vEB tree

can support each of the following operations on Si2 in O(log logn) time [29]: inserting
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a sensor, deleting a sensor, and finding the sensor with the smallest rank. Using a vEB

tree, all operations on Si2 in the algorithm can be performed in O(n log log n) time. The

lemma thus follows.

5.5 Solving the Problem MBC

In this section, we solve the problem MBC. It suffices to compute λ∗. The high-level

scheme of our algorithm is similar to that in [61], although some low-level details are

different.

In this section, we use xri (λ) to refer to xri for any λ, so that we consider xri (λ) as a

function on λ ∈ [0,∞], which actually defines a half of the upper branch (on the right

side of the y-axis) of a hyperbola. Let σ be the order of the values xri (λ
∗) for all i ∈ [1, n].

To make use of Lemma 5.4.3, we first run a preprocessing step in Lemma 5.5.1.

Lemma 5.5.1. With O(n log3 n+m log2 n) time preprocessing, we can compute σ and an

interval (λ∗
1, λ

∗
2] containing λ∗ such that σ is also the order of the values xri (λ) for any

λ ∈ (λ∗
1, λ

∗
2].

Proof. To compute σ, we apply Megiddo’s parametric search [64] to sort the values

xri (λ
∗) for i ∈ [1, n], using the decision algorithm in Theorem 5.4.2. Indeed, recall that

xri (λ) = xi +
√

λ2 − y2i . Hence, as λ increases, xri (λ) is a (strictly) increasing function.

For any two indices i and j, there is at most one root on λ ∈ [0,∞) for the equation:

xri (λ) = xrj(λ). Therefore, we can apply Megiddo’s parametric search [64] to do the

sorting. The total time is O((τ + n) log2 n), where τ is the running time of the decision

algorithm. By Theorem 5.4.2, τ = O(m+ n logn). Hence, the total time for computing

σ is O(m log2 n+ n log3 n).

In addition, Megiddo’s parametric search [64] will return an interval (λ∗
1, λ

∗
2] such

that it contains λ∗ and σ is also the order of the values xri (λ) for any λ ∈ (λ∗
1, λ

∗
2].

Note that λ∗ is the smallest feasible value. As λ∗ ∈ (λ∗
1, λ

∗
2], our subsequent feasible

tests will be only on values λ ∈ (λ∗
1, λ

∗
2) because if λ ≤ λ∗

1, then λ is not feasible and if

λ ≥ λ∗
2, then λ is feasible. Lemmas 5.4.3 and 5.5.1 together lead to the following result.

Lemma 5.5.2. Each feasibility test can be done in O(m + n log log n) time for any λ ∈

(λ∗
1, λ

∗
2).
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To compute λ∗, we “parameterize” our decision algorithm with λ as a parameter.

Although we do not know λ∗, we execute the decision algorithm in such a way that it

computes the same subset of sensors sg(1), sg(2), . . . as would be obtained if we ran the

decision algorithm on λ = λ∗.

Recall that for any λ, step i of our decision algorithm computes the sensor sg(i), the

set Si = {sg(1), sg(2), . . . , sg(i)}, and the value Ri, and obtains the configuration Ci. In

the following, we often consider λ as a variable rather than a fixed value. Thus, we will

use Si(λ) (resp., Ri(λ), sg(i)(λ), Ci(λ), x
r
i (λ)) to refer to the corresponding Si (resp.,

Ri, sg(i), Ci, x
r
i ). Our algorithm has at most n steps. Consider a general i-th step for

i ≥ 1. Right before the step, we have an interval (λ1
i−1, λ

2
i−1] and a sensor set Si−1(λ),

such that the following algorithm invariants hold.

1. λ∗ ∈ (λ1
i−1, λ

2
i−1].

2. The set Si−1(λ) is the same (with the same order) for all values λ ∈ (λ1
i−1, λ

2
i−1).

3. Ri−1(λ) on λ ∈ (λ1
i−1, λ

2
i−1) is either constant or equal to xj +

√
λ2 − y2j + c for

some constant c and some sensor sj with 1 ≤ j ≤ i− 1, and Ri−1(λ) is maintained

by the algorithm.

4. Ri−1(λ) < β for any λ ∈ (λ1
i−1, λ

2
i−1).

Initially when i = 1, we let λ1
0 = λ∗

1 and λ2
0 = λ∗

2. Since S0(λ) = ∅ and R0(λ) = 0

for any λ, by Lemma 5.5.1, all invariants hold for i = 1. In general, the i-th step will

either compute λ∗, or obtain an interval (λ1
i , λ

2
i ] ⊆ (λ1

i−1, λ
2
i−1] and a sensor sg(i)(λ) with

Si(λ) = Si−1(λ)∪{sg(i)(λ)}. The running time of the step is O((m+n log log n)(log n+

logm)). The details are given below.

5.5.1 The Algorithm

We assume λ∗ 6= λ2
i−1 and thus λ∗ is in (λ1

i−1, λ
2
i−1). Our following algorithm

can proceed without this assumption and we make the assumption only for explaining

the rationale of our approach. Since λ∗ ∈ (λ1
i−1, λ

2
i−1), according to our algorithm

invariants, for all λ ∈ (λ1
i−1, λ

2
i−1), Si−1(λ) is the same as Si−1(λ

∗). We simulate the
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decision algorithm on λ = λ∗. To determine the sensor sg(i)(λ
∗), we first compute the

set Si1(λ
∗), as follows.

Consider any sensor sk in S \ Si−1(λ). Its position in Ci−1(λ) is xrk(λ) = xk +
√
λ2 − y2k, which is an increasing function of λ. Thus, both the left and the right

extensions of sk in Ci−1(λ) are increasing functions of λ. Suppose f(λ) is either the left

or the right extension of sk in Ci−1(λ). According to our algorithm invariants, Ri−1(λ)

on λ ∈ (λ1
i−1, λ

2
i−1) is either constant or equal to xj +

√
λ2 − y2j + c for some constant c

and some sensor sj . We claim that there is at most one value λ in (λ1
i−1, λ

2
i−1) such that

Ri−1(λ) = f(λ). Indeed, if Ri−1(λ) is constant, then this is obviously true; otherwise,

this is also true because each of f(λ) and Ri−1(λ) on λ ∈ [0,∞) defines a half branch of

a hyperbola (and thus they have at most one intersection in (λ1
i−1, λ

2
i−1)).

Let S′ = S \ Si−1(λ). If we increase λ from λ1
i−1 to λ2

i−1, an “event” happens if

Ri−1(λ) is equal to the left or right extension value of a sensor sk ∈ S′ at some value of

λ (called an event value), and Si1(λ) does not change between any two adjacent events.

To compute Si1(λ
∗), we first compute all event values, and this can be done in O(n) time

by using the function Ri−1(λ) and all left and right extension functions of the sensors

in S′. Let Λ denote the set of all event values, and we also add λ1
i−1 and λ2

i−1 to Λ. We

then sort all values in Λ. Using the feasibility test in Lemma 5.5.2, we do binary search

to find two adjacent values λ1 and λ2 in the sorted list of Λ such that λ∗ ∈ (λ1, λ2]. Note

that (λ1, λ2] ⊆ (λ1
i−1, λ

2
i−1]. Since |Λ| = O(n), the binary search uses O(logn) feasibility

tests, which takes overall O(m log n+ n logn log log n) time.

We make another assumption that λ∗ 6= λ2. Again, this assumption is only for the

explanation and the following algorithm can proceed without this assumption. Under

the assumption, for any λ ∈ (λ1, λ2), the set Si1(λ) is exactly Si1(λ
∗). Hence, we can

compute Si1(λ
∗) by taking any λ ∈ (λ1, λ2) and explicitly computing Si1(λ) in O(n)

time.

The above has computed Si1(λ
∗). If Si1(λ

∗) 6= ∅, we take any sensor of Si1(λ
∗) as

sg(i)(λ
∗). Further, we let λ1

i = λ1, λ
2
i = λ2, and Si(λ) = Si−1(λ) ∪ {sg(i)(λ

∗)}.

If Si1(λ
∗) = ∅, then we need to compute the set Si2(λ

∗). Since λ∗ ∈ (λ1, λ2) ⊆

(λ1
i−1, λ

2
i−1), according to our algorithm invariants, Ri−1(λ) is a nondecreasing function

on λ ∈ (λ1, λ2). For each sensor sk ∈ S, xk −
√
λ2 − y2k − r is a decreasing function
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on λ ∈ (λ1, λ2). Therefore, the interval (λ1, λ2) contains at most one value λ such that

Ri−1(λ) = xk−
√
λ2 − y2k− r. If we increase λ from λ1 to λ2, an “event” happens when

Ri−1(λ) is equal to xk −
√
λ2 − y2k − r for some sensor sk ∈ S′ at some event value λ,

and the set Si2(λ) is fixed between any two adjacent events. Hence, we use the following

way to compute Si2(λ
∗).

We first compute the set Λ of all event values, and also add λ1 and λ2 to Λ. After

sorting all values of Λ, by using our decision algorithm, we do binary search to find

two adjacent values λ′
1 and λ′

2 in the sorted list of Λ with λ∗ ∈ (λ′
1, λ

′
2]. Note that

(λ′
1, λ

′
2] ⊆ (λ1, λ2]. Since |Λ| = O(n), the binary search calls the decision algorithm

O(logn) times, which takes O(m log n + n logn log log n) time in total. Since Si2(λ) is

the same for all λ ∈ (λ′
1, λ

′
2). We take an arbitrary value λ ∈ (λ′

1, λ
′
2) and compute

Si2(λ) explicitly in O(n) time.

Lemma 5.5.3. If Si2(λ) = ∅, then λ∗ is in {λ2
i−1, λ2, λ

′
2}.

Proof. If Si2(λ) = ∅, assume to the contrary that λ∗ 6∈ {λ2
i−1, λ2, λ

′
2}. Then, our previous

two assumptions on λ∗ are true and λ∗ ∈ (λ′
1, λ

′
2). According to our algorithm invariants,

Si2(λ
∗) = Si2(λ) = ∅. This means that if we applied the decision algorithm on λ = λ∗,

the sensor sg(i)(λ
∗) would not exist. In other words, the decision algorithm would stop

after the first i− 1 steps, i.e., the decision algorithm would only use sensors in Si−1(λ
∗)

to cover all barriers.

On the other hand, according to our algorithm invariants, Ri−1(λ) < β for all

λ ∈ (λ1
i−1, λ

2
i−1). Since λ∗ ∈ (λ′

1, λ
′
2) ⊆ (λ1

i−1, λ
2
i−1), Ri−1(λ

∗) < β, but this contradicts

with that all barriers are covered by the sensors of Si−1(λ
∗) after the first i− 1 steps of

the decision algorithm.

By Lemma 5.5.3, if Si2(λ) = ∅, then λ∗ is the smallest feasible value of {λ2
i−1, λ2, λ

′
2},

which can be found by performing three feasibility tests. Otherwise, we proceed as

follows.

We make the third assumption that λ∗ 6= λ′
2. Thus, λ∗ ∈ (λ′

1, λ
′
2) and Si2(λ

∗) =

Si2(λ) for any λ ∈ (λ′
1, λ

′
2). Next, we compute sg(i)(λ

∗), i.e., the leftmost sensor of

Si2(λ
∗). Although Si2(λ) is the same for all λ ∈ (λ′

1, λ
′
2), the leftmost sensor of Si2(λ)

may not be the same for all λ ∈ (λ′
1, λ

′
2). For each sensor sk ∈ Si2(λ) and any
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λ ∈ (λ′
1, λ

′
2), the location of sk in the configuration Ci−1(λ) is xrk(λ). As discussed

before, xrk(λ) for λ ∈ (λ′
1, λ

′
2) defines a piece of the upper branch of a hyperbola in

the 2D coordinate system in which the x-coordinates correspond to the λ values and

the y-coordinates correspond to xrk(λ) values. We consider the lower envelope L of the

functions xrk(λ) defined by all sensors sk of Si2(λ). For each point q of L, suppose q lies

on the function defined by a sensor sk and q’s x-coordinate is λq. If λ = λq, then the

leftmost sensor of Si2(λ) is sk. This means that each curve segment of L defined by one

sensor corresponds to the same leftmost sensor of Si2(λ). Based on this observation, we

compute sg(i)(λ
∗) as follows.

Since the functions xrk(λ) and xrj(λ) of two sensors sk and sj have at most one

intersection in (λ′
1, λ

′
2), the number of vertices of the lower envelope L is O(n) and L

can be computed in O(n logn) time [68–70]. Let Λ be the set of the x-coordinates of

the vertices of L. We also add λ′
1 and λ′

2 to Λ. After sorting all values of Λ, by using

our decision algorithm, we do binary search on the sorted list of Λ to find two adjacent

values λ′′
1 and λ′′

2 such that λ∗ ∈ (λ′′
1, λ

′′
2]. Note that (λ′′

1, λ
′′
2] ⊆ (λ′

1, λ
′
2]. Since λ′′

1 and λ′′
2

are two adjacent values of the sorted Λ, by our above analysis, there is a sensor that is

always the leftmost sensor of Si2(λ) for all λ ∈ (λ′′
1, λ

′′
2]. To find the sensor, we can take

any value λ in (λ′′
1, λ

′′
2) and explicitly compute the locations of sensors in Si2(λ). The

above computes sg(i)(λ
∗) in O(m log n+ n logn log log n) time.

Finally, we let λ1
i = λ′′

1, λ
2
i = λ′′

2, and Si(λ) = Si−1(λ) ∪ {sg(i)(λ
∗)}.

If the above computes λ∗, then we terminate the algorithm. Otherwise, we obtain

an interval (λ1
i , λ

2
i ] ⊆ (λ1

i−1, λ
2
i−1] that contains λ∗ and the set Si(λ). If sg(i)(λ) ∈

Si1(λ), then Ri(λ) is equal to xg(i) +
√
λ2 − y2

g(i) + r. If sg(i)(λ) ∈ Si2(λ), then Ri(λ) =

Ri−1(λ) + 2r. By the third algorithm invariant, Ri(λ) is either constant or equal to

xj +
√
λ2 − y2j + c′ for some constant c′ and some sensor sj with 1 ≤ j ≤ i− 1

If it is not true that Ri(λ) < β for all λ ∈ (λ1
i , λ

2
i ), then we preform some additional

processing as follows. We first have the following lemma.

Lemma 5.5.4. If it is not true that Ri(λ) < β for all λ ∈ (λ1
i , λ

2
i ), then Ri(λ) is strictly

increasing on (λ1
i , λ

2
i ) and there is a single value λ′ ∈ (λ1

i , λ
2
i ) such that Ri(λ

′) = β.
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Proof. The proof is almost the same as that of Lemma 4 in [61] and we include it here

for the sake of completeness.

Since it is not true that Ri(λ) < β for all λ ∈ (λ1
i , λ

2
i ), either Ri(λ) > β for all

λ ∈ (λ1
i , λ

2
i ), or there is a value λ′ ∈ (λ1

i , λ
2
i ) with Ri(λ

′) = β. We first argue that the

former case cannot happen.

Assume to the contrary that Ri(λ) > β for all λ ∈ (λ1
i , λ

2
i ). Then, Ri(λ

′) > β for

any λ′ ∈ (λ1
i , λ

∗) since λ∗ ∈ (λ1
i , λ

2
i ]. But this would imply that we have found a feasible

solution using only sensors in Si(λ) and the maximum movement of all sensors in Si(λ)

is at most λ′ < λ∗, contradicting with that λ∗ is the maximum moving distance in an

optimal solution.

Hence, there is a value λ′ ∈ (λ1
i , λ

2
i ) with Ri(λ

′) = β. Next, we show that Ri(λ) must

be a strictly increasing function. Assume to the contrary this is not true. Then, Ri(λ)

must be constant on (λ1
i , λ

2
i ). Thus, Ri(λ) = β for all λ ∈ (λ1

i , λ
2
i ). Since λ∗ ∈ (λ1

i , λ
2
i ],

let λ′ be any value in (λ1
i , λ

∗). Hence, Ri(λ
′) = β, and as above, λ′ is a feasible value.

However, λ′ < λ∗ incurs contradiction.

By Lemma 5.5.4, we compute the value λ′ ∈ (λ1
i , λ

2
i ) such that Ri(λ

′) = β. This

means that all barriers are covered by the sensors of Si(λ
′) in Ci(λ

′), and thus λ′ is a

feasible value and λ∗ ∈ (λ1
i , λ

′]. Because Ri(λ) is strictly increasing, Ri(λ) < β for all

λ ∈ (λ1
i , λ

′). We update λ2
i to λ′.

In either case, Ri(λ) < β now holds for all λ ∈ (λ1
i , λ

2
i ). Finally, we perform the

jump-over procedure, as follows.

If Ri(λ) is a constant and Ri(λ) is not in the interior of a barrier, then we set Ri(λ)

to the left endpoint of the next barrier. If Ri(λ) is an increasing function, then we do

the following. If we increase λ from λ1
i to λ2

i , an event happens if Ri(λ) is equal to the

left or right endpoint of a barrier at some event value of λ. During the increasing of

λ, between any two adjacent events, Ri(λ) is either always in the interior of a barrier

or is always between two barriers. We compute all event values in O(m) time by using

the function Ri(λ) and the endpoints of all barriers. Let Λ denote the set of all event

values, and we also add λ1
i and λ2

i to Λ. After sorting all values in Λ, using the decision

algorithm in Lemma 5.5.2, we do binary search on the sorted list of Λ to find two
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adjacent values λ1 and λ2 such that λ∗ ∈ (λ1, λ2]. Note that (λ1, λ2] ⊆ (λ1
i , λ

2
i ]. Since

|Λ| = O(m), the binary search calls the decision algorithm O(logm) times, which takes

overall O(m logm+ n log log n logm) time. Finally, we reset λ1
i = λ1 and λ2

i = λ2.

This completes the i-th step of the algorithm, which runs in O((m + n log log n) ·

(logm + logn)) time. If λ∗ is not computed in this step, then it can be verified that

all algorithm variants are maintained (the analysis is similar to that in [61], so we

omit it). The algorithm will compute λ∗ after at most n steps. The total time of the

algorithm is O(n · (m+n log log n) · (logm+ log n)), which is bounded by O(nm logm+

n2 log n log log n) as shown in the following theorem. Note that the space of the algorithm

is O(n).

