Searching, Sorting, Medians

part 2

Week 4 Objectives

® QuickSort
@ QuickSort Running time
® Median Statistics

@® Sorting in linear time

QuickSort - pseudocode

® QuickSort(A,b,e)
— q = Partition(Abe)

— if(b<g-1) QuickSort(A,bg-1)
— if(q+l<e) QuickSort(A,q+le)

@ After Partition the pivot index contains the right value:

QuickSort Partition

@® TASK: rearrange A and find pivot q, such that
— dll elements before q are smaller than Alq]

— dll elements after q are bigger than A{q]
® Partition (A, b, e)

— x=Ale] //pivot value

— 1=b-1

= for j=b TO e-1
@ 1f A[j]<=x then
© I i++; swap A[i]l<->A[7]
swap Ali1+1l]<->A[e]

— g=1+1; return g

Partition Example

@ set pivot value x = Ale], // «-=

— i =index of last value < X

— i+l = index of first value > x

U

pIC [NIT (N DO (T Ni-.

® ru? J through array indices b to
e-

- ifA[jl<=x //see steps (4d), (e)
— swap (Alj], Ali+1]);

- i++; //advance i

@ move pivot in the right place
— swap (pivot=Ale] , Ali+1])

@ return pivot index

— return i+l

QuickSort time

@® Partition runs in linear time

- (IF pi)vo’r position is q, the QuickSort recurrence is T(n) =n +T(q) + T
n-q

@® Best case q is always in the middle
— T(n)=n+2T(n/2), overall O(n*logn)

@ Worst case: q Is always at extreme, 1 or n
- T(n) =n + T(1) + T(n-1), overall O(n?)

QuickSort Running Time

@® Depends on the Partition balance

® Worst case: Partition produces unbalanced split n =
(1, n-1) most of the time

— results in O(n®) running time

@® Average case: most of the fime split balance is not
worse than n = (cn, (1-c)n) for a fixed c

for example ¢=0.99 means balance not worse than (1/100*n,
99/ lOO*nSJ

results in O(n*logn) running time

can prove that on expectation (average), if pivot value is chosen
randomly, running time is ©(n*logn), see book.

Median Stats

® Task: find k-th element
— k=n is same as “find MAX", or “find highest”
— k=2 means “find second-smalles”

— k=l is same as “finding MIN"

@ naive approach, based on selection sort:

find first smallest (MIN)

then find second smallest, third smallest, etc; until the k-th smallest
element

Running Time: average case k=0(n), and each “finding” min takes O
(n) time, so total ©(n?)

Median Stats

® 'find k-th element”

@ befter approach, based on QuickSort

® Median(A,b,ek)
— q = Partition(A,b,e)

— if(q==k) return A[q]
- if(g>k) Median(A,b,g-1,k)
— else Median(A,q+1,e,g-K)

@ Not like Quiksort, Median recursion goes only on one
side, depending on the pivot

@® why the second Median call has Kpnewy=q-Keld) ?

Median Stats

® Running Time of Median

® the recursive calls makes T(n) =n + max(T(q), T(n-q))
— "max” : assuming the recursion has fo call the longer side

— just like QuickSort, avera(c);e case is when q is "balanced”, i.e. cn<g<
il-c)n for some constant O<c<l

— balanced case: T(n) = n + T(cn); Master Theorem gives linear time O

(n)

— expected (average) case can be proven linear time (see book);
worst case @(nz?

@ worst case can run in linear time with a rather
complicated choice of the pivot value before each
partition call (see book)

Linear-time Sorting: Counting Sort

@® Counting Sort (A[]) : count values,
® STEP 1: build array C that counts A values

- 1nit C[]=0 ;
— run 1ndex 1 through A
- value =_A[1]

l - C [Value] +4; //counts each value occurrence

@ STEP 2: assign values to counted positions
P 1init position=0;
for value=0:RANGE
for 1=1:Cl[value]
D) position = position+l;

p OUTPUT [position] =value;

Counting Sort

@® n elements with values in k-range of {vi,vz,..vk}

- for examBIe: 100,000 people sorted by age: n=100,000; k =
i1,2,3,..170} since 170 is maximum reasonable age In years.

@® Linear Time O(n+k)
Beats the bound? YES, linear O(n), not ©(n*logn), if k is a constant
Definitely appropriate when Kk is constant or increases very slowly

Not good when k can be large. Example: sort pictures by their size;

n=10000 (typical picture collection), size range k can be any number
from 200Bytes to 40MBytes.

@® Stable (equal input elements preserve original order)

Radix Sort

@ Counting sort on each digit

Radix Sort

@ Counting sort on each digit
329
457
657

839
436
720
355

Radix Sort

@ Counting sort on each digit

329
457
657

839
436
720
355

720
355
4 3|6
4 5[7
657
329
839

Radix Sort

@ Counting sort on each digit

329
457
657

839
436
720
355

720
355
4 3|6
4 5[7
657
329
839

720
329
436
8 3|9
355
4/5[7
657

Radix Sort

@ Counting sort on each digit
329 | 720 720
457 | 355 9
657 | 436
839 | 457
.
9
9

436 65
720 32
355 83

3
4
8..
355
i
6

Still sorted (due to stability) if the
current sort column does not

Radix Sort

@ Counting sort on each digit
329 | 720 | 7320 :
457 | 355 | 3209
657 | 43 4
839 | 45 839
436 | 65 3
i
6

720 32
355 83

Still sorted (due to stability) if the
current sort column does not

Radix Sort Analysis

@® critical that the digit-sorting procedure is stable
— (329, 355) remain properly sorted when the third digit is used

@® counting sort fits the bill: stable, also linear when
the range is fixed, like base 10 digits {0-9}

@® each digit-sort is linear. But how many digits ?

— -|-u-|i-CI|(informal answer: log(n) digits with fixed range, so O(n*logn)
otal.

Radix Sort Analysis

@® each digit-sort is linear. We can represent items with
few/many bits by choosing representation base

® b bits per item, n items. (b,n fixed).

— for example computers typically represent integers on b=32 bits and
long integers on b=64 bifs

— limit to 2° items total

@ use r bits per digit -> number of digits d = b/r. (rd
up fo us, variables)

— each digit sort O(n+2"), d=b/r digits, so total O(b/r*(n+2")
— choosing r=log(n), total is O(b/log(n)*(n+n)) = ©(bn/log(n))

Sorting : stable; in place

@ stable: preserve relative order of elements with
same value

® in place: dont use significant additional space
(arrays)

time in-place | stable

Bubble

Insertion

Selection

QuickSort

MergeSort

