Patience Sorting (DP Optimisation)

$8-10$ minutes

Patience Sorting is a powerful technique that can transfrom your solutions to Longest Increasing Subsequence type Dynamic Programming problems from 0 ($n^{\wedge} 2$) to ($n \operatorname{logn}$) complexity. It will allow you to solve hard DP problems.

The agenda of this post

- Introduce you to the Patience Sorting algorithm through a card game.
- Learn how to apply it to DP problems.
- Show the application of this algorithm through a number of examples.

Game of Solitaire

The goal of this game is to form as few piles as possible following the below rules,

1. You cannot place a higher value card on top of a lower value card,
2. You will place the card on the leftmost pile that fits.
3. If you cannot find a pile that can accomodate your card, then you can start a new pile.

In the above example diagram we have cards valued $[3,7,5,6,4,2,10,9,8]$,

Steps

- The first card 3 begins a new pile, lets call it Pile-1.
- The next card 7 is greater than the topmost card of the Pile-1, so 7 begins a new pile. Lets call it Pile-2.
- The next card 5 , can be placed on top of the Pile-2 as $5<7$.
- The next card 6, cannot be placed on top any of the previous piles, so it begins a new pile Pile-3.
- The next card 4 , can be placed in top of Pile-2 as $4<5$.
- The next card 2 can be placed on top of Pile-1 as $2<3$. (Note that 2 could have been placed on top of Pile-1, Pile-2 or Pile-3, but we should choose the left most pile that fits. Which is Pile-1 in this case)
- The next card 10 forms a new pile Pile-4.
- The next card 9 can be placed on top of Pile-4.
- The next card 8 can be placed on top of Pile-4.

The total number of piles gives the length of the longest increasing subsequence.

In this case, the length of the longest increasing subsequence is 4 .

You can recover the longest increasing subsequence if you maintain back pointers

In this case, card 8 has a pointer to the top of previous pile, card 6. Card 6 has a pointer to the top of previous pile, card 5 (The top of Pile-2 when card 6 was inserted). Card 5 has a poinnter to the top of previous pile, card 3 (The top of Pile-1 when card 5was inserted)

So $[3,5,6,8]$ is one of the longest increasing subsequences.

How to Implement

This is a greedy algorithm and uses binary search. You will use binary search to find the left-most pile that can accomodate a card.
int lengthOfLIS(vector<int>\& nums) \{
int $n=$ nums.size();
// seq stores the piles
vector<int> seq;
// create the first pile
seq.push_back(nums[0]);
// Go through each card
for(int j=1; j<n; j++)\{
// Find the left-most pile that can accomodate this
card

$$
\begin{aligned}
& \text { int idx }=\text { binSearch(seq, nums[j]); } \\
& \text { if(idx }=-1)\{
\end{aligned}
$$

// If no such pile exists, then create a new
pile
seq.push_back(nums[j]);
\}else\{
// If a pile is found that can accomodate this
card,

$$
\begin{aligned}
& \text { // then place this card on top of that pile } \\
& \text { \} seq[idx] }=\text { nums }[j] \text {; }
\end{aligned}
$$

// The number of piles is the length of the longest increasing
subsequence
return seq.size();
\}
// Binary search to find the left-most pile that can accomodate a card // If a pile is found, then it returns the index to that pile // If a pile is not found, then return -1
int binSearch(vector<int> \&seq, int i)\{

```
int l=0, h = seq.size()-1, m;
int res = -1;
while(l<=h){
    m = l+(h-l)/2;
    if(seq[m] >= i){
        res = m;
        h = m-1;
        }else{
            l = m+1;
    }
}
return res;
```


LIS steps

- Create a container to store the piles.
- Create the first pile.
- Go through each card.
- Find the left-most pile that can accomodate this card.
- If no such pile exists, then create a new pile.
- If a pile is found that can accomodate this card, then place this card on top of that pile.
- The number of piles is the length of the longest increasing subsequence.