Theorem 5.5.5. The problem MBC can be solved in O(nm logm+n2 log n log log n) time

and O(n) space.

Proof. As discussed before, the running time of the algorithm is O(n · (m+n log log n) ·

(logm+ logn)), which is O(nm logm+n2 logn log logn+nm logn+n2 logm log log n).

We claim that nm logn + n2 logm log log n = O(nm logm + n2 log n log log n). In-

deed, if m ≤ n log log n, then nm logn = O(n2 log n log log n) and n2 logm log logn =

O(n2 log n log log n); otherwise, nm logn = O(nm logm) and n2 logm log log n = O(nm logm).

5.6 Concluding Remarks

As mentioned before, the high-level scheme of our algorithm for MBC is similar

to those in [33, 61]. However, a new technique we propose in this chapter can help

reduce the space complexities of the algorithms in [33,61]. Specifically, Chen et al. [33]

solved the line-constrained problem in O(n2 log n) time and O(n2) space for the case

where m = 1 and sensors have different ranges. Wang and Zhang [61] solved the line-

constrained problem in O(n2 log n log log n) time and O(n2) space for the case where

m = 1, sensors have the same range, and sensors have weights. If we apply the similar

preprocessing as in Lemma 5.5.1, then the space complexities of both algorithms [33,61]

can be reduced to O(n) while the time complexities do not change asymptotically.
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In addition, by slightly changing our algorithm for MBC, we can also solve the

following problem variant: Find a subset S′ of sensors of S to move them to L to cover

all barriers such that the maximum movement of all sensors of S′ is minimized (and

sensors of S \ S′ do not move). We omit the details.
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CHAPTER 6

SEPARATING OVERLAPPED INTERVALS ON A LINE

6.1 Introduction

We consider the following separating overlapped intervals problem on a line in this

chapter. The results in this chapter were submitted to a conference in 2018 and is now

still under review.

6.2 Problem Definitions and Our Results

Let I be a set of n intervals on a real line ℓ. We say that two intervals overlap if

their intersection contains more than one point. In this chapter, we consider an interval

separation problem: move the intervals of I on ℓ such that no two intervals overlap and

the maximum moving distance of these intervals is minimized.

If all intervals of I have the same length, then after the left endpoints of the intervals

are sorted, the problem can be solved in O(n) time by an easy greedy algorithm [19].

For the general problem where intervals may have different lengths, to the best of our

knowledge, the problem has not been studied before. In this chapter, we present an

O(n logn) time and O(n) space algorithm for it. We also show an Ω(n log n) time lower

bound for solving the problem under the algebraic decision tree model, and thus our

algorithm is optimal.

As a basic problem and like many other interval problems, the interval separation

problem potentially has many applications. For example, one possible application is on

scheduling, as follows. Suppose there are n jobs that need to be completed on a machine.

Each job requests a starting time and a total time for using the machine (hence it is

a time interval). The machine can only work on one job at any time, and once it

works on one job, it is not allowed to switch to other jobs until the job is finished.

If the requested time intervals of the jobs have any overlap, then we have to change
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the requested starting times of some intervals. In order to minimize deviations from

their requested time intervals, one scheduling strategy could be changing the requested

starting times (either advance or delay) such that the maximum difference between

the requested starting times and the scheduled starting times of all jobs is minimized.

Clearly, the problem is an instance of the interval separation problem. The problem

also has applications in the following scenario. Suppose a wireless sensor network has

n wireless mobile devices on a line and each device has a transmission range. We want

to move the devices along the line to eliminate the interference such that the maximum

moving distance of the devices is minimized (e.g., to save the energy). This is also an

instance of the interval separation problem.

6.2.1 Applications and Related Work

Many interval problems have been used to model scheduling problems. We give a

few examples. Given n jobs, each job requests a time interval to use a machine. Suppose

there is only one machine and the goal is to find a maximum number of jobs whose

requested time intervals do not have any overlap (so that they can use the machine).

The problem can be solved in O(n logn) time by an easy greedy algorithm [71]. Another

related problem is to find a minimum number of machines such that all jobs can be

completed [71]. Garey et al. [6] studied a scheduling problem, which is essentially the

following problem. Given n intervals on a line, determine whether it is possible to

find a unit-length sub-interval in each input interval, such that no two sub-intervals

overlap. An O(n logn) time algorithm was given in [6] for it. An optimization version

of the problem was also studied [55, 56], where the goal is to find a maximum number

of intervals that contain non-overlapping unit-length sub-intervals. Other scheduling

problems on intervals have also been considered, e.g., see [5, 6, 8–11,71].

Many problems on wireless sensor networks are also modeled as interval problems.

For example, a mobile sensor barrier coverage problem can be modeled as the following

interval problem. Given on a line n intervals (each interval is the region covered by

a sensor at the center of the interval) and another segment B (called “barrier”), the

goal is to move the intervals such that the union of the intervals fully covers B and

the maximum moving distance of all intervals is minimized. If all intervals have the
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same length, Czyzowicz et al. [60] solved the problem in O(n2) time and later Chen

et al. [33] improved it to O(n logn) time. If intervals have different lengths, Chen et

al. [33] solved the problem in O(n2 log n) time. The min-sum version of the problem

has also been considered. If intervals have the same length, Czyzowicz et al. [62] gave

an O(n2) time algorithm, and Andrews and Wang [63] solved the problem in O(n logn)

time. If intervals have different lengths, then the problem becomes NP-hard [33]. Refer

to [12–17] for other interval problems on mobile sensor barrier coverage.

Our interval separation problem may also be considered as a coverage problem in

the sense that we want to move intervals of I to cover a total of maximum length of the

line ℓ such that the maximum moving distance of the intervals is minimized.

6.2.2 Our Approach

We consider a one-direction version of the problem in which intervals of I are only

allowed to move rightwards. We show (in Section 6.3) that the original “two-direction”

problem can be reduced to the one-direction problem in the following way: If OPT is an

optimal solution of the one-direction problem and δopt is the maximum moving distance

of all intervals in OPT, then we can obtain an optimal solution for the two-direction

problem by moving each interval in OPT leftwards by δopt/2.

Hence, it is sufficient to solve the one-direction problem. It turns out that the

difficulty is mainly on determining the order of intervals of I in OPT. Indeed, once such

an “optimal order” is known, it is quite straightforward to compute the positions of the

intervals in OPT in additional O(n) time (i.e., consider the intervals in the order one

by one and put each interval “as left as possible”). If all intervals have the same length,

then such an optimal order is obvious, which is the order of the intervals sorted by their

left endpoints in the input. Indeed, this is how the O(n) time algorithm in [19] works.

However, if the intervals have different lengths, which is the case we consider in

this chapter, then determining an optimal order is substantially more challenging. At

first glance, it seems that we have to consider all possible orders of the intervals, whose

number is exponential. By several interesting (and even surprising) observations, we

show that we only need to consider at most n ordered lists of intervals. Consequently, a

straightforward algorithm can find and maintain these “candidate” lists in O(n2) time
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and space. We call it the “preliminary algorithm”, which is essentially a greedy algo-

rithm. The algorithm is relatively simple but it is quite involved to prove its correctness.

To this end, we extensively use the “exchange argument”, which is a standard technique

for proving correctness of greedy algorithms (e.g., see [71]).

To further improve the preliminary algorithm, we discover more observations, which

help us “prune” some “redundant” candidate lists. More importantly, the remaining lists

have certain monotonicity properties such that we are able to implicitly compute and

maintain them in O(n logn) time and O(n) space, although the number of the lists can

still be Ω(n). Although the correctness analysis is fairly complicated, the algorithm is

still quite simple and easy to implement (indeed, the most “complicated” data structure

is a binary search tree).

The rest of the chapter is organized as follows. In Section 6.3, we give notation and

reduce our problem to the one-direction case. In Section 6.4, we give our preliminary

algorithm, whose correctness is proved in Section 6.5. The improved algorithm is pre-

sented in Section 6.6. In Section 6.7, we conclude the chapter and prove the Ω(n log n)

time lower bound by a reduction from the integer element distinctness problem [72,73].

6.3 Preliminaries

We assume the line ℓ is the x-axis. The one-direction version of the interval sepa-

ration problem is to move intervals of I on ℓ in one direction (without loss of generality,

we assume it is the right direction) such that no two intervals overlap and the maximum

moving distance of the intervals is minimized. Let OPT denote an optimal solution of

the one-direction version and let δopt be the maximum moving distance of all intervals in

OPT. The following lemma gives a reduction from the general “two-direction” problem

to the one-direction problem.

Lemma 6.3.1. An optimal solution for the interval separation problem can be obtained

by moving every interval in OPT leftwards by δopt/2.

Proof. Let SOL be the solution obtained by moving every interval in OPT leftwards by

δopt/2. Our goal is to show that SOL is an optimal solution for our original problem. Let
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δ be the maximum moving distance of all intervals in SOL. Since no intervals in OPT

have been moved leftwards (with respect to their input positions), we have δ = δopt/2.

Assume to the contrary that SOL is not optimal. Then, there exists another solu-

tion SOL′ for the original problem in which the maximum interval moving distance is

δ′ < δ. By moving every interval of SOL′ rightwards by δ′, we can obtain a feasible solu-

tion SOL′′ for the one-direction problem in which no interval has been moved leftwards

(with respect to their input positions) and the maximum interval moving distance of

SOL′′ is at most 2δ′, which is smaller than δopt since δ′ < δ. However, this contradicts

with that OPT is an optimal solution for the one-direction case.

By Lemma 6.3.1, once we have an optimal solution for the one-direction problem,

we can obtain an optimal solution for our original problem in additional O(n) time. In

the following, we will focus on solving the one-direction case.

We first sort all intervals of I by their left endpoints. For ease of exposition, we

assume no two intervals have their left endpoints located at the same position (otherwise

we could break ties by also sorting their right endpoints). Let I = {I1, I2, . . . , In} be the

sorted intervals by their left endpoints from left to right. For each (integer) i ∈ [1, n],

denote by li and ri the (physical) left and right endpoints of Ii, respectively. Denote by

xli and xri the x-coordinates of li and ri in the input, respectively. Note that for each

i ∈ [1, n], the two physical endpoints li and ri may be moved during the algorithm, but

the two coordinates xli and xri are always fixed. Denote by |Ii| the length of Ii, i.e.,

|Ii| = xri − xli.

For convenience, when we say the position of an interval, we refer to the position

of the left endpoint of the interval.

With respect to a subset I ′ of I, by a configuration of I ′, we refer to a specification of

the position of each interval of I ′. For example, in the input configuration of I, interval

Ii is at x
l
i for each i ∈ [1, n]. Given a configuration C of I ′, for each interval Ii ∈ I

′, if li

is at x in C, then we call the value x−xli the displacement of Ii, denoted by d(i, C), and if

d(i, C) ≥ 0, then we say that Ii is valid in C. We say that C is feasible if the displacement

of every interval of I ′ is valid and no two intervals of I ′ overlap in C. The maximum

displacement of the intervals of I ′ in C is called the max-displacement of C, denoted by
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δ(C). Hence, finding an optimal solution for the one-direction problem is equivalent to

computing a feasible configuration of I whose max-displacement is minimized; such a

configuration is also called an optimal configuration.

For convenience of discussion, depending on the context, we will use the intervals

Ii of I and their indices i interchangeably. For example, I may also refer to the set of

indices {1, 2, . . . , n}.

Let Lopt be the list of intervals of I in an optimal configuration sorted from left to

right. We call Lopt an optimal list. Given Lopt, we can compute an optimal configuration

in O(n) time by an easy greedy algorithm, called the left-possible placement strategy:

Consider the intervals following their order in Lopt, and for each interval, place it on ℓ as

left as possible so that it does not overlap with the intervals that are already placed on ℓ

and its displacement is non-negative. The following lemma formally gives the algorithm

and proves its correctness.

Lemma 6.3.2. Given an optimal list Lopt, we can compute an optimal configuration in

O(n) time by the left-possible placement strategy.

Proof. We first describe the algorithm and then prove its correctness.

We consider the indices one by one following their order in Lopt. Consider any

index i. If Ii is the first interval of Lopt, then we place Ii at x
l
i (i.e., Ii stays at its input

position). Otherwise, let Ij be the previous interval of Ii in Lopt. So Ij has already been

placed on ℓ. Let x be the current x-coordinate of the right endpoint rj of Ij . We place

the left endpoint li of Ii at max{xli, x}. If Ii is the last interval of Lopt, then we finish

the algorithm. Clearly, the algorithm can be easily implemented in O(n) time.

Let C be the configuration of all intervals obtained by the above algorithm. Recall

that δ(C) denote the max-displacement of C. Below, we show that C is an optimal

configuration.

Indeed, since Lopt is an optimal list, there exists an optimal configuration C′ in

which the order of the indices of I follows that in Lopt. Hence, the max-displacement of

C′ is δopt. According to our greedy strategy for computing C, it is not difficult to see that

the position of each interval Ii of I in C cannot be strictly to the right of its position in
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C′. Therefore, the displacement of each interval in C is no larger than that in C′. This

implies that δ(C) ≤ δopt. Therefore, C is an optimal configuration.

Due to Lemma 6.3.2, we will focus on computing an optimal list Lopt.

For any subset I ′ of I, an (ordered) list of I ′ refers to a permutation of the indices

of I ′. Let L be a list of I and let L′ be a list of I ′ with I ′ ⊆ I. We say that L′ is

consistent with L if the relative order of indices of I ′ in L is the same as that in L′. If

L′ is consistent with an optimal list Lopt of I, then we call L′ a canonical list of I ′.

For any 1 ≤ i ≤ j ≤ n, we use I[i, j] to denote the subset of consecutive intervals

of I from i to j, i.e, {i, i+ 1, . . . , j}.

6.4 The Preliminary Algorithm

In this section, we describe an algorithm that can compute an optimal list in O(n2)

time and space. The correctness of the algorithm is mainly discussed in Section 6.5.

Our algorithm considers the intervals of I one by one by their index order. After

each interval Ii is processed, we obtain a set L of at most i lists of the indices of I[1, i],

such that L contains at least one canonical list of I[1, i]. For each list L ∈ L, a feasible

configuration CL of the intervals of I[1, i] is also maintained. As will be clear later, CL is

essentially the configuration obtained by applying the left-possible placement strategy

on the intervals of I[1, i] following their order in L. For each j ∈ [1, i], we let xlj(CL) and

xrj(CL) respectively denote the x-coordinates of lj and rj in CL (recall that lj and rj are

the left and right endpoints of the interval Ij , respectively). Recall that δ(CL) denotes

the max-displacement of CL, i.e, the maximum displacement of the intervals of I[1, i] in

CL.

Initially when i = 1, we have only one list L = {1} and let CL consist of the single

interval I1 at its input position, i.e., xl1(CL) = xl1. Clearly, δ(CL) = 0. We let L consist

of the only list L. It is vacuously true that L is a canonical list of I[1, 1].

In general, assume interval Ii−1 has been processed and we have the list set L as

discussed above. In the following, we give our algorithm for processing Ii. Consider

a list L ∈ L. Note that CL has been computed, which is a feasible configuration of

I[1, i− 1]. The value δ(CL) is also maintained. Let m be the last index in L. Note that
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Case I Case II Case III

m

i i i

m
m

m m

Figure 6.1. Illustrating the three main cases. The (black) solid segments show intervals in their input
positions and the (red) dashed segments shows interval Im in CL.

m < i. Depending on the values of xli, x
r
i , x

r
m, and xlm(CL), there are three main cases

(e.g. see Fig. 6.1).

Case I: xri ≥ xrm (i.e., the right endpoint ri of Ii is to the right of rm in the

input).. In this case, we update L by appending i to the end of L. Further, we update

the configuration CL by placing li at max{xrm(CL), x
l
i} (which follows the left-possible

placement strategy). We let L′ denote the original list of L before i is inserted and let CL′

denote the original configuration of CL. We update δ(CL) by the following observation.

Observation 6.4.1. CL is a feasible configuration and δ(CL) = max{δ(CL′), xli(CL)− xli}.

Proof. By our way of setting Ii in CL, Ii is valid and does not overlap with any other

interval in CL. Hence, CL is feasible. Comparing with CL′ , CL has one more interval Ii.

Therefore, δ(CL) is equal to the larger value of δ(CL′) and the displacement of Ii in CL,

which is xli(CL)− xli.

The following lemma will be used to show the correctness of our algorithm and its

proof is deferred to Section 6.5.

Lemma 6.4.2. If L′ is a canonical list of I[1, i− 1], then L is a canonical list of I[1, i].

Case II: xri < xrm and xli ≤ xlm(CL).. In this case, we update L by inserting i right

before m. Let x = xlm(CL). We update CL by setting li at x and setting lm at x + |Ii|.

We let L′ denote the original list of L before inserting i and let CL′ denote the original

CL. We update δ(CL) by the following observation. Note that xlm(CL) now refers to the

position of lm in the updated CL.

Observation 6.4.3. CL is a feasible configuration and δ(CL) = max{δ(CL′), xlm(CL)−xlm}.
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Proof. Since xli ≤ x and li is at x in CL, Ii is valid in CL. Comparing with its position

in CL′ , Im has been moved rightwards; since Im is valid in CL′ , Im is also valid in CL.

Note that no two intervals overlap in CL. Therefore, CL is a feasible configuration.

Comparing with CL′ , CL has one more interval Ii and Im has been moved rightwards

in CL. Therefore, δ(CL) is equal to the maximum of the following three values: δ(CL′),

the displacement of Ii in CL, and the displacement of Im in CL. Observe that the

displacement of Ii is smaller than that of Im. This is because lm is to the left of li

in the input (since m < i) while lm is to the right of li in CL. Thus, it holds that

δ(CL) = max{δ(CL′), xlm(CL)− xlm}.

The proof of the following lemma is deferred to Section 6.5.

Lemma 6.4.4. If L′ is a canonical list of I[1, i− 1], then L is a canonical list of I[1, i].

Case III: xri < xrm and xli > xlm(CL).. In this case, we first update L by appending

i to the end of L and update CL by placing the left endpoint of Ii at x
r
m(CL). Let L

′ be

the original list L before we insert i and let CL′ be the original configuration of CL.

Further, we create a new list L∗, which is the same as L except that we switch the

order of i and m. Thus, m is the last index of L∗. Correspondingly, the configuration

CL∗ is the same as CL except that li is at x
l
i, i.e., its position in the input, and lm is at

xri . We say that L∗ is the new list generated by L′. We do not put L∗ in the set L at

this moment (but L is in L).

