
See everything available through O’Reilly online learning and start a f Search

Bucket Sort
Counting Sort succeeds by constructing a much smaller set of k values in which
to count the n elements in the set. Given a set of n elements, Bucket Sort con-
structs a set of n buckets into which the elements of the input set are
partitioned; Bucket Sort thus reduces its processing costs at the expense of this
extra space. If a hash function, hash(Ai), is provided that uniformly partitionsunif

the input set of n elements into these n buckets, then Bucket Sort as described
in Figure 4-18 can sort, in the worst case, in O(n) time. You can use Bucket Sort
if the following two properties hold:

Uniform distributionUnif

The input data must be uniformly distributed for a given range.unif
Based on this distribution, n buckets are created to evenly partition
the input range.

Ordered hash function

Algorithms in a Nutshell by

SIGN IN TRY NOW

https://learning.oreilly.com/library/view/algorithms-in-a/9780596516246/
https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

The buckets must be ordered. That is, if i<j, then elements inserted
into bucket bi are lexicographically smaller than elements in bucket

bj.

Figure 4-18. Bucket Sort fact sheet

Bucket Sort is not appropriate for sorting arbitrary strings, for example;
however, it could be used to sort a set of uniformly distributed floating-pointunif
numbers in the range [0,1).

Once all elements to be sorted are inserted into the buckets, Bucket Sort ex-
tracts the values from left to right using Insertion Sort on the contents of each
bucket. This orders the elements in each respective bucket as the values from
the buckets are extracted from left to right to repopulate the original array.

SIGN IN TRY NOW

https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

Context

Bucket Sort is the fastest sort when the elements to be sorted can be uniformlyunif
partitioned using a fast hashing function.

Forces

If storage space is not important and the elements admit to an immediate total
ordering, Bucket Sort can take advantage of this extra knowledge for impress-
ive cost savings.

Solution

In the C implementation for Bucket Sort, shown in Example 4-11, each bucket
stores a linked list of elements that were hashed to that bucket. The functions
numBuckets and hash are provided externally, based upon the input set.

Example 4-11. Bucket Sort implementation in C

extern int hash(void *elt);

extern int numBuckets(int numElements);

/* linked list of elements in bucket. */

typedef struct entry {

 void *element;

 struct entry *next;

} ENTRY;

/* maintain count of entries in each bucket and pointer to its first entr

typedef struct {

 int size;

 ENTRY *head;

} BUCKET;

/* Allocation of buckets and the number of buckets allocated */

static BUCKET *buckets = 0;

static int num = 0;

SIGN IN TRY NOW

https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

while (ptr != NULL) {

 int i = idx-1;

 while (i >= low && cmp (ar[i], ptr->element) > 0) {

 ar[i+1] = ar[i];

 i--;

 }

 ar[i+1] = ptr->element;

 tmp = ptr;

 ptr = ptr->next;

 free(tmp);

 idx++;

 }

 buckets[i].size = 0;

 }

}

/** One by one remove and overwrite ar */

void extract (BUCKET *buckets, int(*cmp)(const void *,const void *),

 void **ar, int n) {

 int i, low;

 int idx = 0;

 for (i = 0; i < num; i++) {

 ENTRY *ptr, *tmp;

 if (buckets[i].size == 0) continue; /* empty bucket */

 ptr = buckets[i].head;

 if (buckets[i].size == 1) {

 ar[idx++] = ptr->element;

 free (ptr);

 buckets[i].size = 0;

 continue;

 }

 /* insertion sort where elements are drawn from linked list and

 * inserted into array. Linked lists are released. */

 low = idx;

 ar[idx++] = ptr->element;

 tmp = ptr;

 ptr = ptr->next;

 free (tmp);

SIGN IN TRY NOW

https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

void sortPointers (void **ar, int n,

 int(*cmp)(const void *,const void *)) {

 int i;

 num = numBuckets(n);

 buckets = (BUCKET *) calloc (num, sizeof (BUCKET));

 for (i = 0; i < n; i++) {

 int k = hash(ar[i]);

 /** Insert each element and increment counts */

 ENTRY *e = (ENTRY *) calloc (1, sizeof (ENTRY));

 e->element = ar[i];

 if (buckets[k].head == NULL) {

 buckets[k].head = e;

 } else {

 e->next = buckets[k].head;

 buckets[k].head = e;

 }

 buckets[k].size++;

 }

 /* now read out and overwrite ar. */

 extract (buckets, cmp, ar, n);

 free (buckets);

}

For numbers drawn uniformly from [0,1), unif Example 4-12 contains sample imple-
mentations of the hash and numBuckets functions to use.