Binary Search

- Binary search to find the left-most pile that can accomodate a card.
- If a pile is found, then it returns the index to that pile.
- If a pile is not found, then return -1 .

1671. Minimum Number of Removals to Make Mountain Array

https://leetcode.com/problems/minimum-number-of-removals-to-make-mountain-array/

Hard Problem

```
class Solution {
public:
    int minimumMountainRemovals(vector<int>& nums) {
    int n = nums.size();
                            // Keeps track of the LIS for each element in nums
vector<int> is(n);
    // Stores the piles
    vector<int> cont;
    // Keeps track of the Longest Decreasing Subsequence from each
element in nums
    vector<int> ds(n);
    // Calculate the increasing sequence
    // Create the first pile
    cont.push_back(nums[0]);
    // The length of LIS for first element is 1
    is[0] = 1;
    // Go through each card
    for(int i=1; i<n; i++){
                            // Find the leftmost pile that can accomodate this card
        auto it = lower_bound(cont.begin(), cont.end(), nums[i]);
        if(it == cont.end()){
            // If such a pile does not exist
                                    // then create a new pile
            cont.push_back(nums[i]);
            is[i] = cont.size()-1;
        }else{
            // If such a pile exists
            // Then put is card on top of that pile
            *it = nums[i];
            is[i] = distance(cont.begin(), it);
    }
}
```

```
// Calculate the decreasing sequence
    // The same steps as above but for the decreasing sequence
cont.clear();
cont.push_back(nums[n-1]);
ds[n-1] = 1;
for(int i=n-2; i>=0; i--){
    auto it = lower_bound(cont.begin(), cont.end(), nums[i]);
    if(it == cont.end()){
            cont.push_back(nums[i]);
            ds[i] = cont.size()-1;
    }else{
            *it = nums[i];
            ds[i] = distance(cont.begin(), it);
    }
}
    // Find the longest mountain array
int ans = INT_MAX;
for(int i=1; i<n-1; i++){
    if(is[i] && ds[i])
        ans = min(ans, n-(is[i]+ds[i]+1));
}
return ans;
    }
};
```

Read though the comments in the code for understanding the implementation details

Russian Doll Envelopes

https://leetcode.com/problems/russian-doll-envelopes/

Hard Problem

```
class Solution {
```

public:
int maxEnvelopes(vector<vector<int>>\& envelopes) \{
// container to store the piles
vector<int> seq;
// sort the envelopes
// If two envelopes have the same width, then the envelope with the largest height is placed before
// This is because we will apply the patience sort algorithm of the heights
sort(envelopes.begin(), envelopes.end(), [](vector<int> a, vector<int> b) $\{$

$$
\text { return }((\mathrm{a}[0]<\mathrm{b}[0]) \text { \| (a[0] == b[0] \&\& } \mathrm{a}[1]>\mathrm{b}[1])) \text {; }
$$

\});
// For each envelope
for(vector<int> e: envelopes)\{
// Find the left most pile that can accomodate the envelope int idx = binSearch(seq, e[1]);
if(idx == -1)\{
// If no such pile is found, then create a new pile

```
            seq.push_back(e[1]);
        }else{
                                    // If such a pile is found then
                                    // Make this envelope the top of the pile
            seq[idx] = e[1];
        }
}
```

// The number of piles is the length of the LIS
return seq.size();
\}
// Binary search to find the left most pile that can accomodate a envelope
// If such a pile exists, then return the index of the pile // Else return -1

```
    int binSearch(vector<int> &seq, int b){
    int low = 0, high = seq.size()-1, mid, res = -1;
        while(low <= high){
        mid = low + (high-low)/2;
        if(seq[mid] >= b){
            res = mid;
            high = mid-1;
        }else{
            low = mid+1;
        }
        }
        return res;
        }
};
```

Read though the comments in the code for understanding the implementation details If you liked the post, please don't forget to upvote.