Observation 6.4.5. Both CL and CL∗ are feasible; δ(CL) = max{δ(CL′), xli(CL) − xli} and

δ(CL∗) = max{δ(CL′), xlm(CL∗)− xlm}.

Proof. By a similar argument as in Observation 6.4.1, CL is feasible and δ(CL) =

max{δ(CL′), xli(CL) − xli}. By a similar argument as in Observation 6.4.3, CL∗ is fea-

sible and δ(CL∗) = max{δ(CL′), xlm(CL∗)− xlm}. We omit the details.

The proof of the following lemma is deferred to Section 6.5.

Lemma 6.4.6. If L′ is a canonical list of I[1, i− 1], then one of L and L∗ is a canonical

list of I[1, i].
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After each list L of L is processed as above, let L∗ denote the set of all new generated

lists in Case III. Recall that no list of L∗ has been added into L yet. Let L∗
min be the list

of L∗ with the minimum value δ(CL∗

min
). The proof of the following lemma is deferred

to Section 6.5.

Lemma 6.4.7. If L∗ has a canonical list of I[1, i], then L∗
min is a canonical list of I[1, i].

Due to Lemma 6.4.7, among all lists of L∗, we only need to keep L∗
min. So we add

L∗
min to L and ignore all other lists of L∗. We call L∗

min a new list of L produced by our

algorithm for processing Ii and all other lists of L are considered as the old lists.

Remark.. Lemma 6.4.7 is a key observation that helps avoid maintaining an ex-

ponential number of lists.

This finishes our algorithm for processing the interval Ii. Clearly, L has at most one

more new list. After In is processed, the list L of L with minimum δ(CL) is an optimal

list.

According to our above description, the algorithm can be easily implemented in

O(n2) time and space. The proof of Theorem 6.4.8 gives the details and also shows the

correctness of the algorithm based on Lemmas 6.4.2, 6.4.4, 6.4.6, and 6.4.7.

Theorem 6.4.8. An optimal solution for the one-direction problem can be found in O(n2)

time and space.

Proof. To implement the algorithm, we can use a linked list to represent each list of L.

Consider a general step for processing interval Ii.

For any list L ∈ L, inserting i to L can be easily done in O(1) time for each of the

three cases. The configuration CL and the value δ(CL) can also be updated in O(1) time.

If L generates a new list L∗, then we do not explicitly construct L∗ but only compute

the value δ(CL∗), which can be done in O(1) time by Observation 6.4.5. Once every list

L ∈ L has been processed, we find the list L∗
min ∈ L

∗. Then, we explicitly construct L∗

and CL∗ , in O(n) time.

Hence, each general step for processing Ii can be done in O(n) time since L has at

most n lists. Thus, the total time and space of the algorithm is O(n2).

For the correctness, after a general step for processing Ii, Lemmas 6.4.2, 6.4.4, 6.4.6,

and 6.4.7 together guarantee that the set L has at least one canonical list of I[1, i]. After
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j = 6

k = 10

Lopt : · · · · · · , k = 10, 8, 14, 5, 4, 12, j = 6, · · · · · ·

L1

opt[j, k] = {8, 5, 4} L2

opt[j, k] = {k = 10, 14, 12}

L′
opt : · · · · · · , 8, 5, 4, j = 6, 14, k = 10, 12, · · · · · ·

Figure 6.2. Illustrating an inversion (j, k) of Lopt and an example for Lemma 6.5.1: the intervals j

and k are shown in their input positions.

In is processed, since CL is essentially obtained by the left-possible placement strategy

for each list L ∈ L, if L is the list of L with the smallest δ(CL), then L is an optimal list

and CL is an optimal configuration by Lemma 6.3.2.

6.5 The Correctness of the Preliminary Algorithm

In this section, we establish the correctness of our preliminary algorithm. Specifi-

cally, we will prove Lemmas 6.4.2, 6.4.4, 6.4.6, and 6.4.7. The major analysis technique

is the exchange argument, which is quite standard for proving correctness of greedy

algorithms (e.g., see [71]).

Let L be a list of all indices of I. For any two indices j, k ∈ [1, n], let L[j, k] denote

the sub-list of all indices of L between j and k (including j and k).

For any 1 ≤ j < k ≤ n, we say that (j, k) is an inversion of L if xrj ≤ xrk and k

is before j in L (k and j are not necessarily consecutive in L; e.g., see Fig. 6.2 with

L = Lopt). For an inversion (j, k), we further introduce two sets of indices L1[j, k] and

L2[j, k] as follows (e.g., see Fig. 6.2 with L = Lopt). Let L1[j, k] consist of all indices

i ∈ L[j, k] such that i < k and i 6= j; let L2[j, k] consist of all indices i ∈ L[j, k] such

that i ≥ k. Hence, L1[j, k], L2[j, k], and {j} form a partition of the indices of L[j, k].

We first give the following lemma, which will be extensively used later.

Lemma 6.5.1. Let Lopt be an optimal list of all indices of I. If Lopt has an inversion

(j, k), then there exists another optimal list L′
opt that is the same as Lopt except that the

sublist Lopt[j, k] is changed to the following: all indices of L1
opt[j, k] are before j and all

indices of L2
opt[j, k] are after j (in particular, k is after j, so (j, k) is not an inversion

any more in L′
opt), and further, the relative order of the indices of L1

opt[j, k] in L′
opt is

the same as that in Lopt (but this may not be the case for L2
opt[j, k]). E.g., see Fig. 6.2.
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m

i

Lopt : · · · · · · , i, · · · ,m, · · · · · ·

L′
opt : · · · · · · , L

1

opt[i,m],m, · · · , i, · · · · · ·

Figure 6.3. Illustrating the proof of Lemma 6.4.2. The intervals m and i are shown in their input
positions.

Many proofs given later in the chapter will utilize Lemma 6.5.1 as a basic technique

for “eliminating” inversions in optimal lists. Before giving the proof of Lemma 6.5.1,

which is somewhat technical, lengthy, and tedious, we first show that Lemma 6.4.2 can

be easily proved with the help of Lemma 6.5.1.

6.5.1 Proof of Lemma 6.4.2.

Assume L′ is a canonical list of I[1, i−1]. Our goal is to prove that L is a canonical

list of I[1, i].

Since L′ is a canonical list, by the definition of a canonical list, there exists an

optimal configuration C in which the order of the intervals of I[1, i − 1] is the same as

that in L′. Let Lopt be the list of indices of the intervals of I in C. If i is after m in Lopt,

then L is consistent with Lopt and thus is a canonical list of I[1, i]. In the following, we

assume i is before m in Lopt.

Since m < i, xrm ≤ xri , and i is before m in Lopt, (m, i) is an inversion in Lopt.

Let L′
opt be another optimal list obtained by applying Lemma 6.5.1 on (m, i). Refer to

Fig. 6.3. We claim that L is consistent with L′
opt, which will prove that L is a canonical

list. We prove the claim below.

Indeed, note that L′ is consistent with Lopt. Comparing with Lopt, by Lemma 6.5.1,

only the indices of the sublist Lopt[m, i] have their relative order changed in L′
opt. Since

all indices of L′ are smaller than i, by definition, all indices of L′ that are in Lopt[m, i] are

contained in L1
opt[m, i]. By Lemma 6.5.1, the relative order of the indices of L1

opt[m, i]

in L′
opt is the same as that in Lopt, and further, all indices of L1

opt[m, i] are still before

m in L′
opt. This implies that the relative order of the indices of L′ does not change from

Lopt to L′
opt. Hence, L′ is consistent with L′

opt. On the other hand, by Lemma 6.5.1,

i is after m. Thus, L is consistent with L′
opt. This proves the claim and thus proves
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j

k

S0

S1

S2

Figure 6.4. Illustrating the intervals of Lopt[j, k] in their input positions. The two (red) dotted
intervals are in S0 = L1

opt[j, k]; the two (green) dashed intervals are in S1; the two (blue) dashed-dotted
intervals are in S2.

Lemma 6.4.2.

6.5.2 Proof of Lemma 6.5.1

In this section, we give the proof of Lemma 6.5.1.

We partition the set L2
opt[j, k]\{k} into two sets S1 and S2, defined as follows (e.g.,

see Fig. 6.4). Let S1 consists of all indices t of L2
opt[j, k] \ {k} such that xrt ≤ xrj (i.e., rt

is to the left of rj in the input). Let S2 consists of all indices of L2
opt[j, k] \ {k} that are

not in S1. Note that Lopt[j, k] = L1
opt[j, k] ∪ S1 ∪ S2 ∪ {j, k}. To simplify the notation,

let S = Lopt[j, k] and S0 = L1
opt[j, k] (e.g., see Fig. 6.4).

We only consider the general case where none of S0, S1, and S2 is empty since other

cases can be analyzed by similar but simpler techniques.

In the following, from Lopt, we will subsequently construct a sequence of optimal

lists L0, L1, L2, L3, such that eventually L3 is the list L′
opt specified in the statement of

Lemma 6.5.1 (e.g., see Fig. 6.5).

The List L0

For any adjacent indices h and g of Lopt[j, k] \ {j, k} such that h is before g in Lopt,

we say that (h, g) is an exchangeable pair if one of the three cases happen: g ∈ S0 and

h ∈ S1; g ∈ S1 and h ∈ S2; g ∈ S0 and h ∈ S2.

In the following, we will perform certain “exchange operations” to eliminate all

exchangeable pairs of Lopt, after which we will obtain another optimal list L0 in which

for any i0 ∈ S0, i1 ∈ S1, i2 ∈ S2, i0 is before i1 and i2 is after i1, and all other indices

of L0 have the same positions as in Lopt (e.g., see Fig. 6.5).
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L0 : · · · , k, S0, S1, S2, j, · · ·

L1 : · · · , S0, k, S1, S2, j, · · ·

L2 : · · · , S0, k, S1, j, S2, · · ·

L3 : · · · , S0, j, S1, k, S2, · · ·

Figure 6.5. Illustrating the relative order of k, j, S0, S1, S2 in the four lists L0, L1, L2.L3.

Consider any exchangeable pair (h, g) of Lopt. Let L
′ be another list that is the same

as Lopt except that h and g exchange their order. We call this an exchange operation.

In the following, we show that L′ is an optimal list.

Since Lopt is an optimal list, there is an optimal configuration C in which the order

of the intervals is the same as Lopt. Consider the configuration C′ that is the same as

C except that we exchange the order of h and g in the following way (e.g., see Fig 6.6):

xlg(C
′) = xlh(C) and xrh(C

′) = xrg(C), i.e., the left endpoint lg of Ig in C′ is at the same

position as lh in C and the right end point rh of Ih in C′ is at the same position as rg

in C. Clearly, the order of intervals in C′ is the same as that in L′. In the following, we

show that C′ is an optimal configuration, which will prove that L′ is an optimal list.

h g

hg

C

C ′

· · · · · · · · · · · ·

· · · · · · · · · · · ·h

g

Figure 6.6. Left: Illustrating the intervals g and h at their input positions. Right: Illustrating the
two intervals h and g in the configurations C and C′ (note that h and g do not have to be connected).

We first show that C′ is feasible. Recall that intervals h and g are adjacent in Lopt

and also in L′. By our way of setting Ig and Ih in C′, the segments of ℓ “spanned”

by Ih and Ig in both C and C′ are exactly the same (e.g., the segments between the

two vertical dotted lines in Fig. 6.6). Since no two intervals of I overlap in C, no two

intervals overlap in C′ as well.

Next, we show that every interval of I is valid in C′. To this end, it is sufficient to

show that Ih and Ig are valid in C′ since other intervals do not change positions from

C to C′. For Ih, comparing with its position in C, Ih has been moved rightwards in C′,

and thus Ih is valid in C′. For Ig, since (h, g) is an exchangeable pair, g is either in S0

or in S1. In either case, xlg ≤ xrk. On the other hand, Ik is to the left of Ig in C′, which

implies that xrk(C
′) ≤ xlg(C

′). Since Ik does not change position from C to C′ and Ik
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is valid in C, we have xrk ≤ xrk(C) = xrk(C
′). Combining the above discussion, we have

xlg ≤ xrk ≤ xrk(C) = xrk(C
′) ≤ xlg(C

′). Thus, Ig is valid in C′. This proves that C′ is a

feasible configuration.

We proceed to show that C′ is an optimal configuration by proving that the max-

displacement of C′ is no more than the max-displacement of C, i.e., δ(C′) ≤ δ(C). Note

that δ(C) = δopt since C is an optimal configuration. Comparing with C, Ig has been

moved leftwards and Ih has been moved rightwards in C′. Therefore, to prove δ(C′) ≤

δopt, it suffices to show that the displacement of Ih in C′, i.e., d(h, C′), is at most δopt.

Since (h, g) is an exchangeable pair, h is either in S1 or in S2. In either case, xlj ≤ xlh.

On the other hand, Ij is to the right of Ih in C′, which implies that xlh(C
′) ≤ xlj(C

′).

Consequently, we have d(h, C′) = xlh(C
′)− xlh ≤ xlj(C

′)− xlj = d(j, C′). Since Ij does not

change position from C to C′, d(h, C′) ≤ d(j, C′) = d(j, C) ≤ δopt. This proves that C′ is

an optimal configuration and L′ is an optimal list.

If L′ still has an exchangeable pair, then we keep applying the above exchange

operations until we obtain an optimal list L0 that does not have any exchangeable pairs.

Hence, L0 has the following property: for any it ∈ St for t = 0, 1, 2, i0 is before i1 and

i2 is after i1, and all other indices of L0 have the same positions as in Lopt. Further,

notice that our exchange operation never changes the relative order of any two indices

in St for each 0 ≤ t ≤ 2. In particular, the relative order of the indices of S0 in Lopt is

the same as that in L0.

The List L1

Let L1 be another list that is the same as L0 except that k is between the indices

of S0 and the indices of S1 (e.g., see Fig. 6.5). In the following, we show that L1 is also

an optimal list. This can be done by keeping performing exchange operations between

k and its right neighbor in S0 until all indices of S0 are to the left of k. The details are

given below.

Let g be the right neighboring index of k in L0 and g is in S0. Let L′ be the list

that is the same as L0 except that we exchange the order of k and g. In the following,

we show that L′ is an optimal list.

Since L0 is an optimal list, there is an optimal configuration C in which the order
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k g

kg

C

C ′

· · · · · · · · · · · ·

· · · · · · · · · · · ·k

j

g

Figure 6.7. Left: Illustrating the intervals j, k, and g at their input positions. Right: Illustrating the
two intervals k and g in the configurations C and C′.

of the indices of the intervals is the same as L0. Consider the configuration C′ that

is the same as C except that we exchange the order of k and g in the following way:

xlg(C
′) = xlk(C) and xrk(C

′) = xrg(C) (e.g., see Fig. 6.7; similar to that in Section 6.5.2).

In the following, we show that C′ is an optimal solution, which will prove that L′ is an

optimal list.

We first show that C′ is feasible. By the similar argument as in Section 6.5.2, no

two intervals overlap in C′. Next we show that every interval is valid in C. It is sufficient

to show that both Ik and Ig are valid. For Ik, comparing with its position in C, Ik has

been moved rightwards in C′ and thus Ik is valid in C′. For Ig, since g ∈ S0, by the

definition of S0, x
l
g ≤ xlk (e.g., see the left side of Fig. 6.7). Since xlk ≤ xlk(C) = xlg(C

′),

we obtain that xlg ≤ xlg(C
′) and Ig is valid in C′.

We proceed to show that C′ is an optimal configuration by proving that δ(C′) ≤

δ(C) = δopt. Comparing with C, Ig has been moved leftwards and Ik has been moved

rightwards in C′. Therefore, to prove δ(C′) ≤ δopt, it suffices to show that d(k, C′) ≤ δopt.

Recall that lj is to the left of lk in the input. Note that k is to the left of j in L′. Hence,

lk is to the left of lj in C
′. Thus, d(k, C′) ≤ d(j, C′). Note that d(j, C′) = d(j, C) since the

position of Ij does not change from C to C
′. Therefore, we obtain d(k, C′) ≤ d(j, C) ≤ δopt.

This proves that C′ is an optimal configuration and L′ is an optimal list.

If the right neighbor of k in L′ is still in S0, then we keep performing the above

exchange until all indices of S0 are to the left of k, at which moment we obtain the list

L1. Thus, L1 is an optimal list.

The List L2

Let L2 be another list that is the same as L1 except that j is between the indices

of S1 and the indices of S2 (e.g., see Fig. 6.5). This can be done by keeping performing

exchange operations between j and its left neighbor in S2 until all indices of S2 are to
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Figure 6.8. Left: Illustrating the intervals j, k, and h at their input positions. Right: Illustrating the
two intervals h and j in the configurations C and C′.

the right of j, which is symmetric to that in Section 6.5.2. The details are given below.

Let h be the left neighbor of j in L1 and h is in S2. Let L′ be the list that is the

same as L1 except that we exchange the order of h and j. In the following, we show

that L′ is an optimal list.

Since L1 is an optimal list, there is an optimal configuration C in which the order

of the indices of the intervals is the same as L1. Consider the configuration C′ that

is the same as C except that we exchange the order of j and h in the following way:

xlj(C
′) = xlh(C) and xrh(C

′) = xrj(C) (e.g., see Fig. 6.8). In the following, we show that C′

is an optimal solution, which will prove that L′ is an optimal list.

We first show that C′ is feasible. By the similar argument as before, no two intervals

overlap in C′. Next we show that every interval is valid in C′. It is sufficient to show that

both Ij and Ih are valid. For Ih, comparing with its position in C, Ih has been moved

rightwards in C′ and thus Ih is valid in C′. For Ij , since h ∈ S2, by the definition of S2,

xlj ≤ xlh. Since xlh ≤ xlh(C) = xlj(C
′), we obtain that xlj ≤ xlj(C

′) and Ij is valid in C′.

We proceed to show that C′ is an optimal configuration by proving that δ(C′) ≤

δ(C) = δopt. Comparing with C, Ij has been moved leftwards and Ih has been moved

rightwards in C′. Therefore, to prove δ(C′) ≤ δopt, it suffices to show that d(h, C′) ≤ δopt.

