
CSE 160
Lecture 13

Sorting

Announcements
•  No Lab in APM this Friday
•  Quiz return

©2013 Scott B. Baden / CSE 160 / Winter 2013 2

Today’s Lecture
•  Parallel Sorting (II)

 Bucket Sort
 Sample Sort
 Bitonic Sort

©2013 Scott B. Baden / CSE 160 / Winter 2013 3

©2013 Scott B. Baden / CSE 160 / Winter 2013 4

Parallel sorting
•  We’ll consider in-memory sorting of integer

keys
 Bucket sort
 Sample sort
 Bitonic sort

•  In practice, we sort on external media, i.e.
disk
 See: http://sortbenchmark.org
 TritonSort (UCSD): 0.725 x 1012 bytes/minute

©2013 Scott B. Baden / CSE 160 / Winter 2013 5

Rank Sorting
•  Compute the rank of each input value
•  Move each value in sorted position according

to its rank
•  Makes idealizing assumptions

 An ideal parallel computer with no memory
contention and an infinite number of processors

 The forall loops parallelize perfectly

 forall i=0:n-1, j=0:n-1
 if (x[i] > x[j]) then rank[i] += 1 end if
 forall i=0:n-1 
 y[rank[i]] = x[i]

©2013 Scott B. Baden / CSE 160 / Winter 2013 6

In search of a fast and practical sort

•  Rank sorting is impractical on real hardware
•  Let’s borrow the concept: compute the thread

owner for each key
•  Shuffle data in sorted order in one step
•  But how do we know which thread should be

the owner?
•  Subdivide the key space

©2013 Scott B. Baden / CSE 160 / Winter 2013 7

1st attempt: bucket sort
•  Divide the range of keys into equal subranges and

associate a bucket with each range
•  Each processor maintains p local buckets

 Assigns each key to a bucket: ⎣ p × key/(Kmax-1) ⎦
 Routes the buckets to the correct owner

 (each local bucket has ~ n/p2 elements)
 Sort all incoming data into a single bucket

Wikipedia

©2013 Scott B. Baden / CSE 160 / Winter 2013 8

Running time

•  Assume that the keys are distributed
uniformly over 0 to Kmax-1

•  Local bucket assignment: O(n/p)
•  Route each local bucket to the correct owner

O(n)
•  Local sorting (using radix sort) : O(n/p))

www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Radix

©2013 Scott B. Baden / CSE 160 / Winter 2013 9

Worst case behavior
•  The assignment of keys to threads is based solely on the

knowledge of Kmax

•  If the keys are integers in the range [0,Q-1] ….
… thread k has keys in the range

•  E.g. for Q=230, P=64, each thread gets 224 = 16 M elements
•  For a non-uniform distribution, we need more information

to balance keys (and communication) over the processors
•  In the worst case, all the keys could go to one processor

!

kQ
P
,(k + 1) Q

P
"

$
%

& '

©2013 Scott B. Baden / CSE 160 / Winter 2013 10

Improving on bucket sort
•  Sample sort
•  Uses a heuristic to estimate the distribution of the

global key range over the p threads
•  Each processor gets about the same number of keys
•  Sample the keys to determine a set of p-1 splitters

that partition the key space into p disjoint regions
(buckets)

©2013 Scott B. Baden / CSE 160 / Winter 2013 11

Sample selection

Introduction to Parallel Computing, 2nd Ed,, A.Grama, A.l Gupta, G. Karypis, and V. Kumar, Addison-Wesley, 2003.

©2013 Scott B. Baden / CSE 160 / Winter 2013 12

Splitter selection: regular sampling

•  Shi and Schaeffer [1992]
•  Each processor sorts its local keys, then selects s

evenly spaced samples
•  These candidate splitters are collected by one thread

►  Sorted
►  Sampled at uniform positions to generate a p-1 element

splitter list

©2013 Scott B. Baden / CSE 160 / Winter 2013 13

Performance
•  Assuming n ≥ p3 …
•  TP = O((n/p) lg n)
•  If s= p, each processor will will merge not more than

 2n/p + n/s – p elements
•  If s > p, each processor will will merge not more than

 (3/2)(n/p) - (n/(ps)) + 1 + d elements
•  Duplicates d do not impact performance unless d = O(n/p)
•  Tradeoff: increasing s …

  Spreads the final distribution more evenly over the processors
  Increases the cost of determining the splitters

•  For some inputs, communication patterns can be highly
irregular with some pairs of processors communicating more
heavily than others, lowering performance

©2013 Scott B. Baden / CSE 160 / Winter 2013 14

Radix sort

•  We need a stable sorting algorithm to do the
local sorts: the output preserves the order of
inputs having the same associated key

•  radix sort meets our needs: sort the keys in
passes, choosing an r-bit block at a time, O(n)
running time

•  Explanation with a demo
www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/
Radix/

©2013 Scott B. Baden / CSE 160 / Winter 2013 15

A simple example

•  Following an example in the NIST
 Dictionary of Algorithms and Data Structures
http://www.nist.gov/dads/