Example 4-12. hash and numBuckets functions for [0,1) range

static int num;

/** Number of buckets to use is the same as the number of elements. */

int numBuckets(int numElements) {

SIGN IN TRY NOW

https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

num = numElements;

 return numElements;

}

/**

 * Hash function to identify bucket number from element. Customized

 * to properly encode elements in order within the buckets. Range of

 * numbers is from [0,1), so we subdivide into buckets of size 1/num;

 */

int hash(double *d) {

 int bucket = num*(*d);

 return bucket;

}

The buckets could also be stored using fixed arrays that are reallocated when
the buckets become full, but the linked list implementation is about 30-40%
faster.

Analysis

In the sortPointers function of Example 4-11, each element in the input is in-
serted into its associated bucket based upon the provided hash function; this
takes linear, or O(n), time. The elements in the buckets are not sorted, but be-
cause of the careful design of the hash function, we know that all elements in
bucket bi are smaller than the elements in bucket bj, if i<j.

As the values are extracted from the buckets and written back into the input
array, Insertion Sort is used when a bucket contains more than a single element.
For Bucket Sort to exhibit O(n) behavior, we must guarantee that the total time
to sort each of these buckets is also O(n). Let's define ni to be the number of

elements partitioned in bucket bi. We can treat ni as a random variable (using

statistical theory). Now consider the expected value E[ni] of ni. Each element in

the input set has probability p=1/n of being inserted into a given bucket because
each of these elements is uniformly drawn from the range [0,1). Therefore,unif

SIGN IN TRY NOW

https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

E[ni]=n*p=n*(1/n)=1, while the variance Var[ni]=n*p*(1-p)=(1-1/n). It is important

to consider the variance since some buckets will be empty, and others may have
more than one element; we need to be sure that no bucket has too many
elements. Once again, we resort to statistical theory, which provides the follow-
ing equation for random variables:

E[ni2] = Var[ni] + E2[ni]

From this equation we can compute the expected value of ni
2. This is critical be-

cause it is the factor that determines the cost of Insertion Sort, which runs in a
worst case of O(n2). We compute E[ni

2]=(1-1/n)+1=(2-1/n), which shows that

E[ni
2] is a constant. This means that when we sum up the costs of executing In-

sertion Sort on all n buckets, the expected performance cost remains O(n).

Variations

In Hash Sort, each bucket reflects a unique hash code value returned by the
hash function used on each element. Instead of creating n buckets, Hash Sort
creates a suitably large number of buckets k into which the elements are
partitioned; as k grows in size, the performance of Hash Sort improves. The key
to Hash Sort is a hashing function hash(e) that returns an integer for each ele-
ment e such that hash(ai)≤hash(aj) if ai≤aj.

The hash function hash(e) defined in Example 4-13 operates over elements
containing just lowercase letters. It converts the first three characters of the
string into a value (in base 26), and so for the string "abcdefgh," its first three
characters ("abc") are extracted and converted into the value
0*676+1*26+2=28. This string is thus inserted into the bucket labeled 28.

Example 4-13. hash and numBuckets functions for Hash Sort

/** Number of buckets to use. */

int numBuckets(int numElements) {

SIGN IN TRY NOW

https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

 return 26*26*26;

}

/**

 * Hash function to identify bucket number from element. Customized

 * to properly encode elements in order within the buckets.

 */

int hash(void *elt) {

 return (((char*)elt)[0] - 'a')*676 +

 (((char*)elt)[1] - 'a')*26 +

 (((char*)elt)[2] - 'a');

}

The performance of Hash Sort for various bucket sizes and input sets is shown
in Table 4-5. We show comparable sorting times for Quicksort using the
median-of-three approach for selecting the pivotIndex.