Since h is in S2, x
r
j ≤ xrh. Since xrh(C

′) = xrj(C), we deduce d(h, C′) = xrh(C
′) − xrh ≤

xrj(C)− xrj = d(j, C) ≤ δopt. This proves that C
′ is an optimal configuration and L′ is an

optimal list.

If the left neighbor of j in L′ is still in S2, then we keep performing the above

exchange until all indices of S2 are to the right of j, at which moment we obtain the list

L2. Thus, L2 is an optimal list.

The List L3

Let L3 be the list that is the same as L2 except that we exchange the order of k
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Figure 6.9. Left: Illustrating the intervals j, k, g and h at their input positions, where S1 = {g, h}.
Right: Illustrating the intervals of S1 ∪ {j, k} in the configurations C and C′.

and j, i.e., in L3, the indices of S1 are all after j and before k (e.g., see Fig. 6.5). In the

following, we prove that L3 is an optimal list.

Since L2 is an optimal list, there is an optimal configuration C in which the order

of the indices of intervals is the same as L2. Consider the configuration C′ that is the

same as C except the following (e.g., see Fig. 6.9): First, we set xlj(C
′) = xlk(C); second,

we shift each interval of S1 leftwards by distance |Ik| − |Ij | (if this value is negative, we

actually shift rightwards by its absolute value); third, we set xrk(C
′) = xrj(C) (i.e., rk is

at the same position as rj in C). Clearly, the interval order of C′ is the same as L3. In

the following, we show that C′ is an optimal configuration, which will prove that L3 is

an optimal list.

We first show that C′ is feasible. By our way of setting positions of intervals in

S1 ∪{j, k}, One can easily verify that no two intervals of C′ overlap. Next we show that

every interval is valid in C′. It is sufficient to show that all intervals in S1 ∪ {j, k} are

valid. Comparing with C, Ik has been moved rightwards in C′. Thus, Ik is valid in C′.

Recall that xlj ≤ xlk and xlj(C
′) = xlk(C). Since xlk ≤ xlk(C) (because Ik is valid in C),

we obtain that xlj ≤ xlj(C
′) and Ij is valid in C′. Consider any index t ∈ S1. By the

definition of S1, x
l
t ≤ xrj . Since j is to the left of t in C′, we have xrj(C

′) ≤ xlt(C
′). Since

xrj ≤ xrj(C
′) (because Ij is valid in C′), we obtain that xlt ≤ xrj ≤ xrj(C

′) ≤ xlt(C
′) and

thus It is valid in C′. This proves that C′ is feasible.

We proceed to show that C′ is an optimal configuration by proving that δ(C′) ≤

δ(C) = δopt. It is sufficient to show that for any t ∈ S1∪{j, k}, d(t, C
′) ≤ δopt. Comparing

with C, Ij has been moved leftwards in C′, and thus, d(j, C′) ≤ d(j, C) ≤ δopt. Recall

that xrj ≤ xrk and xrk(C
′) = xrj(C). We can deduce d(k, C′) = xrk(C

′)− xrk ≤ xrj(C)− xrj ≤

d(j, C) ≤ δopt. Consider any t ∈ S1. By the definition of S1, x
l
t ≥ xlk. On the other

hand, since t is to the left of k in C′, xlt(C
′) ≤ xlk(C

′). Therefore, we obtain that

d(t, C′) = xlt(C
′)−xlt ≤ xlk(C

′)−xlk = d(k, C′). We have proved above that d(k, C′) ≤ δopt,
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and thus d(t, C′) ≤ δopt. This proves that C′ is an optimal configuration and L3 is an

optimal list.

Notice that L3 is the list L
′
opt specified in the lemma statement. Indeed, in all above

lists from Lopt to L3, the relative order of the indices of S0 (which is L1
opt[j, k]) never

changes. This proves Lemma 6.5.1.

6.5.3 Proof of Lemma 6.4.4

In this section, we prove Lemma 6.4.4. Assume L′ is a canonical list of I[1, i− 1].

Our goal is to prove that L is also a canonical list of I[1, i].

Since L′ is a canonical list, there exists an optimal configuration C in which the

order the intervals of I[1, i− 1] is the same as that in L′. Let Lopt be the list of indices

of the intervals of I in C. If, in Lopt, i is before m and after every index of I[1, i−1]\{m},

then L is consistent with Lopt and thus is a canonical list of I[1, i], so we are done with

the proof.

In the following, we assume L is not consistent with Lopt. There are two cases.

In the first case, i is after m in Lopt. In the second case, i is before j in Lopt for some

j ∈ I[1, i−1]\{m}. We analyze the two cases below. In each case, by performing certain

exchange operations and using Lemma 6.5.1, we will find an optimal list of all intervals

of I such that L is consistent with the list (this will prove that L is an canonical list of

I[1, i]).

The First Case

Assume i is after m in Lopt. Let S denote the set of indices strictly between m and

i in Lopt (so neither m nor i is in S). Since all indices of I[1, i − 1] are before m in

Lopt, it holds that j > i for each index j ∈ S. Let S′ be the set of indices j of S such

that xrj ≥ xri . Note that for each j ∈ S′, the pair (i, j) is an inversion. We consider the

general case where neither S nor S′ is empty since the analysis for other cases is similar

but easier.

Let j be the rightmost index of S′. Again, (i, j) is an inversion. By Lemma 6.5.1,

we can obtain another optimal list L′
opt such that j is after i and positions of the indices

other than those in S are the same as before in Lopt. Further, the indices strictly between
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Figure 6.10. Left: Illustrating the intervals j, k, g and h at their input positions, where S0 = {g, h}.
Right: Illustrating the intervals of S0 ∪ {m, i} in the configurations C and C′.

m and i in L′
opt are all in S. If there is an index j between m and i in L′

opt such that

(i, j) is an inversion, then we apply Lemma 6.5.1 again. We do this until we obtain

an optimal list L0 in which for any index j strictly between m and i, (i, j) is not an

inversion, and thus xrj < xri (this further implies that Ij is contained in Ii in the input

as i < j). Let S0 denote the set of indices strictly between m and i in L0.

Consider the list L1 that is the same as L0 except that we exchange the positions

of m and i, i.e., the indices of S0 are now after i and before m. In the following, we

prove that L1 is an optimal list. Note that L is consistent with L1, and thus once we

prove that L1 is an optimal list, we also prove that L is a canonical list of I[1, i]. The

technique for proving that L1 is an optimal list is similar to that in Section 6.5.2. The

details are given below.

Since L0 is an optimal list, there is an optimal configuration C in which the order of

the indices of intervals is the same as L0. Consider the configuration C
′ that is the same

as C except the following (e.g., see Fig. 6.10): First, we set xli(C
′) = xlm(C); second, we

shift each interval of S0 leftwards by distance |Im| − |Ii| (again, if this value is negative,

we actually shift rightwards by its absolute value); third, we set xrm(C′) = xri (C). Clearly,

the interval order in C′ is the same as L1. In the following, we show that C′ is an optimal

configuration, which will prove that L1 is an optimal list.

We first show that C′ is feasible. As in Section 6.5.2, no two intervals of C′ overlap.

Next, we show that every interval is valid in C′. It is sufficient to show that all intervals in

S0∪{m, i} are valid since other intervals do no change positions from C to C′. Comparing

with its position in C, Im has been moved rightwards in C′. Thus, Im is valid in C′.

Recall that in Case II of our algorithm, it holds that xli ≤ xlm(CL′), where CL′ is the

configuration of only the intervals of I[1, i− 1] following their order in L′. Since CL′ is

the configuration constructed by the left-possible placement strategy and the order of

the indices of I[1, i − 1] in C is the same as L′, it holds that xlm(CL′) ≤ xlm(C). Hence,
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we obtain xli ≤ xlm(C). Since xli(C
′) = xlm(C), xli ≤ xli(C

′) and Ii is valid in C′. Consider

any index j ∈ S0. Recall that Ij is contained in Ii in the input. Thus, xlj ≤ xri . Since i

is to the left of j in C′, we have xri (C
′) ≤ xlj(C

′). Since xri ≤ xri (C
′) (because Ii is valid

in C′), we obtain that xlj ≤ xlj(C
′) and Ij is valid in C′. This proves that C′ is feasible.

We proceed to show that C′ is an optimal configuration by proving that δ(C′) ≤

δ(C) = δopt. It suffices to show that for any j ∈ S0 ∪ {m, i}, d(j, C′) ≤ δopt. Comparing

with C, Ii has been moved leftwards in C′, and thus d(i, C′) ≤ d(i, C) ≤ δopt. Since

xri ≤ xrm and xrm(C′) = xri (C), we can deduce d(m, C′) = xrm(C′) − xrm ≤ xri (C) − xri =

d(i, C) ≤ δopt. Consider any j ∈ S0. Recall that x
l
j ≥ xli ≥ xlm. On the other hand, since

j is to the left of m in C′, xlj(C
′) ≤ xlm(C′). Therefore, d(j, C′) = xlj(C

′)− xlj ≤ xlm(C′)−

xlm = d(m, C′). We have proved above that d(m, C′) ≤ δopt, and thus d(j, C′) ≤ δopt.

This proves that C′ is an optimal configuration and L1 is an optimal list. As

discussed above, this also proves that L is a canonical list of I[1, i]. This finishes the

proof of the lemma in the first case.

The Second Case

In the second case, i is before j in Lopt for some j ∈ I[1, i − 1] \ {m}. We assume

there is no other indices of I[1, i−1] strictly between i and j in Lopt (otherwise, we take

j as the leftmost such index to the right of i).

Let L̂0 be the list of indices of I[1, i] following their order in Lopt. Therefore, L̂0 is

a canonical list. Let L̂1 be the list the same as L̂0 except that the order of i and j is

exchanged. In the following, we first show that L̂1 is also a canonical list of I[1, i]. The

proof technique is very similar to the above first case.

Let S denote the set of indices strictly between i and j in Lopt. By the definition

of j, k > i > j holds for each index k ∈ S. Let S′ be the set of indices k of S such that

xrk ≥ xrj . Hence, for each k ∈ S′, the pair (j, k) is an inversion of Lopt. We consider the

general case where neither S nor S′ is empty (otherwise the proof is similar but easier).

As in Section 6.5.3, starting from the rightmost index of S′, we keep applying

Lemma 6.5.1 to the inversion pairs and eventually obtain an optimal list L0 in which for

any index k of L0 strictly between i and j, (j, k) is not an inversion and thus xrk < xrj
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Figure 6.11. Left: Illustrating five intervals at their input positions, where S0 = {g, h}. Right:
Illustrating the intervals of S0 ∪ {i, j} in the configurations C and C′.

(hence Ik ⊆ Ij in the input as j < k). Let S0 denote the set of indices strictly between

i and j in L0.

Consider the list L1 that is the same as L0 except that we exchange the positions

of i and j, i.e., the indices of S0 are now after j and before i. In the following, we prove

that L1 is an optimal list, which will also prove that L̂1 is a canonical list of I[1, i] since

L̂1 is consistent with L1.

Since L0 is an optimal list, there is an optimal configuration C in which the order

of the intervals is the same as L0. Consider the configuration C′ that is the same as

C except the following (e.g., see Fig. 6.11): First, we set xlj(C
′) = xli(C); second, we

shift each interval of S0 leftwards by distance |Ii| − |Ij |; third, we set xri (C
′) = xrj(C).

Clearly, the interval order of C′ is the same as L1. Below, we show that C′ is an optimal

configuration, which will prove that L1 is an optimal list.

We first show that C′ is feasible. As before, no two intervals of C′ overlap. Next

we prove that all intervals in S0 ∪ {i, j} are valid in C′. Comparing with its position in

C, Ii has been moved rightwards in C′ and thus is valid. Since j < i, xlj < xli. Since

xlj(C
′) = xli(C) and xli ≤ xli(C) (because Ii is valid in C), we obtain xlj ≤ xlj(C

′) and Ij

is valid in C′. Consider any index k ∈ S0. Recall that xlk ≤ xrk ≤ xrj . Since k is to the

right of j in C′, we have xrj(C
′) ≤ xlk(C

′). Since xrj ≤ xrj(C
′), we obtain that xlk ≤ xlk(C

′)

and Ik is valid in C′. This proves that C′ is feasible.

We proceed to show that C′ is an optimal configuration by proving that for any

k ∈ S0 ∪ {i, j}, d(k, C
′) ≤ δ(C) = δopt. Comparing with C, Ij has been moved leftwards

in C′, and thus d(j, C′) ≤ d(j, C) ≤ δopt. Since m < i, lm is to the left of ri in the

input. Since Im is to the right of Ii in C
′, lm is to the right of ri in C

′. This implies that

d(i, C′) ≤ d(m, C′). Since Im does not change position from C to C′, d(m, C′) = d(m, C) ≤

δopt. Thus, we obtain d(i, C′) ≤ δopt. Consider any k ∈ S0. Since i < k, xli ≤ xlk. On

the other hand, since k is to the left of i in C′, xlk(C
′) ≤ xli(C

′). Therefore, we deduce
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d(k, C′) = xlk(C
′)−xlk ≤ xli(C

′)−xli = d(i, C′). We have proved above that d(i, C′) ≤ δopt,

and thus d(k, C′) ≤ δopt.

This proves that C′ is an optimal configuration and L1 is an optimal list. As

discussed above, this also proves that L̂1 is a canonical list of I[1, i].

If the right neighbor j of i in L̂1 is not m, then by the same analysis as above, we

can show that the list obtained by exchanging the order of i and j is still a canonical list

of I[1, i]. We keep applying the above exchange operation until we obtain a canonical

list L̂2 of I[1, i] such that the right neighbor of i in L̂2 is m. Note that L̂2 is exactly L,

and thus this proves that L is a canonical list of I[1, i]. This finishes the proof for the

lemma in the second case.

Lemma 6.4.4 is thus proved.

6.5.4 Proof of Lemma 6.4.6

We prove Lemma 6.4.6. Assume that L′ is a canonical list of I[1, i − 1]. Our goal

is to prove that either L or L∗ is a canonical list of I[1, i].

As L′ is a canonical list, there exists an optimal list Lopt of I whose interval order

is consistent with L′. Let L̂0 be the list of indices of I[1, i] following the same order

in Lopt. If L̂0 is either L or L∗, then we are done with the proof. Otherwise, i must

be before j in L̂0 for some index j ∈ I[1, i − 1] \ {m}. By using the same proof as in

Section 6.5.3, we can show that L∗ is a canonical list of I[1, i]. We omit the details.

6.5.5 Proof of Lemma 6.4.7

In this section, we prove Lemma 6.4.7. Assume L∗ has a canonical list L0 of I[1, i].

Recall that L∗
min is the list of L∗ with the smallest max-displacement. Our goal is to

prove that L∗
min is also a canonical list of I[1, i].

Recall that for each list L ∈ L∗, i and m are the last two indices with m at

the end, and further, in the configuration CL (which is obtained by the left-possible

placement strategy on the intervals in I[1, i] following their order in L), xli(CL) = xli and

xlm(CL) = xri . Also, each list of L∗ is generated in Case III of the algorithm and we have

Ii ⊆ Im in the input.
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Figure 6.12. Left: Illustrating five intervals at their input positions, where Lopt[j, i] = {j, g, h, i}.
Right: Illustrating the intervals of Lopt[j, i] in the configurations C and C′. (Interval i is shifted down-
wards in order to visually separate it from interval j.)

Since L0 is a canonical list of I[1, i], there is an optimal list Lopt of I that is

consistent with L0. Let S be the set of indices of I[i+1, n] before i in Lopt. We consider

the general case where S is not empty (otherwise the proof is similar but easier). Let j

be the rightmost index of S in Lopt. Let L
′
opt be the list that is the same as Lopt except

that we move j right after i. In the following, we show that L′
opt is also an optimal list.

Since Lopt is an optimal list, there is an optimal configuration C in which the order

of the indices of intervals is the same as Lopt. Recall that Lopt[j, i] is consists of indices

of Lopt between j and i inclusively. Consider the configuration C′ that is the same as C

except the following (e.g., see Fig. 6.12): First, for each index k ∈ Lopt[j, i] \ {j}, move

Ik leftwards by distance |Ij |; second, move Ij rightwards such that lj is at ri (after Ii

is moved leftwards in the above first step, so that Ii is connected with Ij). Note that

the order of intervals of I in C′ is exactly L′
opt. In the following, we show that C′ is an

optimal configuration, which will also prove that L′
opt is an optimal list.

We first show that C′ is feasible. By our way of setting the positions of intervals

in Lopt[j, i], no two intervals overlap in C′. Next, we show that every interval is valid in

C′. It is sufficient to show that Ik is valid in C′ for every index k in Lopt[j, i] since all

other intervals do not move from C to C′. Comparing with its position in C, Ij has been

moved rightwards in C′ and thus is valid. Suppose k 6= j. By the definition of j, k < j

and thus xlk ≤ xlj . By our way of constructing C′, xlj(C) ≤ xlk(C
′). Since Ij is valid in C,

it holds that xlj ≤ xlj(C). Thus, we obtain that xlk ≤ xlk(C
′) and Ik is valid. This proves

that C′ is feasible.

We proceed to show that C′ is an optimal configuration by proving that δ(C′) ≤

δ(C) = δopt. It is sufficient to show that for any index k ∈ Lopt[j, i], d(k, C
′) ≤ δopt. If

k is not j, then comparing with C, Ik has been moved leftwards, and thus d(k, C′) ≤

d(k, C) ≤ δopt. In the following, we show that d(j, C′) ≤ δopt. Indeed, since m < i < j,

it holds that xlm ≤ xlj . On the other hand, Im is to the right of Ij in C′, and thus,
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xlj(C
′) ≤ xlm(C′). Therefore, we have d(j, C′) = xlj(C

′) − xlj ≤ xlm(C′) − xlm = d(m, C′).

Since the position of Im is the same in C and C′, d(m, C′) = d(m, C) ≤ δopt. Thus,

we have d(j, C′) ≤ δopt. This proves that C′ is an optimal configuration and L′
opt is an

optimal list.

If there are still indices of I[i + 1, n] before i in L′
opt, then we keep applying the

above exchange operations until we obtain an optimal list L′′
opt that does not have any

index of I[i+ 1, n] before i, and in other words, the indices of L′′
opt before i are exactly

those in I[1, i− 1] \ {m}.