•  Uses buckets to sort the keys in passes
•  Running time is O(cn), c depends on size of

the keys and the number of buckets

©2013 Scott B. Baden / CSE 160 / Winter 2013 16

Radix sort in action
•  Consider the input keys

34, 12, 42, 32, 44, 41, 34, 11, 32, and 23
•  Use 4 buckets
•  Sort on each digit in succession, least significant to most

significant

©2013 Scott B. Baden / CSE 160 / Winter 2013 17

Radix sort in action
•  Consider the input keys

34, 12, 42, 32, 44, 41, 34, 11, 32, and 23
•  Use 4 buckets
•  Sort on each digit in succession, least significant to

most significant
•  After pass 1

 41 11 12 42 32 32 23 34 44 34

©2013 Scott B. Baden / CSE 160 / Winter 2013 18

Radix sort in action

•  Consider the input keys
34, 12, 42, 32, 44, 41, 34, 11, 32, and 23

•  Use 4 buckets
•  Sort on each digit in succession, least significant to most

significant
•  After pass 1

 41 11 12 42 32 32 23 34 44 34
•  After pass 2

 11 12 23 32 32 34 34 41 42 44

Today’s Lecture
•  Parallel Sorting (II)

 Bucket Sort
 Sample sort
 Bitonic Sort

©2013 Scott B. Baden / CSE 160 / Winter 2013 19

©2013 Scott B. Baden / CSE 160 / Winter 2013 20

Bitonic sort
•  Classic parallel sorting algorithm: O(log2n) on n processors
•  Also used in fast sorting on a GPU
•  Definition: A bitonic sequence is a sequence of numbers a0,

a1...an-1 with at most 1 local maximum and 1 local minimum
(Endpoints wrap around)
  There exists an index i where

a0 ≤ a1 ≤ a1 … ≤ ai and ai ≥ ai+1 ≥ ai+1 … ≥ an-1

  We may cyclically shift the ak while maintaining this relationship

•  Merge property: We may merge two bitonic sequences in
much the same way as we merge two monotonic sequences

1,2,4,7,6,0 7,6,0,1,2,4

©2013 Scott B. Baden / CSE 160 / Winter 2013 21

 3 5 8 9 7 4 2 1
 3 1 a7

 5 2 a6
 8 4 a5
 9 7 a4

Splitting property of bitonic sequences
•  We can split a bitonic sequence y into two bitonic sequences

 L(y) and R(y)

 L(y) = 〈min{a0,an/2}, min{a1,an/2+1},…, min{an/2+1,an-1}〉

 R(y) = 〈max{a0,an/2}, max{a1,an/2+1},…,max{an/2+1,an-1}〉
•  See the notes for a proof

All values in L(y) < R(y)

L(y): 3 4 2 1

R(y): 7 5 8 9

©2013 Scott B. Baden / CSE 160 / Winter 2013 22

Sorting a bitonic sequence is easy

•  Split the bitonic sequence y into two bitonic subsequences
L(y) and R(y)

•  Sort L(y) and R(y) recursively
•  Merge the two sorted lists

  Since all values in L(y) are smaller than all values in R(y) we don’t
need to exchange values in L(y) and R(y)

•  When |L(.)| < 3, sorting is trivial
•  We designate S(n) to be sort on of an n-element bitonic

sequence

©2013 Scott B. Baden / CSE 160 / Winter 2013 23

Bitonic sort algorithm

•  Create a bitonic sequence y from an
unsorted list

•  Apply the previous algorithm to sort the
bitonic sequence

•  We need an algorithm to create the bitonic
sequence y

©2013 Scott B. Baden / CSE 160 / Winter 2013 24

Additional properties of bitonic sequences

•  Any 2 element sequence is a bitonic sequence
•  We can trivially construct a bitonic sequence from

two monotonic sequences, one sorted in increasing
order, the other in decreasing order

+ =

©2013 Scott B. Baden / CSE 160 / Winter 2013 25

Inductive construction of the initial bitonic
sequence

•  Form matched pairs of 2-element bitonic sequences,
pointing up and down [B(2)]

•  Trivially merge these into 4-element bitonic sequences
•  Now form matched pairs of 4-element sequences [B(4)]
•  Apply S(4) to each sequence, sorting the first upward, the

second downward
•  Trivially merge into an 8-element bitonic sequence
•  Continue until there is just one sequence

©2013 Scott B. Baden / CSE 160 / Winter 2013 26

Implementing the bitonic sort algorithm

•  Create a bitonic sequence y from an
unsorted list, B(n)

•  Apply the previous algorithm to sort the
bitonic sequence, S(n)

•  We use comparators to re-order data
•  We use a shuffle exchange network to form

L(y) and R(y)
  This network shuffles an n-element sequence by

interleaving x0, xn/2, x1, xn/2+1, …

©2013 Scott B. Baden / CSE 160 / Winter 2013 27

Comparators

•  Given two values x & y,
produce two outputs

•  For an increasing comparator,
the output is

 min[x,y], max[x,y]

•  For a decreasing comparator,
the output is

 max[x,y], min[x,y]

©2013 Scott B. Baden / CSE 160 / Winter 2013 28

Bitonic merging network

•  Converts a bitonic sequence into a sorted sequence

From Introduction to Parallel Computing, V. Kumar et al, Benjamin Cummings, 1994

S(16) 2 x S(8)

L

R

4 x S(4) 8 x S(2)

L

L

R

R

©2013 Scott B. Baden / CSE 160 / Winter 2013 29

Bitonic conversion network
 Converts an unordered sequence into a bitonic sequence

From Introduction to Parallel Computing, V. Kumar et al, Benjamin Cummings, 2003

8xB(2) 4 x B(4) 2 x B(8) B(4) = S(4) + S(2)

Fin