SIGN IN TRY NOW

https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

Table 4-5. Sample performance for Hash Sort with different numbers of
buckets, compared with Quicksort (in seconds)

n 26 buckets 676 buckets 17,576 buckets Quicksort

16 0.000007 0.000026 0.000353 0.000006

32 0.00001 0.000037 0.000401 0.000007

64 0.000015 0.000031 0.000466 0.000016

128 0.000025 0.000042 0.000613 0.000031

256 0.000051 0.000062 0.00062 0.000045

512 0.000108 0.000093 0.000683 0.000098

1,024 0.000337 0.000176 0.0011 0.000282

2,048 0.0011 0.000456 0.0013 0.000637

4,096 0.0038 0.0012 0.0018 0.0017

SIGN IN TRY NOW

https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

n 26 buckets 676 buckets 17,576 buckets Quicksort

8,192 0.0116 0.0027 0.0033 0.0037

16,384 0.048 0.0077 0.0069 0.009

32,768 0.2004 0.0224 0.0162 0.0207

65,536 0.8783 0.0682 0.0351 0.0525

131,072 2.5426 0.1136 0.0515 0.1151

Note that with 17,576 buckets, Hash Sort outperforms Quicksort for n>8,192
items (and this trend continues with increasing n). However, with only 676
buckets, once n>32,768 (for an average of 48 elements per bucket), Hash Sort
begins its inevitable slowdown with the accumulated cost of executing Inser-
tion Sort on increasingly larger sets. Indeed, with only 26 buckets, once n>256,
Hash Sort begins to quadruple its performance as the problem size doubles,
showing how too few buckets leads to O(n2) performance.

Get Algorithms in a Nutshell now with O’Reilly online learning.

SIGN IN TRY NOW

https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

ABOUT O’REILLY

Teach/write/train

Careers

Community partners

Affiliate program

Diversity

SUPPORT

Contact us

Newsletters

Privacy policy

DOWNLOAD THE O’REILLY APP

Take O’Reilly online learning with you and learn anywhere, anytime on your phone and tablet.

Get unlimited access to books, videos, and live training.

Sync all your devices and never lose your place.

Learn even when there’s no signal with offline access.

DO NOT SELL MY PERSONAL INFORMATION
Exercise your consumer rights by contacting us at donotsell@oreilly.com.

O’Reilly members experience live online training, plus books,
videos, and digital content from 200+ publishers.

START YOUR FREE TRIAL

SIGN IN TRY NOW

https://www.oreilly.com/about/
https://www.oreilly.com/work-with-us.html
https://www.oreilly.com/careers/
https://www.oreilly.com/partner/signup.csp
https://www.oreilly.com/affiliates/
https://www.oreilly.com/diversity/
https://www.oreilly.com/online-learning/support/
https://www.oreilly.com/about/contact.html
https://www.oreilly.com/emails/newsletters/
https://www.oreilly.com/privacy.html
https://twitter.com/oreillymedia
https://www.facebook.com/OReilly/
https://www.linkedin.com/company/oreilly-media
https://www.youtube.com/user/OreillyMedia
https://itunes.apple.com/us/app/safari-to-go/id881697395
https://play.google.com/store/apps/details?id=com.safariflow.queue
mailto:donotsell@oreilly.com?subject=Do%20Not%20Sell%20My%20Personal%20Information%20Request
https://www.oreilly.com/
https://learning.oreilly.com/p/register/
https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

© 2021, O’Reilly Media, Inc. All trademarks and registered trademarks appearing on oreilly.com are the property of their respective
owners.

Terms of service • Privacy policy • Editorial independence
SIGN IN TRY NOW

https://www.oreilly.com/terms/
https://www.oreilly.com/privacy.html
https://www.oreilly.com/about/editorial_independence.html
https://www.oreilly.com/
https://learning.oreilly.com/accounts/login/?next=/library/view/algorithms-in-a/9780596516246/ch04s08.html
https://learning.oreilly.com/p/register/