Since L′′
opt is an optimal list, there is an optimal configuration C′′ whose interval

order is the same as L′′
opt. Let C′′′ be a configuration that is the same as C′′ except the

following: For each interval Ik with k ∈ I[1, i− 1] \ {m}, we set its position the same as

its position in CL∗

min
(which is the configuration obtained by our algorithm for the list

L∗
min). Recall that the position of Ii in CL∗

min
is the same as that in the input. On the

other hand, xli ≤ xli(C
′′). Therefore, C′′′ is still a feasible configuration. We claim that C′′′

is also an optimal configuration. To see this, the maximum displacement of all intervals

in I[1, i − 1] \ {m} in C′′′ is at most δ(CL∗

min
). Recall that δ(CL∗

min
) ≤ δ(CL0). Further,

since L0 is a canonical list, it holds that δ(CL0) ≤ δopt. Thus, we obtain δ(CL∗

min
) ≤ δopt.

Consequently, the maximum displacement of all intervals in I[1, i− 1] \ {m} in C′′′ is at

most δopt. Since only intervals of I[1, i− 1] \ {m} in C′′′ change positions from C′′ to C′′′,

we obtain δ(C′′′) ≤ δopt and thus C′′′ is an optimal configuration.

According to our construction of C′′′, the order of the intervals of I[1, i] in C′′′ is

exactly L∗
min. Therefore, L

∗
min is a canonical list of I[1, i]. This proves Lemma 6.4.7.

6.6 The Improved Algorithm

In this section, we improve our preliminary algorithm to O(n logn) time and O(n)

space. The key idea is that based on new observations we are able to prune some

“redundant” lists from L after each step of the algorithm (actually Lemma 6.4.7 already

gives an example for pruning redundant lists). More importantly, although the number

of remaining lists in L can still be Ω(n) in the worst case, the remaining lists of L have

certain monotonicity properties such that we are able to implicitly maintain them in

O(n) space and update them in O(logn) amortized time for each step of the algorithm
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for processing an interval Ii.

In the following, we first give some observations that will help us to perform the

pruning procedure on L.

6.6.1 Observations

In this section, unless otherwise stated, let L be the set after a step of our prelimi-

nary algorithm for processing an interval i. Recall that for each list L ∈ L, we also have

a configuration CL that is built following the left-possible placement strategy. We use

x(CL) to denote the x-coordinate of the right endpoint of the rightmost interval of L in

CL.

For any two lists L1 and L2 of L, we say that L1 dominates L2 if the following

holds: If L2 is a canonical list of I[1, i], then L1 must also be a canonical list of I[1, i].

Hence, if L1 dominates L2, then L2 is “redundant” and can be pruned from L.

The subsequent two lemmas give ways to identify redundant lists from L. In general,

Lemma 6.6.1 is for the case where two lists have different last indices while Lemma 6.6.2

is for the case where two lists have the same last index (notice the slight differences in

the lemma conditions).

Lemma 6.6.1. Suppose L1 and L2 are two lists of L such that the last index of L1 is m′,

the last index of L2 is m (with m 6= m′), and xrm′ ≤ xrm. Then, if δ(CL1) ≤ d(m, CL2)

and x(CL1) ≤ x(CL2), then L1 dominates L2.

Proof. Assume L2 is a canonical list of I[1, i]. Our goal is to prove that L1 is also a

canonical list of I[1, i]. It is sufficient to construct an optimal configuration in which

the order the intervals of I[1, i] is L1. We let h denote the left neighboring index of m′

in L1 and let g denote the left neighboring index of m in L2.

Since L2 is a canonical list, there is an optimal list Q that is consistent with L2.

Let S denote the set of indices of I[i+1, n] before g in Q. We consider the general case

where S is not empty (otherwise the proof is similar but easier).

By the similar analysis as in the proof of Lemma 6.4.7 (we omit the details), we

can obtain an optimal list Q1 that is the same as Q except that all indices of S are now

right after g in Q1 (i.e., all indices of Q before g except those in S are still before g in
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Q2 : · · · · · · g, S
′,m, k, · · · · · ·

Q3 : · · · · · · h, S
′,m′, k, · · · · · ·

Figure 6.13. Illustrating the two lists Q2 and Q3, where k is the right neighboring index of m in Q2

and k is also right neighboring index of m′ in Q3. In Q2 (resp., Q3), the indices strictly before S′ are
exactly those in I[1, i] \ {m} (resp., I[1, i] \ {m′}).

Q1 with the same relative order, and all indices of Q after g are now after indices of S

in Q1 with the same relative order). Therefore, in Q1, the indices before g are exactly

those in I[1, i] \ {m}.

Recall that Q1[g,m] denote the sublist of Q1 between g and m including g and m.

If there is an index j in Q1[g,m] such that (m, j) is an inversion, then as in the proof of

Lemma 6.4.2, we keep applying Lemma 6.5.1 on all such indices j from right to left to

obtain another optimal list Q2 such that for each j ∈ Q2[g,m], (m, j) is not an inversion.

Note that the indices before and including g in Q1 are the same as those in Q2. Let

S′ denote the set of indices of Q2[g,m] \ {g,m}. Again, we consider the general case

where S′ is not empty. Note that S′ ⊆ I[i + 1, n]. For each j ∈ S′, since (m, j) is not

an inversion and m < j, it holds that xrj < xrm.

Let Q3 be another list that is the same as Q2 except the following (e.g., see Fig 6.13):

First, we move m′ right after the indices of S′ and move m before the indices of S′ (i.e.,

the indices of Q3 from the beginning to m′ are indices of I[1, i]\{m′}, indices of S′, and

m′); second, we re-arrange the indices of I[1, i] \ {m′} (which are all before indices of S′

in Q3) in exactly the same order as in L1. In this way, L1 is consistent with Q3. In the

following, we show that Q3 is an optimal list, which will prove that L1 is a canonical

list of I[1, i] and thus prove the lemma.

Since Q2 is an optimal list, there is an optimal configuration C2 whose interval

order is Q2. Consider the configuration C3 whose interval order follows Q3 and whose

interval positions are the same as those in C2 except the following: First, for each index

j ∈ I[1, i] \ {m′}, we set the position of Ij in the same as its position in CL1 (i.e., the

configuration obtained by our algorithm for L1); second, we place the intervals of S
′ such

that they do not overlap but connect together (i.e., the right endpoint co-locates with

the left endpoint of the next interval) following their order in Q2 and the left endpoint

of the leftmost interval of S′ is at the right endpoint of Ih (recall that h is the left
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neighbor of m′ in L1, which is also the rightmost interval of I[1, i] \{m′} in Q3; e.g., see

Fig. 6.13); third, we set the left endpoint of Im′ at the right endpoint of the rightmost

interval of S′. Therefore, all intervals before and including m′ do not have any overlap

in C3, and the intervals of S′ ∪{h,m′} essentially connect together. In the following, we

show that C3 is an optimal configuration, which will prove that Q3 is an optimal list.

We first show that C3 is feasible. We begin with proving that no two intervals

overlap. Let k be the right neighboring interval of m in Q2 (e.g., see Fig. 6.13), and k

now becomes the right neighboring interval of m′ in Q3. To prove no two intervals of C3

overlap, it is sufficient to show that Im′ and Ik do not overlap, i.e., xrm′(C3) ≤ xlk(C3).

Note that xlk(C3) = xlk(C2) and xrm(C2) ≤ xlk(C2). Hence, it suffices to prove xrm′(C3) ≤

xrm(C2).

We claim that in the configuration CL1 , lm′ is at rh. Indeed, since x
r
m′ ≤ xrm and Im

is to the left of Im′ in CL1 , it holds that x
l
m′ ≤ xlm′(CL1). Since CL1 is constructed based

on the left-possible placement strategy, we have xlm′(CL1) = xrh(CL1), which proves the

claim.

Recall that by the definition of x(CL1), we have x(CL1) = xrm′(CL1).

Let l be the total length of all intervals of S′. By our way of constructing C3, it

holds that xrm′(C3) = xrm′(CL1)+ l = x(CL1)+ l. On the other hand, since L2 is consistent

with Q2 and CL2 is constructed based on the left-possible placement strategy, it holds

that x(CL2) + l ≤ xrm(C2). By the lemma condition, x(CL1) ≤ x(CL2). Hence, we obtain

xrm′(C3) = x(CL1) + l ≤ x(CL2) + l ≤ xrm(C2). Thus, Im′ and Ik do not overlap in C3.

We proceed to prove that every interval of C3 is valid. For any interval before h

and including h in Q3, since its position in C3 is the same as that in CL1 , it is valid. For

interval m′, since it is valid in CL1 and xrm′(C3) = xrm′(CL1) + l, it is also valid in C3.

Consider any interval j ∈ S′. Recall that xrj < xrm. Since Im is to the left of Ij in C3,

comparing with its input position, Ij must have been moved rightwards in C3. Thus, Ij

is valid. For any interval after m′, its position is the same as in C2, and thus it is valid.

The above proves that C3 is feasible. In the following, we show that C3 is an optimal

configuration by proving that δ(C3) ≤ δ(C2) = δopt. It is sufficient to show that for any

interval j before and including m′ in C3, d(j, C3) ≤ δopt.
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• Consider any interval j before and including h in C3. We have d(j, C3) = d(j, CL1) ≤

δ(CL1). By lemma condition, δ(CL1) ≤ d(m, CL2) ≤ δ(CL2). Since L2 is consistent

with Q2 and CL2 is constructed based on the left-possible placement strategy, it

holds that δ(CL2) ≤ δopt. Therefore, d(j, C3) ≤ δopt.

• Consider interval m′. In the following, we show that d(m′, C3) ≤ d(m, C2), which

will lead to d(m′, C3) ≤ δopt since d(m, C2) ≤ δopt.

By lemma condition, d(m′, CL1) ≤ δ(CL1) ≤ d(m, CL2). As discussed above,

xrm′(C3) = xrm′(CL1) + l. Therefore, d(m′, C3) = d(m′, CL1) + l. On the other hand,

as discussed above, xrm(C2) ≥ xrm(CL2) + l. Therefore, d(m, C2) ≥ d(m, CL2) + l.

Due to d(m′, CL1) ≤ d(m, CL2), we obtain d(m′, C3) ≤ d(m, C2).

• Consider any index j ∈ S′. Recall that m′ ≤ i < j as S′ ⊆ I[i+ 1, n]. Therefore,

xlm′ ≤ xlj . On the other hand, lm′ is to the right of lj in C3. Thus, it holds that

d(j, C3) ≤ d(m′, C3). We have proved above that d(m′, C3) ≤ δopt. Hence, we also

obtain d(j, C3) ≤ δopt.

This proves that C3 is an optimal configuration. As discussed above, the lemma

follows.

Lemma 6.6.2. Suppose L1 and L2 are two lists of L whose last indices are the same.

Then, if δ(CL1) ≤ δ(CL2) and x(CL1) ≤ x(CL2), then L1 dominates L2.

Proof. Assume L2 is a canonical list of I[1, i]. Our goal is prove that L1 is also a

canonical list of I[1, i]. To this end, it is sufficient to construct an optimal configuration

in which the order the intervals of I[1, i] is L1. The proof techniques are similar to (but

simpler than) that for Lemma 6.6.1.

Let m be the last index of L1 and L2. Let h (resp., g) be the left neighboring index

of m in L1 (resp., L2).

Since L2 is a canonical list, there is an optimal list Q that is consistent with L2. By

the definition of g, all indices (if any) strictly between g and m in Q are from I[i+1, n].

Let S denote the set of indices of I[i+1, n] before g in Q. We consider the general case

where S 6= ∅.
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Q1 : · · · · · · g, S,m, · · · · · ·

Q2 : · · · · · · h, S,m, · · · · · ·

Figure 6.14. Illustrating the two lists Q1 and Q2. In Q1 (resp., Q2), the indices strictly before S are
exactly those in I[1, i] \ {m}.

As in the proof of Lemma 6.6.1, we can obtain an optimal list Q1 that is the same

as Q except that all indices of S are now right after g in Q1 (i.e., all indices of Q before

g except those in S are still before g in Q1 with the same relative order, and all indices

of Q after g are now after indices of S in Q1 with the same relative order; e.g., see

Fig. 6.14). Therefore, in Q1, the indices before and including g are exactly those in

I[1, i] \ {m}.

LetQ2 be another list that is the same asQ1 except the following (e.g., see Fig. 6.14):

We re-arrange the indices before and including g such that they follow exactly the same

order as in L1. Note that L1 is consistent with Q2. In the following, we show that Q2

is an optimal list, which will prove the lemma.

Since Q1 is an optimal list, there is an optimal configuration C1 whose interval

order is the same as Q1. Consider the configuration C2 that is the same as C1 except

the following: For each interval k before and including g, we set the position of Ik the

same as its position in CL1 . Hence, the interval order of C2 is the same as Q2. In the

following, we show that C2 is an optimal configuration, which will prove that Q2 is an

optimal list.

We first show that C2 is feasible. For each interval k before and including h, its

position in C2 is the same as that in CL1 , and thus interval k is still valid in C2. Other

intervals are also valid since they do not change their positions from C1 to C2. In the

following, we show that no two intervals overlap in C2. Based on our way of constructing

C2, it is sufficient to show that xrh(C2) ≤ xlt(C2), where t is the right neighboring index

of h in Q2. Note that xrh(C2) = xrh(CL1) and xlt(C2) = xlt(C1). In the following, we prove

that xrh(CL1) ≤ xlt(C1). Depending on whether xrh(CL1) ≤ xrg(CL2), there are two cases.

1. If xrh(CL1) ≤ xrg(CL2), then since L2 is consistent with Q1 and CL2 is constructed

based on the left-possible placement strategy, we have xrg(CL2) ≤ xrg(C1), and thus,

xrh(CL1) ≤ xrg(C1).
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On the other hand, note that t is also the right neighboring index of g in Q1. Since

C1 is feasible, xrg(C1) ≤ xlt(C1). Thus, we obtain xrh(CL1) ≤ xlt(C1).

2. Assume xrh(CL1) > xrg(CL2). By the lemma condition, we have xrm(CL1) = x(CL1) ≤

x(CL2) = xrm(CL2). Since x
r
h(CL1) > xrg(CL2) and both CL1 and CL2 are constructed

by the left-possible placement strategy, it must be that xlm(CL1) = xlm(CL2) = xlm,

i.e., the positions of Im in both CL1 and CL2 are the same as that in the input.

Since t is in I[i + 1, n] and m ≤ i, xlm ≤ xlt. Since xlt ≤ xlt(CL1) ≤ xlt(C1), it

holds that xlm ≤ xlt(C1). Since Im is to the right of Ih in the configuration CL1 ,

xrh(CL1) ≤ xlm(CL1) = xlm. Consequently, we obtain xrh(CL1) ≤ xlt(C1).

This proves that C2 is feasible. In the sequel we show that C2 is an optimal config-

uration by proving that δ(C2) ≤ δ(C1) = δopt. Since the intervals strictly after g do not

change their positions from C1 to C2, it is sufficient to show that d(k, C2) ≤ δopt for any

index k before and including g in C2.

Since xlk(C2) = xlk(CL1), d(k, C2) = d(k, CL1) ≤ δ(CL1). By lemma condition,

δ(CL1) ≤ δ(CL2). Since L2 is consistent with Q1 and CL2 is constructed based on the

left-possible placement strategy, it holds that δ(CL2) ≤ δ(C1) = δopt. Combining the

above discussions, we obtain d(k, C2) ≤ δ(CL1) ≤ δ(CL2) ≤ δopt.

This proves that C2 is an optimal configuration. The lemma thus follows.

Let E(L) denote the set of last intervals of all lists of L. Our preliminary algorithm

guarantees the following property on E(L), which will be useful later for our pruning

algorithm given in Section 6.6.2.

Lemma 6.6.3. E(L) has at most two intervals. Further, if |E(L)| = 2, then one interval

of E(L) contains the other one in the input.

Proof. We prove the lemma by induction. Initially, after I1 is processed, L consists of

the only list L = {1}. Therefore, E(L) = {1} and the lemma trivially holds.

We assume that the lemma holds after interval Ii−1 is processed. Let L be the set

after Ii is processed. For differentiation, we let L
′ denote the set L before Ii is processed.

Depending on whether the size of E(L′) is 1 or 2, there are two cases.
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The case |E(L′)| = 1.. Let m be the only index of E(L′). Hence, for each list

L ∈ L′, m is the last index of L. Depending on whether xrm ≤ xri , there are two

subcases.

1. If xrm ≤ xri , then according to our preliminary algorithm, Case I of the algorithm

happens on every list L ∈ L′, and i is appended at the end of L for each L ∈ L′.

Therefore, the last indices of all lists of L are i, and the lemma statement holds

for E(L).

2. If xrm > xri , then note that Ii ⊆ Im in the input. Consider any list L ∈ L′.

According to our preliminary algorithm, if xli ≤ xlm(CL), then i is inserted into L

right before m; otherwise, i is appended at the end of L, and further, a new list

L∗ is produced in which m is at the end.

Therefore, in this case, E(L) has either one index or two indices. If |E(L)| = 2,

then E(L) = {i,m}. Since Ii ⊆ Im in the input, the lemma statement holds on

E(L).

The case |E(L′)| = 2.. By induction hypothesis, one interval of E(L′) contains the

other one in the input. Let m and m′ be the two indices of E(L′), respectively, such

that Im′ ⊆ Im in the input. Hence, we have m < m′ and xrm′ ≤ xrm.

Depending on the x-coordinates of right endpoints of Ii, Im, and Im′ in the input,

there are three subcases: xrm ≤ xri , x
r
m′ ≤ xri < xrm, and xri < xrm′ .

1. If xrm ≤ xri , then for each list L ∈ L′, Case I of the algorithm happens, and i is

appended at the end of L. Therefore, the last indices of all lists of L are i, and

the lemma statement holds for E(L).

2. If xrm′ ≤ xri < xrm, then consider any list L ∈ L′. If m′ is at the end of L, then

Case I happens and i is appended at the end of L. If m is at the end of L, then

either Case II or Case III of the algorithm happens. Hence, either i or m will be

the last index of L; if a new list L∗ is produced in Case III, then its last index is

m.
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Therefore, after every list of L′ is processed, the last index of each list of L is either

m or i, i.e., E(L) = {m, i}. Note that Ii is contained in Im in the input. Hence,

the lemma statement holds for E(L).

3. If xri < xrm′ , then Ii is contained in both Im and Im′ in the input. Consider any list

L ∈ L′. Regardless of whether the last index is m or m′, Case I does not happen.

We claim that Case III does not happen either. We prove the claim only for

the case where the last index of L is m (the other case can be proved similarly).

Indeed, in the configuration CL, it holds that xrm′ ≤ xrm′(CL). Since m is the last

index of L, we have xrm′(CL) ≤ xlm(CL). Since xri < xrm′ , we obtain xli ≤ xri <

xrm′ ≤ xrm′(CL) ≤ xlm(CL). This implies that Case III of the algorithm cannot

happen.

Hence, Case II happens, and i is inserted into L right before the last index. There-

fore, the last indices of all lists of L are either m or m′. The lemma statement

holds for E(L).

This proves the lemma.

6.6.2 A Pruning Procedure

Based on Lemmas 6.6.1 and 6.6.2, we present an algorithm that prunes redundant

lists from L after each step for processing an interval Ii. In the following, we describe

the algorithm, whose implementation is discussed in Section 6.6.3.

By Lemma 6.6.3, E(L) has at most two indices. If E(L) has two indices, we let m

and m′ denote the two indices, respectively, such that Im′ ⊆ Im in the input. If E(L)

has only one index, let m denote it and m′ is undefined. Let L1 (resp., L2) denote the

set of lists of L whose last indices are m′ (resp., m), and L1 = ∅ if and only if m′ is

undefined.

Our algorithm maintains several invariants regarding certain monotonicity proper-

ties, as follows, which are crucial to our efficient implementation.

1. L contains a canonical list of I[1, i].

2. For any two lists L1 and L2 of L, x(CL1) 6= x(CL2) and δ(CL1) 6= δ(CL2).
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3. If L1 6= ∅, then for any lists L1 ∈ L1 and L2 ∈ L2, x(CL1) < x(CL2).

4. For any two lists L1 and L2 of L, x(CL1) < x(CL2) if and only if δ(CL1) > δ(CL2).

In other words, if we order the lists L of L increasingly by the values x(CL), then

the values δ(CL) are sorted decreasingly.

After In is processed, by the algorithm invariants, if L is the list of L with minimum

δ(CL), then L is an optimal list and δopt = δ(CL).

Initially after the first interval I1 is processed, L has only one list L = {1}, and

thus, all algorithm invariants trivially hold. In general, suppose the first i− 1 intervals

have been processed and all algorithm invariants hold on L. In the following, we discuss

the general step for processing interval Ii.

For differentiation, we let L′ refer to the original set L before interval i is processed.

Similarly, we use L′1 and L
′
2 to refer to L1 and L2, respectively. Let L

′
1, L

′
2, . . . , L

′
a be the

lists of L′ sorted with x(CL′

1
) < x(CL′

2
) < · · · < x(CL′

a
), where a = |L′|. By the fourth

invariant, we have δ(CL′

1
) > δ(CL′

2
) > · · · > δ(CL′

a
). If L′1 = ∅, let b = 0; otherwise,

let b be the largest index such that L′
b ∈ L

′
1, and by the third algorithm invariant,

L′1 = {L′
1, . . . , L

′
b} and L

′
2 = {L′

b+1, . . . , La}. Depending on whether L′1 = ∅, there are

two main cases.

The Case L′1 = ∅

In this case, for each list L′ ∈ L′, its last index is m. Depending on whether

xrm ≤ xri , there are two subcases.

The first subcase xrm ≤ xri .. In this case, according to the preliminary algorithm,

for each list L′
j ∈ L

′, Case I happens and i is appended at the end of L′
j , and we use Lj to

refer to the updated list of L′
j with i. According to our left-possible placement strategy,

xli(CLj
) = max{x(CL′

j
), xli}. Thus, x(CLj

) = xli(CLj
) + |Ii| and d(i, CLj

) = xli(CLj
)− xli.

As the index j increases from 1 to a, since the value x(CL′

j
) strictly increases, xli(CLj

)

(and thus x(CLj
) and d(i, CLj

)) is monotonically increasing (it may first be constant and

then strictly increases after some index, say, a1). Formally, we define a1 as follows. If

x(CL′

1
) > xli, then let a1 = 0; otherwise, define a1 to be the largest index j ∈ [1, a] such

that x(CL′

j
) ≤ xli (e.g., see Fig. 6.15). In the following, we first assume a1 6= 0. As
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1

· · · · · · · · ·

· · · · · · · · ·

2

a1

a1 + 1

a

i

Figure 6.15. Illustrating the definition of a1. The black segments show the positions of interval m in
the configurations CL′

j
for j ∈ [1, a], and the numbers on the left side are the indices of the lists. The

red segment shows the interval i in the input position.

discussed above, as j increases in [1, a], xli(CLj
) is constant on j ∈ [1, a1] and strictly

increases on j ∈ [a1, a].

Now consider the value δ(CLj
), which is equal to max{δ(CL′

j
), d(i, CLj

)} by Observa-

tion 6.4.1. Recall that δ(CL′

j
) is strictly decreasing on j ∈ [1, a]. Observe that d(i, CLj

)

is 0 on j ∈ [1, a1] and strictly increases on j ∈ [a1, a]. This implies that δ(CLj
) on

j ∈ [1, a] is a unimodal function, i.e., it first strictly decreases and then strictly increases

after some index, say, a2. Formally, let a2 be the largest index j ∈ [a1 + 1, a] such that

δ(CLj−1) > δ(CLj
), and if no such index j exists, then let a2 = a1. The following lemma

is proved based on Lemma 6.6.2.

Lemma 6.6.4. 1. If a1 > 1, then for each j ∈ [1, a1 − 1], La1 dominates Lj.

2. If a2 < a, then for each j ∈ [a2 + 1, a], La2 dominates Lj.

Proof. 1. Let k = a1 and assume k > 1. Consider any j ∈ [1, k−1]. By the definition

of a1, xli(CLj
) = xli(CLk

) = xli. Therefore, x(CLj
) = x(CLk

) = xli + |Ii|. Since

d(i, CLj
) = d(i, CLk

) = 0, we have δ(CLj
) = δ(CL′

j
) and δ(CLk

) = δ(CL′

k
). Since

j < k, δ(CL′

j
) > δ(CL′

k
). Thus, we obtain δ(CLj

) > δ(CLk
).

Since x(CLj
) = x(CLk

), δ(CLj
) > δ(CLk

), and the last indices of Lj and Lk are both

i, by Lemma 6.6.2, Lk dominates Lj .

2. Let k = a2 and assume k < a. Consider any j ∈ [k + 1, a]. As discussed before,

x(CLj
) is monotonically increasing on j ∈ [1, a]. Thus, x(CLk

) ≤ x(CLj
). By the

definition of a2 and since δ(CLj
) is a unimodal function on j ∈ [1, a], it holds that

δ(CLk
) ≤ δ(CLj

). By Lemma 6.6.2, Lk dominates Lj .

This proves the lemma.
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By Lemma 6.6.4, we let L = {Lj | a1 ≤ j ≤ a2}. The above is for the general case

where a1 6= 0. If a1 = 0, then we let L = {Lj | 1 ≤ j ≤ a2}.

Observation 6.6.5. All algorithm invariants hold for L.

Proof. By Lemma 6.6.4, the lists that have been removed are redundant. Hence, L

contains a canonical list of I[1, i] and the first algorithm invariant holds.

By our definitions of a1 and a2, when j increases in [a1, a2], x(CLj
) strictly increases

and δ(CLj
) strictly decreases. Therefore, the last three algorithm invariants hold.

The following lemma will be quite useful for the algorithm implementation given

later in Section 6.6.3.

Lemma 6.6.6. If a1 < a2, then for each j ∈ [a1 + 1, a2], x(CLj
) = x(CL′

j
) + |Ii|. For each

list Lj ∈ L with j 6= a2, δ(CLj
) = δ(CL′

j
).

Proof. By the definition of a1, for any j ∈ [a1 + 1, a], it always holds that x(CLj
) =

x(CL′

j
) + |Ii|. This proves the first lemma statement.

Recall that δ(CLj
) = max{δ(CL′

j
), d(i, CLj

)} for each j ∈ [1, a].

Consider any list Lj with j 6= a2. Assume to the contrary that δ(CLj
) 6= δ(CL′

j
).

Then, δ(CLj
) = d(i, CLj

). Since δ(CLj
) = d(i, CLj

) < d(i, CLa2
), we obtain δ(CLj

) ≤

δ(CLa2
), which contradicts with δ(CLj

) > δ(CLa2
).

The second subcase xrm > xri .. In this case, for each list L′
j ∈ L

′, according to our

preliminary algorithm, depending on whether xli ≤ xlm(CL′

j
), either Case II or Case III

can happen. If xli ≤ xlm(CL′

1
), then let c = 0; otherwise, let c be the largest index j such

that xli > xlm(CL′

j
) (e.g., see Fig. 6.16). In the following, we first consider the general

case where 1 ≤ c < a.

For each j ∈ [1, c], observe that xlm(CL′

j
) = x(CL′

j
) − |Im| ≤ x(CL′

c
) − |Im| =

xlm(CL′

c
) < xli. According to our preliminary algorithm, Case III happens, and thus

L′
j will produce two lists: the list Lj by appending i at the end of L′

j , and the new list

L∗
j by inserting i in front of m in L′

j . Further, according to our left-possible placement

strategy, xli(CLj
) = x(CL′

j
) in CLj

, and xli(CL∗

j
) = xli and xlm(CL∗

j
) = xri in CL∗

j
. By Ob-

servation 6.4.5, δ(CLj
) = max{δ(CL′

j
), d(i, CLj

)} and δ(CL∗

j
) = max{δ(CL′

j
), d(m, CL∗

j
)}.
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1
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2

c
c+ 1

a

i

Figure 6.16. Illustrating the definition of c. The black segments show the positions of interval m in
the configurations CL′

j
for j ∈ [1, a], and the numbers on the right side are the indices of the lists. The

red segment shows the interval i in the input position.

Observation 6.6.7. δ(CL∗

c
) ≤ δ(CL∗

j
) for any j ∈ [1, c].

Proof. For any j ∈ [1, c], note that d(m, CL∗

j
) = xlm(CL∗

j
) − xlm = xri − xlm. Therefore,

d(m, CL∗

j
) is the same for all j ∈ [1, c]. On the other hand, we have δ(CL′

j
) ≥ δ(CL′

c
).

Thus, δ(CL∗

c
) ≤ δ(CL∗

j
).

By the above observation and Lemma 6.4.7, among the new lists L∗
j with j =

1, 2, . . . , c, only L∗
c needs to be kept.

For each j ∈ [1, c], note that x(CLj
) = x(CL′

j
)+|Ii|. Since x(CL′

j
) is strictly increasing

on j ∈ [1, c], x(CLj
) is also strictly increasing on j ∈ [1, c]. Since d(i, CLj

) = xli(CLj
)−xli =

x(CL′

j
)− xli for any j ∈ [1, c], d(i, CLj

) also strictly increases on j ∈ [1, c]. Further, since

δ(CL′

j
) strictly decreases on j ∈ [1, c], δ(CLj

), which is equal to max{δ(CL′

j
), d(i, CLj

)}, is

a unimodal function (i.e., it first strictly decreases and then strictly increases). Let c1

be the smallest index j ∈ [1, c − 1] such that δ(CLj
) ≤ δ(CLj+1), and if such an index j

does not exist, then let c1 = c.

Lemma 6.6.8. If c1 < c, then Lc1 dominates Lj for any j ∈ [c1 + 1, c].

Proof. Consider any j ∈ [c1 + 1, c]. Since δ(CLj
) is a unimodal function on j ∈ [1, c],

by the definition of c1, δ(CLc1
) ≤ δ(CLj

). Recall that x(CLc1
) ≤ x(CLj

). Since the last

indices of Lc1 and Lj are both i, by Lemma 6.6.2, Lc1 dominates Lj .

By the preceding lemma, if c1 < c, then we do not have to keep the lists Lc1+1, . . . , Lc

in L. Let S1 = {L1, . . . , Lc1}.

Consider any index j ∈ [c + 1, a]. By the definition of c and also due to that

x(CL′

k
) is strictly increasing on k ∈ [1, a], it holds that xlm(CL′

j
) ≥ xli, and thus Case

II of the preliminary algorithm happens on L′
j and Lj is obtained by inserting i right
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before m in L′
j . By Observation 6.4.3, δ(CLj

) = max{δ(CL′

j
), d(m, CLj

)}. Note that

x(CLj
) = x(CL′

j
) + |Ii| and xrm(CLj

) = x(CLj
). As j increases in [c + 1, a], since x(CL′

j
)

strictly increases, both x(CLj
) and d(m, CLj

) strictly increase. Since δ(CL′

j
) is strictly

decreasing on j ∈ [c+1, a], we obtain that δ(CLj
) is a unimodal function on j ∈ [c+1, a]

(i.e., it first strictly decreases and then strictly increases).

Let S = {L1, . . . , Lc, L
∗
c , Lc+1, . . . , La}. For convenience, we use Lc+0.5 to refer to

L∗
c (and L′

c+0.5 refers to L′
c); in this way, the indices of the ordered lists of S are sorted.

Consider the subsequence of the lists of S from Lc+0.5 to the end (including Lc+0.5).

Define c2 to be the index of the first list Lj such that δ(CLj
) ≤ δ(CL), where L is the

right neighboring list of Lj in S; if such a list Lj does not exist, then we let c2 = a.

Observation 6.6.9. As j increases in [1, a], x(CLj
) is strictly increasing except that

x(CLc+0.5) = x(CLc+1) may be possible.

Proof. Recall that x(CLj
) is strictly increasing on j ∈ [1, c] and j ∈ [c+1, a], respectively.

Let l = |Ii| + |Im|. Note that x(CLc
) = xlm(CL′

c
) + l, x(CL∗

c
) = xli + l, and x(CLc+1) =

xlm(CL′

c+1
) + l. By our definition of c, xlm(CL′

c
) < xli ≤ xlm(CL′

c+1
). Thus, x(CLc

) <

x(CL∗

c
) ≤ x(CLc+1). This shows that x(CLj

) is strictly increasing on j ∈ [1, a] except that

x(CL∗

c
) = x(CLc+1) may be possible.

Lemma 6.6.10. 1. If c2 < a, then Lc2 dominates Lj for any Lj ∈ S with j > c2.

2. If c2 ≥ c+ 1 and x(CLc+0.5) = x(CLc+1), then Lc+1 dominates Lc+0.5.

Proof. We first show that δ(CLj
) is a unimodal function on j ∈ [c+ 0.5, a].

Recall that for each j ∈ [c + 1, a], δ(CLj
) = max{δ(CL′

j
), d(m, CLj

)}, and δ(CL∗

j
) =

max{δ(CL′

j
), d(m, CL∗

j
)}. For each j ∈ [c + 0.5, a], since m is the last index of Lj , we

have d(m, CLj
) = x(CLj

) − xrm. By Observation 6.6.9, d(m, CLj
) is strictly increasing

on [c+ 0.5, a] except that d(m, CLc+0.5) = d(m, CLc+1) may be possible. Since δ(CL′

j
) on

j ∈ [1, a] is strictly decreasing, δ(CLj
) is a unimodal function on j ∈ [c+ 0.5, a].

By the definition of c2, δ(CLj
) is strictly decreasing on [c+0.5, c2] and monotonically

increasing on [c2, a].
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Consider any list Lj ∈ S with j > c2. By our previous discussion, δ(CLc2
) ≤ δ(CLj

)

and x(CLc2
) ≤ x(CLj

). Since the last indices of both Lc2 and Lj are m, by Lemma 6.6.2,

Lc2 dominates Lj .

If c2 ≥ c+1 and x(CLc+0.5) = x(CLc+1), by the definition of c2, δ(CLc+0.5) > δ(CLc+1).

Since the last indices of both Lc+0.5 and Lc+1 are m, by Lemma 6.6.2, Lc+1 dominates

Lc+0.5. The lemma thus follows.

Let S2 = {Lc+0.5, Lc+1, . . . , Lc2} and we remove Lc+0.5 from S2 if c2 ≥ c + 1 and

x(CLc+0.5) = x(CLc+1). In the following, we combine S1 and S2 to obtain the set L. We

consider the lists of S2 in order. Define c′ to be the index j of the first list Lj such that

δ(CLc1
) > δ(CLj

), and if no such list Lj exists, then let c′ = c2 + 1.

Lemma 6.6.11. If Lc′ is not the first list of S2 or c′ = c2 + 1, then for each list Lj of S2

with j < c′, Lc1 dominates Lj.

Proof. We assume that Lc′ is not the first list of S2 or c′ = c2 + 1.

Note that we have proved in the proof of Lemma 6.6.10 that δ(CLj
) on j ∈ [c+0.5, c2]

is strictly decreasing. By the definition of c′, it holds that δ(CLc1
) ≤ δ(CLj

) for any

Lj ∈ S2 with j < c′.

Consider any list Lj of S2 with j < c′.

Recall that δ(CLj
) = max{δ(CL′

j
), d(m, CLj

)}. We claim that δ(CLj
) = d(m, CLj

).

Indeed, note that δ(CL′

j
) ≤ δ(CL′

c1
) ≤ δ(CLc1

). Since δ(CLc1
) ≤ δ(CLj

), we obtain

δ(CL′

j
) ≤ δ(CLj

), and thus, δ(CLj
) = d(m, CLj

).

Consequently, we have δ(CLc1
) ≤ d(m, CLj

) and x(CLc1
) ≤ x(CLj

) (by Observa-

tion 6.6.9). Further, the last index of Lc1 is i and the last index of Lj is m, with

xri ≤ xrm. By Lemma 6.6.1, Lc1 dominates Lj .

The lemma thus follows.

We remove from S2 all lists Lj with j < c′, and let L = S1 ∪ S2. In general, if

c′ 6= c2 + 1, then L = {L1, . . . , Lc1 , Lc′ , . . . , Lc2}; otherwise, L = {L1, . . . , Lc1}.

The above discussion is for the general case where 1 ≤ c < a. If c = 0, then L∗
c , c1

and c′ are all undefined, and we have L = {L1, . . . , Lc2}. If c = a, then L = {L1, . . . , Lc1}

if δ(Lc1) ≤ δ(L∗
c) and L = {L1, . . . , Lc1 , L

∗
c} otherwise.
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Observation 6.6.12. All algorithm invariants hold on L.

Proof. We only consider the most general case where 1 ≤ c < a and c′ 6= c2 + 1, since

other cases can be proved in a similar but easier way.

By Lemmas 6.6.8, 6.6.10, and 6.6.11, all pruned lists are redundant and thus L

contains a canonical list of I[1, i]. The first algorithm invariant holds.

If x(CLc+0.5) = x(CLc+1), then Lc+0.5 and Lc+1 cannot be both in L by Lemma 6.6.10(2).

Thus, by Observation 6.6.9, x(CLj
) strictly increases in [1, a]. Recall that for any list

Lj ∈ L, the last index of Lj is i if j ≤ c1 and m otherwise. Recall that Ii is contained

in Im in the input. Thus, the fourth algorithm invariant holds.

Further, our definitions of c1, c
′, and c2 guarantee that δ(CL) on all lists L following

their order in L is strictly decreasing. Therefore, the other two algorithm invariants also

hold.

The following lemma will be useful for the algorithm implementation.

Lemma 6.6.13. For each list Lj ∈ L, if Lj 6= L∗
c , then x(CLj

) = x(CL′

j
) + |Ii|; if Lj 6∈

{L∗
c , Lc1 , Lc2}, then δ(CLj

) = δ(CL′

j
).

Proof. If Lj 6= L∗
c , then we have discussed before that x(CLj

) = x(CL′

j
) + |Ii| always

holds regardless of whether the last index of Lj is i or m.

If Lj 6∈ {L
∗
c , Lc1 , Lc2}, assume to the contrary that δ(CLj

) 6= δ(CL′

j
). Then, since

δ(CLj
) = max{δ(CL′

j
), d(k, CLj

)}, we obtain that δ(CLj
) = d(k, CLj

), where k is the last

index of CLj
(k is i if j ≤ c and m otherwise). Note that j is either in [1, c1] or [c

′, c2].

We discuss the two cases below.

1. If j ∈ [1, c1], then the last index of Lj is i. Since Lj 6= Lc1 , j < c1 holds. We

have discussed before that d(i, CLj
) ≤ d(i, CLc1

). Thus, we can deduce δ(CLj
) =

d(i, CLj
) ≤ d(i, CLc1

) ≤ δ(CLc1
). However, we have already proved that δ(CLj

) >

δ(CLc1
). Thus, we obtain contradiction.

2. If j ∈ [c′, c2], the analysis is similar. In this case the last index of Lj is m and

j < c2. Since j < c2, we have discussed before that d(m, CLj
) ≤ d(m, CLc2

). Thus,

we can deduce δ(CLj
) = d(m, CLj

) ≤ d(m, CLc2
) ≤ δ(CLc2

). However, we have

already proved that δ(CLj
) > δ(CLc2

). Thus, we obtain contradiction.
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The lemma thus follows.

The Case L′1 6= ∅

We then consider the case where L′1 6= ∅. In this case, recall that L′1 = {L
′
1, . . . , L

′
b}

and L′2 = {L′
b+1, . . . , L

′
a}. For each L′

j ∈ L
′, the last index of L′

j is m′ if j ≤ b and m

otherwise. Recall that Im′ ⊆ Im in the input. As in the proof of Lemma 6.6.3, there are

three subcases: xri ≥ xrm, xrm′ ≤ xri < xrm, and xri < xrm′ .

The first subcase xri ≥ xrm.. In this case, for each L′
j ∈ L

′, Case I of the preliminary

algorithm happens and Lj is obtained by appending i at the end of L′
j . Our pruning

procedure for this subcase is similar to the first subcase in Section 6.6.2, and we briefly

discuss it below.

First, for each L′
j ∈ L

′, xli(CLj
) = max{x(CL′

j
), xli} and δ(CLj

) = max{δ(CL′

j
), d(i, CLj

)}.

We define a1 and a2 in exactly the same way as in the first subcase of Section 6.6.2, and

further, Lemma 6.6.4 still holds. Similarly, we let L consist of only those lists Lj with

j ∈ [a1, a2]. By the similar analysis, Observation 6.6.5 and Lemma 6.6.6 still hold. We

omit the details.

The second subcase xrm′ ≤ xri < xrm.. In this case, we first apply the similar

pruning procedure for the first (resp., second) subcase of Section 6.6.2 to set L′1 (resp.,

L′2), and then we combine the results. The details are given below.

For set L′1, the last indices of all lists of L′1 are m′. Since xrm′ ≤ xri , for each

L′
j ∈ L

′
1, Case I of the preliminary algorithm happens and Lj is obtained by appending

i at the end of L′
j . We define a1 and a2 in the similar way as in the first subcase of

Section 6.6.2 but with respect to the indices in [1, b]. In fact, since xri < xrm, it holds

that xli ≤ xri ≤ xrm ≤ x(CL′

1
), and consequently, a1 = 0. Similarly, Lemma 6.6.4 also

holds with respect to the indices of [1, b]. Further, as j increases in [1, a2], x(CLj
) is

strictly increasing and δ(CLj
) is strictly decreasing. Let S′

1 = {L1, L2, . . . , La2}.

For set L′2, the last indices of all its lists are m. Since xri < xrm, for each list

L′
j ∈ L2, either Case II or Case III of the algorithm happens. We define c in the

similar way as in the second subcase of Section 6.6.2 but with respect to the indices of

[b + 1, a]. Specifically, if xli ≤ xlm(CL′

b+1
), then let c = b; otherwise, let c be the largest
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index j ∈ [b + 1, a] such that xli > xlm(CL′

j
). We consider the most general case where

b+ 1 ≤ c < a (other cases are similar but easier).

For each j ∈ [b + 1, c], there is also a new list L∗
j . Similar to Observation 6.6.7,

δ(CL∗

c
) ≤ δ(CL∗

j
) for any j ∈ [b+1, c]. Hence, among the new lists L∗

j with j = b+1, . . . , c,

only L∗
c needs to be kept. Let S′ = {Lb+1, . . . , Lc, L

∗
c , Lc+1, . . . , La}. We also use Lc+0.5

to refer to L∗
c . We define the three indices c1, c2, and c′ in the similar way as in the

second subcase of Section 6.6.2 but with respect to the ordered lists in S′. Similarly,

Observation 6.6.9, Lemmas 6.6.8, 6.6.10, and 6.6.11 all hold with respect to the lists in

S′. Let S′
2 = {Lb+1, . . . , Lc1 , Lc′ , . . . , Lc2}.

Finally, we combine the lists of the two sets S′
1 and S′

2 to obtain L, as follows.

Recall that La2 is the last list of S′
1. We consider the lists of S′

2 in order. Define b′ to

be the index j of the first list Lj of S′
2 such that δ(CLa2

) > δ(CLj
), and if no such list

Lj exists, then let b′ = c2 + 1.

Lemma 6.6.14. 1. x(CLa2
) < x(CLb+1

).

2. If b′ > b+ 1, then La2 dominates Lj for any list Lj ∈ S′
2 with j < b′.

Proof. For La2 , since a1 = 0, we have x(CLa2
) = x(CL′

a2
) + |Ii|. For Lb+1, it holds that

x(CLb+1
) = x(CL′

b+1
) + |Ii|. Since x(CL′

a2
) < x(CL′

b+1
), we have x(CLa2

) < x(CLb+1
). This

proves the first statement of the lemma.

Next we prove the second lemma statement. Assume b′ > b+ 1. Consider any list

Lj ∈ S′
2 with j < b′. In the following, we show that La2 dominates Lj .

Recall that the values δ(L) of the lists L of S′
2 are strictly decreasing following their

order in S′
2. By the definition of b′, δ(CLa2

) ≤ δ(CLj
). Note that the last index of Lj can

be either i or m, and the last index of La2 is i.

If the last index of Lj is i, then since δ(CLa2
) ≤ δ(CLj

) and x(CLa2
) < x(CLb+1

) ≤

x(CLj
), by Lemma 6.6.2, La2 dominates Lj .

If the last index of Lj is m, then δ(CLj
) = max{δ(CL′

j
), d(m, CLj

)}. Recall that

δ(CLa2
) = max{δ(CL′

a2
), d(i, CLa2

)} and δ(CL′

a2
) > δ(CL′

j
). Due to δ(CLa2

) ≤ δ(CLj
),

we can deduce δ(CL′

j
) < δ(CL′

a2
) ≤ δ(CLa2

) ≤ δ(CLj
). Therefore, δ(CLa2

) ≤ δ(CLj
) =

d(m, CLj
). Again, x(CLa2

) < x(CLb+1
) ≤ x(CLj

). Since the last index of La2 is i and that

of Lj is m, with Ii ⊆ Im in the input, by Lemma 6.6.1, La2 dominates Lj .
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By Lemma 6.6.14, we let L be the union of the lists of S′
1 and the lists of S′

2 after

and including b′ (if b′ = c2 + 1, then L = S′
1).

Observation 6.6.15. All algorithm invariants hold on L.

Proof. As the analysis in Section 6.6.2, S′
1 ∪ S′

2 must contain a canonical list of I[1, i].

In light of Lemma 6.6.14(2), L also contains a canonical list.

Also, the values of x(CL) for all lists L of S′
1 (resp., S′

2) are strictly increasing. By

Lemma 6.6.14(1), the values of x(CL) for all lists L of L are also strictly increasing. On

the other hand, the values of δ(CL) for all lists L of S′
1 (resp., S′

2) are strictly decreasing.

The definition of b′ makes sure that the values of δ(CL) for all lists L of L must be

strictly decreasing. Also, note that the lists of L whose last indices are i are all before

the lists whose last indices are m.

Hence, all algorithm invariants hold on L.

The following lemma will be useful for the algorithm implementation.

Lemma 6.6.16. For each list Lj ∈ L, if Lj 6= L∗
c , then x(CLj

) = x(CL′

j
) + |Ii|; if Lj 6∈

{La2 , L
∗
c , Lc1 , Lc2}, then δ(CLj

) = δ(CL′

j
).

Proof. Consider any list Lj ∈ L.

If Lj 6= L∗
c , then since a1 = 0, x(CLj

) = x(CL′

j
)+|Ii| always holds regardless whether

the last index of Lj is i or m.

Assume Lj 6∈ {La2 , L
∗
c , Lc1 , Lc2}. To prove that δ(CLj

) = δ(CL′

j
), if j ≤ b, then we

can apply the analysis in the proof of Lemma 6.6.6; otherwise, we can apply the analysis

in the proof of Lemma 6.6.13. We omit the details.

The third subcase xri < xrm′ .. In this case, for each list L′
j ∈ L

′, as analyzed in the

proof of Lemma 6.6.3, only Case II of our preliminary algorithm happens, and thus Lj

is obtained from L′
j by inserting i into L′

j right before the last index. Further, it holds

that x(CLj
) = x(CL′

j
) + |Ii| regardless of whether the last index of L′

j is m or m′. Since

x(CL′

j
) is strictly increasing on j ∈ [1, a], x(CLj

) is also strictly increasing on j ∈ [1, a].

Consider any list L′
j ∈ L

′ with j ≤ b. Recall that the last index of L′
j is m′. By

Observation 6.4.3, δ(CLj
) = max{δ(CL′

j
), d(m′, CLj

)}, and d(m′, CLj
) = xrm′(CLj

)−xrm′ =

x(CLj
) − xrm′ . Thus, d(m′, CLj

) strictly increases on j ∈ [1, b]. Since δ(CL′

j
) strictly
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decreases on j ∈ [1, b], δ(CLj
) is a unimodal function on j ∈ [1, b] (i.e., it first strictly

decreases and then strictly increases). If δ(CL1) ≤ δ(CL2), then let e1 = 1; otherwise,

define e1 to be the largest index j ∈ [2, b] such that δ(CLj−1) > δ(CLj
). Hence, δ(CLj

) is

strictly decreasing on j ∈ [1, e1].

Lemma 6.6.17. If e1 < b, then Le1 dominates Lj for any j ∈ [e1 + 1, b].

Proof. Assume e1 < b and let j be any index in [e1 + 1, b]. By our definition of e1

and since δ(CLj
) is unimodal on [1, b], it holds that δ(CLe1

) ≤ δ(CLj
). Recall that

x(CLe1
) < x(CLj

). Since the last indices of both Le1 and Lj are m′, by Lemma 6.6.2,

Le1 dominates Lj .

Due to Lemma 6.6.17, let S1 = {L1, L2, . . . , Le1}.

Consider any list L′
j ∈ L

′ with j > b. Recall that the last index of L′
j is m.

Similarly as above, δ(CLj
) = max{δ(CL′

j
), d(m, CLj

)} and d(m, CLj
) = x(CLj

) − xrm.

Similarly, δ(CLj
) is a unimodal function on j ∈ [b + 1, a]. If δ(CLb+1

) ≤ δ(CLb+2
), then

we let e2 = b + 1; otherwise, define e2 to be the largest index j ∈ [b + 1, a] such that

δ(CLj−1) > δ(CLj
). Hence, δ(CLj

) is strictly decreasing on j ∈ [b + 1, e2]. By a similar

proof as Lemma 6.6.17, we can show that if e2 < a, then Le2 dominates Lj for any

j ∈ [e2 + 1, a]. Let S2 = {Lb+1, Lb+2, . . . , Le2}.

We finally combine S1 and S2 to obtain L as follows. Define b′ to be the smallest

index j of [b + 1, e2] such that δ(CLe1
) > δ(CLj

), and if no such index exists, then let

b′ = e2 + 1.

Lemma 6.6.18. If b′ > b+ 1, then Le1 dominates Lj of S2 for any j ∈ [b+ 1, b′ − 1].

Proof. Assume b′ > b+1 and let j be any index in [b+1, b′− 1]. Since δ(CLj
) is strictly

decreasing on j ∈ [b+ 1, e2], by the definition of b′, δ(CLe1
) ≤ δ(CLj

).

Recall that δ(CLj
) = max{δ(CL′

j
), d(m, CLj

)}, δ(CLe1
) = max{δ(CL′

e1
), d(m′, CLe1

)},

and δ(CL′

j
) < δ(CL′

e1
). Hence, we obtain δ(CL′

j
) < δ(CL′

e1
) ≤ δ(CLj

), and thus δ(CLj
) =

d(m, CLj
). Since δ(CLe1

) ≤ δ(CLj
), δ(CLe1

) ≤ d(m, CLj
). Further, recall that x(CLe1

) <

x(CLj
). Then, Lemma 6.6.1 applies since the last index of Le1 is m′ and that of Lj is

m, with xrm′ ≤ xrm. By Lemma 6.6.1, Le1 dominates Lj .
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In light of Lemma 6.6.18, we let L = S1 ∪ {Lb′ , . . . , Le2} if b
′ 6= e2 + 1 and L = S1

otherwise. By similar analysis as before, we can show that all algorithm invariants hold

on L, and we omit the details. The following lemma will be useful for the algorithm

implementation.

Lemma 6.6.19. For each list Lj ∈ L, x(CLj
) = x(CL′

j
) + |Ii|; if Lj 6∈ {Le1 , Le2}, then

δ(CLj
) = δ(CL′

j
).

Proof. We have shown that x(CLj
) = x(CL′

j
) + |Ii| for any j ∈ [1, a].

Consider any list Lj ∈ L and j 6∈ {e1, e2}. By the similar analysis as in Lemma 6.6.13,

we can show that δ(CLj
) = δ(CL′

j
). The details are omitted.

6.6.3 The Algorithm Implementation

In this section, we implement our pruning algorithm described in Section 6.6.2 in

O(n logn) time and O(n) space. We first show how to compute the optimal value δopt

and then show how to construct an optimal list Lopt in Section 6.6.4.

Since L may have Θ(n) lists and each list may have Θ(n) intervals, to avoid Ω(n2)

time, the key idea is to maintain the lists of L implicitly. We show that it is sufficient to

maintain the “x-values” x(CL) and the “δ-values” δ(CL) for all lists L of L, as well as the

list index b and the interval indices m′ and m. To this end, and in particular, to update

the x-values and the δ-values after each interval Ii is processed, our implementation

heavily relies on Lemmas 6.6.6, 6.6.13, 6.6.16, and 6.6.19. Intuitively, these lemmas

guarantee that although the x-values of all lists of L need to change, all but a constant

number of them increase by the same amount, which can be updated implicitly in

constant time; similarly, only a constant number of δ-values need to be updated. The

details are given below.

Let L = {L1, L2, . . . , La} such that x(CLj
) strictly increases on j ∈ [1, a], and thus,

δ(CLj
) strictly decreases on j ∈ [1, a] by the algorithm invariants.

We maintain a balanced binary search tree T whose leaves from left to right corre-

spond to the ordered lists of L. Let v1, . . . , va be the leaves of T from left to right, and

thus, vj corresponds to Lj for each j ∈ [1, a]. For each j ∈ [1, a], vj stores a δ-value δ(vj)
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that is equal to δ(CLj
), and vj stores another x-value x(vj) that is equal to x(CLj

)−R,

where R is a global shift value maintained by the algorithm.

In addition, we maintain a pointer pb pointing to the leaf v(b) of T if b 6= 0 and

pb = null if b = 0. We also maintain the interval indices m and m′. Again, if pb = null,

then m′ is undefined.

Initially, after I1 is processed, L consists of the single list L = {1}. We set R = 0,

m = 1, and pb = null. The tree T consists of only one leaf v1 with δ(v1) = 0 and

x(v1) = xr1.

In general, we assume Ii−1 has been processed and T , m, m′, pb, and R have been

correctly maintained. In the following, we show how to update them for processing Ii.

In particular, we show that processing Ii takes O((k + 1) log n) time, where k is the

number of lists removed from L during processing Ii. Since our algorithm will generate

at most n new lists for L and each list will be removed from L at most once, the total

time of the algorithm is O(n logn).

As in Section 6.6.2, we let L′ = {L′
1, L

′
2, . . . , L

′
a} denote the original set L before

Ii is processed. Again, if b 6= 0, then L′1 = {L′
1, . . . , L

′
b} and L

′
2 = {L′

b+1, . . . , L
′
a}. We

consider the five subcases discussed in Section 6.6.2.

The Case L′1 = ∅

In this case, the last indices of all lists of L′ are m.

The first subcase xrm ≤ xri .. In this case, in general we have L = {Lj | a1 ≤ j ≤ a2}.

We first find a1 and remove the lists L1, . . . , La1−1 if a1 > 1 as follows.

Starting from the leftmost leaf v1 of T , if x(v1) + R (which is equal to x(CL′

1
)) is

larger than xli, then a1 = 0 and we are done. Otherwise, we consider the next leaf v2.

In general, suppose we are considering leaf vj . If x(vj) + R > xli, then we stop with

a1 = j − 1. Otherwise, we remove leaf vj−1 (not vj) from T and continue to consider

the next leaf vj+1 if j 6= a (if j = a, then we stop with a1 = a).

If a1 6= 0, then the above has found the leaf va1 . In addition, we update x(va1) =

xri −R− |Ii| (we have minus |Ii| here because later we will increase R by |Ii|).

Next we find a2 and remove the lists La2+1, . . . , La (by removing the corresponding

leaves from T ) if a2 < a, as follows. Recall that for each j ∈ [a1 + 1, a], δ(CLj
) =
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max{δ(CL′

j
), d(i, CLj

)}, with δ(CL′

j
) = δ(vj) and d(i, CLj

) = xli(CLj
)− xli = x(CL′

j
)− xli =

x(vj) +R− xli. Hence, we have δ(CLj
) = max{δ(vj), x(vj) +R− xli}.

If a1 = a, then we have a2 = a1 and we are done. Otherwise we do the following.

Starting from the rightmost leaf va of T , we check whether max{δ(va−1), x(va−1) +R−

xli} ≤ max{δ(va), x(va)+R−xli}. If yes, we remove va from T and continue to consider

va−1. In general, suppose we are considering vj . If j = a1, then we stop with a2 = a1.

Otherwise, we check whether max{δ(vj−1), x(vj−1)+R−xli} ≤ max{δ(vj), x(vj)+R−xli}.

If yes, we remove vj from T and proceed on vj−1. Otherwise, we stop with a2 = j.

Suppose the above procedure finds leaf vj with a2 = j. We further update δ(vj) =

max{δ(vj), x(vj) +R− xli}. By Lemma 6.6.6, we do not need to update other δ-values.

The above has updated the tree T . In addition, we update R = R + |Ii|, which

actually implicitly updates all x-values by Lemma 6.6.6. Finally, we update m = i since

the last indices of all updated lists of L are now i.

This finishes our algorithm for processing Ii. Clearly, the total time is O((k +

1) log n) since removing each leaf of T takes O(logn) time, where k is the number of

leaves that have been removed from T .

The second subcase xrm > xri .. In this case, roughly speaking, we should compute

the set L = {L1, . . . , Lc1 , Lc′ , Lc′+1, . . . , Lc2}.

We first compute the index c, i.e., find the leaf vc of T . This can be done by searching

T in O(log n) time as follows. Note that for a list L′
j , to check whether xli > xlm(CL′

j
),

since xlm(CL′

j
) = x(CL′

j
) − |Im| = x(vj) + R − |Im|, it is equivalent to checking whether

xli > x(vj) +R− |Im|, which is equivalent to xli −R+ |Im| > x(vj). Consequently, vc is

the rightmost leaf v of T such that xli − R + |Im| > x(v), and thus vc can be found by

searching T in O(logn) time.

Next, we find c1, and remove the leaves vj with j ∈ [c1 + 1, c] if c1 < c, as follows

(note that if the above step finds c = 0, then we skip this step).

Recall that for each j ∈ [1, c], δ(CLj
) = max{δ(CL′

j
), d(i, CLj

)}, with δ(CL′

j
) = δ(vj)

and d(i, CLj
) = xli(CLj

) − xli = x(CL′

j
) − xli = x(vj) + R − xli. Hence, we have δ(CLj

) =

max{δ(vj), x(vj) +R− xli}.

Starting from vc, we first check whether δ(CLc−1) > δ(CLc
), by computing δ(CLc−1)

and δ(CLc
) as above. If yes, then c1 = c and we stop. Otherwise, we remove vc and
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proceed on considering vc−1. In general, suppose we are considering vj . If j = 1, then we

stop with c1 = 1. Otherwise, we check whether δ(CLj−1) > δ(CLj
). If yes, then c1 = j;

otherwise, we remove vj and proceed on vj−1.

In addition, after vc1 is found as above, we update δ(vc1) = max{δ(vc1), x(vc1) +

R− xli}.

Next, consider the new list L∗
c , which is Lc+0.5. We have the following δ(CL∗

c
) =

max{δ(CL′

c
), d(m, CL∗

c
)} = max{δ(CL′

c
), xlm(CL∗

c
) − xlm}. Due to that δ(CL′

c
) = δ(vc)

and xlm(CL∗

c
) = xri , we have δ(CL∗

c
) = max{δ(vc), x

r
i − xlm} (if the above has removed

vc, then we temporarily keep the value δ(vc) before vc is removed). Also, recall that

x(CL∗

c
) = xri + |Im|. Therefore, we can compute both δ(CL∗

c
) and x(CL∗

c
) in constant

time. We insert a new leaf vc+0.5 to T corresponding to L∗
c , with δ(vc+0.5) = δ(CL∗

c
) and

x(vc+0.5) = x(CL∗

c
) − R − |Ii| (the minus |Ii| is due to that later we will increase R by

|Ii|).

Next, we determine c2, and remove the leaves vj with j ∈ [c2 + 1, a] if c2 < a,

as follows. Recall that for each j ∈ [c + 1, a], δ(CLj
) = max{δ(CL′

j
), d(m, CLj

)}, with

δ(CL′

j
) = δ(vj) and d(m, CLj

) = xrm(CLj
)−xrm = x(CL′

j
)+|Ii|−x

r
m = x(vj)+R+|Ii|−x

r
m.

Hence, we have δ(CLj
) = max{δ(vj), x(vj) + R + |Ii| − xrm}, which can be computed in

constant time once we access the leaf vj .

Starting from the rightmost leaf va, in general, suppose we are considering a leaf vj .

If j = c+ 0.5, then we stop with c2 = c+ 0.5. Otherwise, let vh be the left neighboring

leaf of vj (so h is either j − 1 or j − 0.5). We check whether δ(CLh
) > δ(CLj

) (the two

values can be computed as above). If yes, we stop with c2 = j; otherwise, we remove vj

from T and proceed on considering vh.

If the above procedure returns c2 ≥ c+ 1, then we further check whether x(CL∗

c
) =

x(CLc+1). If yes, then we remove the leaf vc+0.5 from T . If c2 ≥ c + 1, we also need to

update δ(vc2) = max{δ(vc2), x(vc2) +R+ |Ii| − xrm}.

Finally, we determine c′ and remove all leaves strictly between vc1 and vc′ , as follows.

Recall that given any leaf vj of T , we can compute δ(CLj
) in constant time. Starting

from the right neighboring leaf of vc1 , in general, suppose we are considering a leaf vj .

If δ(CLc1
) ≤ δ(CLj

), then we remove vj and proceed on the right neighboring leaf of vj .

This procedure continues until either δ(CLc1
) > δ(CLj

) or vj is the rightmost leaf and
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has been removed.

In addition, we update R = R + |Ii|. In light of Lemma 6.6.13 and by our way of

setting the value x(vc+0.5), this updates all x-values. Also, the above has “manually”

set the values δ(vc1), δ(vc2), and δ(vcc+0.5), by Lemma 6.6.13, all δ-values have been

updated. Finally, we update m, m′, and pb as follows.

In the general case where 1 ≤ c < a and c′ 6= c2 + 1, we set m′ = i and pb to the

leaf vc1 . If c
′ = c2 + 1, then the last indices of all lists of L are i, and thus we set m = i

and pb = null. If c = 0, then the last indices of all lists of L are m, then we do not need

to update anything. If c = a, then if L∗
c 6∈ L, then the last indices of all lists of L are i

and we set m = i and pb = null, and if L∗
c ∈ L, then we set m′ = i and pb to vc1 .

This finishes processing Ii. The total time is again as claimed before.

The Case L′1 6= ∅

In this case, L′1 = {L′
1, . . . , L

′
b} and L′2 = {L′

b+1, . . . , L
′
a}. The last indices of all

lists of L′1 (resp., L′2) are m′ (resp., m). Note that the pointer pb points to the leaf vb.

The first subcase xri ≥ xrm.. In this case, the implementation is similar to the first

subcase of Section 6.6.3, so we omit the details.

The second subcase xrm′ ≤ xri < xrm.. As our algorithm description in Section 6.6.2,

we first apply the similar implementation as the first subcase of Section 6.6.3 on the

leaves from v1 to vb, and then apply the similar implementation as the second subcase of

Section 6.6.3 on the leaves from vb+1 to va. So the leaves of the current tree corresponding

to the lists in S′
1 ∪ S′

2, i.e., {L1 . . . , La2 , Lb+1, . . . , Lc1 , Lc′ , . . . , Lc2}, as defined in the

second subcase of Section 6.6.2.

Next, we determine b′ and remove all leaves from T strictly between va2 and vb′ .

Starting from the right neighboring leaf of va2 , in general, suppose we are considering

a leaf vj . If δ(CLa2
) ≤ δ(CLj

) (as before, these two values can be computed in constant

time once we have access to va2 and vj), then we remove vj and proceed on the right

neighboring leaf of vj . This procedure continues until either δ(CLa2
) > δ(CLj

) or vj is

the rightmost leaf and has been removed.

Finally, we update R = R+ |Ii|. To update pb, m, and m′, depending on the values

c, c′ and b′, there are various cases. In the general case where b+1 ≤ c < a, c′ 6= c2 +1,
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and b′ 6= c2 + 1, we update pb = vc1 and m′ = i. We omit the discussions for other

special cases.

The third subcase xri < xrm′ .. In this case, starting from vb, we first remove all

leaves from ve1+1 to vb. The algorithm is very similar as before and we omit the details.

Then, starting from va, we remove all leaves from ve2+1 to va. Finally, starting from ve1 ,

we remove all leaves strictly between ve1 to vb′ . In addition, we update R = R + |Ii|.

In the general case where b′ 6= e2 + 1, we set pb pointing to leaf ve1 ; otherwise, we set

m = m′ and pb = null.

This finishes processing Ii for all five subcases. The algorithm finishes once In is

processed, after which δopt = δ(v), where v is the rightmost leaf of T (as δ(v) is the

smallest among all leaves of T ). Again, the total time of the algorithm is O(n logn).

Clearly, the space used by our algorithm is O(n).

6.6.4 Computing an Optimal List

As discussed above, after In is processed, the list (denoted by Lopt) corresponding to

the rightmost leaf (denoted by vopt) of T is an optimal list, and δopt = δ(vopt). However,

since our algorithm does not maintain the list Lopt explicitly, Lopt is not available after

the algorithm finishes. In this section, we give a way (without changing the complexity

asymptotically) to maintain more information during the algorithm such that after it

finishes, we can reconstruct Lopt in additional O(n) time.

We first discuss some intuition. Consider a list L ∈ L before interval Ii is processed.

During processing Ii for L, observe that the position of i in the updated list L is uniquely

determined by the input position of the last interval Im of L (i.e., depending on whether

xri ≥ xrm). However, uncertainty happens when L generates another “new” list L∗. More

specifically, suppose L is a canonical list of I[1, i − 1]. If there is no new list L∗, then

by our observations (i.e., Lemmas 6.4.2 and 6.4.4), the updated L is a canonical list of

I[1, i]. Otherwise, we know (by Lemma 6.4.6) that one of L and L∗ is a canonical list of

I[1, i], but we do not know exactly which one is. This is where the uncertainty happens

and indeed this is why we need to keep both L and L∗ (thanks to Lemma 6.4.7, we only

need to keep one such new list). Therefore, in order to reconstruct Lopt, if processing Ii

generates a new list L∗ in L, then we need to keep the relevant information about L∗.
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The details are given below.

Specifically, we maintain an additional binary tree T ′ (not a search tree). As in

T , the leaves of T ′ from left to right correspond to the ordered lists of L. Consider a

leaf v of T ′ that corresponds to a list L ∈ L. Suppose after processing Ii, L generates

a new list L∗ in L. Let m be the last index of the original L (before Ii is processed).

According to our algorithm, we know that the last two indices of the updated L are m

and i with i as the last index and the last two indices of L∗ are i and m with m as

the last index. Correspondingly, we update the tree T ′ as follows. First, we store i at

v, e.g., by setting A(v) = i, which means that there are two choices for processing Ii.

Second, we create two children v1 and v2 for v and they correspond to the lists L and

L∗, respectively. Thus, v now becomes an internal node. Third, on the new edge (v, v1),

we store an ordered pair (m, i), meaning that m is before i in L; similarly, on the edge

(v, v2), we store the pair (i,m). In this way, each internal node of T ′ stores an interval

index and each edge of T ′ stores an ordered pair.

After the algorithm finishes, we reconstruct the list Lopt in the following way. Let

π be the path from the root to the rightmost leaf vopt of T
′. We will construct Lopt by

considering all intervals from I1 to In and simultaneously considering the nodes in π.

Initially, let Lopt = {1}. Then, we consider I2 and the first node of π (i.e., the root of

T ′). In general, suppose we are considering Ii and a node v of π. We first assume that

v is an internal node (i.e., v 6= vopt).

If i < A(v), then only Case I or Case II of our preliminary algorithm happens, and

we insert i into Lopt based on whether xri ≥ xrm (specifically, if xri ≥ xrm, then we append

i at the end of Lopt; otherwise, we insert i right before the last index of Lopt) and then

proceed on Ii+1.

If i ≥ A(v) (in fact, i must be equal to A(v)), then we insert i into Lopt based on

the ordered pair of the next edge of v in π (specifically, if i is at the second position of

the pair, then i is appended at the end of Lopt; otherwise, i is inserted right before the

last index of Lopt) and then proceed on the next node of π and Ii+1.

If v = vopt, then we insert i into Lopt based on whether xri ≥ xrm as above, and

then proceed on Ii+1. The algorithm finishes once In is processed, after which Lopt is

constructed. It is easy to see that the algorithm runs in O(n) time and O(n) space.
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Once Lopt is computed, we can apply the left-possible placement strategy to com-

pute an optimal configuration in additional O(n) time.

Theorem 6.6.20. Given a set of n intervals on a line, the interval separation problem is

solvable in O(n logn) time and O(n) space.

6.7 The Lower Bound

By a linear-time reduction from the integer element distinctness problem [72,73], we

can obtain an Ω(n log n) time lower bound for the problem under the algebraic decision

tree model, which implies the optimality of our algorithm.

Given a set of n integers A = {a1, a2, . . . , an}, the element distinctness problem is to

ask whether there are two elements of A that are equal. The problem has an Ω(n log n)

time lower bound under the algebraic decision tree model [72, 73]. We create a set I of

n intervals as an instance of our interval separation problem as follows. For each ai ∈ A,

we create an interval Ii centered at ai with length 0.1. Let I be the set of all intervals.

Since all elements of A are integers, it is easy to see that no two elements of A are equal

if and only if no two intervals of I intersect. On the other hand, no two intervals of I

intersect if and only if the optimal value δopt in our interval separation problem on I is

equal to zero. This completes the reduction. This reduction actually shows that even if

all intervals have the same length, the interval separation problem still has an Ω(n log n)

time lower bound.
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CHAPTER 7

Future Work

We discuss some future work that are natural extensions of the problems we studied

before.

1. The Cycle Version of Multiple Barrier Coverage Problem

In Chapter 5, we solved the line version of multiple barrier coverage problem. One

natural extension is the cycle version of this problem. In the cycle version, there is a

cycle C and each barrier becomes an arc on C. Each sensor is still a point on C but

now can cover an arc of C centered at the sensor. In addition, in the cycle version, the

distance of any two points on C is defined as the length of the shortest path between

the two points on C.

If there is only one barrier, i.e., m = 1, the problem has already been studied and

a linear time algorithm is known [33] after the sensors are sorted on C. For the general

value m, however, the problem has not been considered before. We propose to study

this problem and try to extend our algorithm for the line version in Chapter 5.

2. The Min-Sum Version of the Multiple Barrier Coverage Problem

In Chapter 5, we studied the min-max version of multiple barrier coverage problem.

A closely related problem is the min-sum version, defined as follows. Given m barriers

and n sensors on a line L, the goal is to move sensors so that the union of the covering

intervals of all sensors covers all barriers and the total sum of the movements of all

sensors is minimized.

If m = 1, i.e., there is only one barrier, the problem has been studied before and

the previously best algorithm runs in O(n logn) time [63]. To our best knowledge, the

general case has not been considered before. We plan to study this problem. One

possible direction is to see whether the algorithm in [63] can somehow be extended.
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It may also be interesting to consider the cycle version of the problem.

3. Separating Overlapped Intervals on a Cycle

We solve the separating overlapped intervals problem on a line in Chapter 6. It

might also be interesting to consider the cycle version of the problem. Let I be a set of

n intervals on a closed cycle C. We say that two intervals overlap if their intersection

contains more than one point. The problem is to move the intervals of I along the

cycle C such that no two intervals overlap and the maximum moving distance of these

intervals is minimized.

If all intervals of I have the same length, then the problem is essentially the same

as the problem of spreading points on a cycle that we studied in Chapter 3, and thus,

by using our algorithm in Chapter 3, after the left endpoints of the intervals are sorted,

the problem can be solved in O(n) time. For the general problem where intervals may

have different lengths, to the best of our knowledge, the problem has not been studied

before.



146

REFERENCES

[1] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geom-

etry — Algorithms and Applications, 3rd ed. Berlin: Springer-Verlag, 2008.

[2] S. Devadoss and J. O’Rourke, Discrete and Computational Geometry. New Jersey:

Princeton University Press, 2011.

[3] F. Preparata and M. Shamos, Computational Geometry: An Introduction, 2nd ed.

Springer-Verlag, 1988.

[4] J. Sack and J. Urrutia, Eds., Handbook of Computational Geometry. Elsevier,

Amsterdam, The Netherlands, 2000.
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[43] B. Chandra and M. Halldórsson, “Approximation algorithms for dispersion prob-

lems,” Journal of Algorithms, vol. 38, pp. 438–465, 2001.

[44] Z. Friggstad and M. Salavatipour, “Minimizing movement in mobile facility location

problems,” ACM Transactions on Algorithms, vol. 7, 2011, article No. 28.

[45] E. Fernández, J. Kalcsics, and S. Nickel, “The maximum dispersion problem,”

Omega, vol. 41(4), pp. 721–730, 2013.
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