
leetcode.com /discuss/general-discussion/1129459/patience-sorting-dp-optimisation

Patience Sorting (DP Optimisation)
8-10 minutes

Patience Sorting is a powerful technique that can transfrom your solutions to Longest
Increasing Subsequence type Dynamic Programming problems from O(n^2) toO(nlogn)
complexity. It will allow you to solve hard DP problems.

The agenda of this post

Introduce you to the Patience Sorting algorithm through a card game.
Learn how to apply it to DP problems.
Show the application of this algorithm through a number of examples.

Game of Solitaire

The goal of this game is to form as few piles as possible following the below rules,

1. You cannot place a higher value card on top of a lower value card,
2. You will place the card on the leftmost pile that fits.
3. If you cannot find a pile that can accomodate your card, then you can start a new pile.

https://leetcode.com/discuss/general-discussion/1129459/patience-sorting-dp-optimisation

In the above example diagram we have cards valued [3, 7, 5, 6, 4, 2, 10, 9, 8],
Steps

The first card 3 begins a new pile, lets call it Pile-1.
The next card 7 is greater than the topmost card of the Pile-1, so 7 begins a new pile.
Lets call it Pile-2.
The next card 5, can be placed on top of the Pile-2 as 5<7.
The next card 6, cannot be placed on top any of the previous piles, so it begins a new
pile Pile-3.
The next card 4, can be placed in top of Pile-2 as 4<5.
The next card 2 can be placed on top of Pile-1 as 2<3. (Note that 2 could have been
placed on top of Pile-1, Pile-2 or Pile-3, but we should choose the left most pile that
fits. Which is Pile-1 in this case)
The next card 10 forms a new pile Pile-4.
The next card 9 can be placed on top of Pile-4.
The next card 8 can be placed on top of Pile-4.

The total number of piles gives the length of the longest increasing subsequence.

In this case, the length of the longest increasing subsequence is 4.

You can recover the longest increasing subsequence if you maintain back pointers

In this case, card 8 has a pointer to the top of previous pile, card 6. Card 6 has a pointer to
the top of previous pile, card 5 (The top of Pile-2 when card 6 was inserted). Card 5 has a
poinnter to the top of previous pile, card 3 (The top of Pile-1 when card 5was inserted)

So [3, 5, 6, 8] is one of the longest increasing subsequences.

How to Implement

This is a greedy algorithm and uses binary search. You will use binary search to find
the left-most pile that can accomodate a card.

class Solution {

public:

 int lengthOfLIS(vector<int>& nums) {

 int n = nums.size();

// seq stores the piles

 vector<int> seq;

// create the first pile

 seq.push_back(nums[0]);

// Go through each card

 for(int j=1; j<n; j++){

// Find the left-most pile that can accomodate this

card

 int idx = binSearch(seq, nums[j]);

 if(idx == -1){

// If no such pile exists, then create a new

pile

 seq.push_back(nums[j]);

 }else{

// If a pile is found that can accomodate this

card,

// then place this card on top of that pile

 seq[idx] = nums[j];

 }

 }

// The number of piles is the length of the longest increasing

subsequence

 return seq.size();

 }

// Binary search to find the left-most pile that can accomodate a card

// If a pile is found, then it returns the index to that pile

// If a pile is not found, then return -1

 int binSearch(vector<int> &seq, int i){

 int l=0, h = seq.size()-1, m;

 int res = -1;

 while(l<=h){

 m = l+(h-l)/2;

 if(seq[m] >= i){

 res = m;

 h = m-1;

 }else{

 l = m+1;

 }

 }

 return res;

 }

};

LIS steps

Create a container to store the piles.
Create the first pile.
Go through each card.
Find the left-most pile that can accomodate this card.
If no such pile exists, then create a new pile.
If a pile is found that can accomodate this card, then place this card on top of that pile.
The number of piles is the length of the longest increasing subsequence.

Binary Search

Binary search to find the left-most pile that can accomodate a card.
If a pile is found, then it returns the index to that pile.
If a pile is not found, then return -1.

1671. Minimum Number of Removals to Make Mountain Array
https://leetcode.com/problems/minimum-number-of-removals-to-make-mountain-array/
Hard Problem

https://leetcode.com/problems/minimum-number-of-removals-to-make-mountain-array/

class Solution {

public:

 int minimumMountainRemovals(vector<int>& nums) {

 int n = nums.size();

// Keeps track of the LIS for each element in nums

 vector<int> is(n);

// Stores the piles

 vector<int> cont;

// Keeps track of the Longest Decreasing Subsequence from each

element in nums

 vector<int> ds(n);

 // Calculate the increasing sequence

// Create the first pile

 cont.push_back(nums[0]);

// The length of LIS for first element is 1

 is[0] = 1;

// Go through each card

 for(int i=1; i<n; i++){

// Find the leftmost pile that can accomodate this card

 auto it = lower_bound(cont.begin(), cont.end(), nums[i]);

 if(it == cont.end()){

// If such a pile does not exist

// then create a new pile

 cont.push_back(nums[i]);

 is[i] = cont.size()-1;

 }else{

 // If such a pile exists

// Then put is card on top of that pile

 *it = nums[i];

 is[i] = distance(cont.begin(), it);

 }

 }

 // Calculate the decreasing sequence

// The same steps as above but for the decreasing sequence

 cont.clear();

 cont.push_back(nums[n-1]);

 ds[n-1] = 1;

 for(int i=n-2; i>=0; i--){

 auto it = lower_bound(cont.begin(), cont.end(), nums[i]);

 if(it == cont.end()){

 cont.push_back(nums[i]);

 ds[i] = cont.size()-1;

 }else{

 *it = nums[i];

 ds[i] = distance(cont.begin(), it);

 }

 }

// Find the longest mountain array

 int ans = INT_MAX;

 for(int i=1; i<n-1; i++){

 if(is[i] && ds[i])

 ans = min(ans, n-(is[i]+ds[i]+1));

 }

 return ans;

 }

};

Read though the comments in the code for understanding the implementation details

Russian Doll Envelopes
https://leetcode.com/problems/russian-doll-envelopes/
Hard Problem

class Solution {

public:

 int maxEnvelopes(vector<vector<int>>& envelopes) {

https://leetcode.com/problems/russian-doll-envelopes/

// container to store the piles

 vector<int> seq;

// sort the envelopes

// If two envelopes have the same width, then the envelope with

the largest height is placed before

// This is because we will apply the patience sort algorithm of

the heights

 sort(envelopes.begin(), envelopes.end(), [](vector<int> a, vector<int>

b){

 return ((a[0] < b[0]) || (a[0] == b[0] && a[1] > b[1]));

 });

// For each envelope

 for(vector<int> e: envelopes){

 // Find the left most pile that can accomodate the envelope

 int idx = binSearch(seq, e[1]);

 if(idx == -1){

// If no such pile is found, then create a new

pile

 seq.push_back(e[1]);

 }else{

// If such a pile is found then

// Make this envelope the top of the pile

 seq[idx] = e[1];

 }

 }

// The number of piles is the length of the LIS

 return seq.size();

 }

// Binary search to find the left most pile that can accomodate a

envelope

// If such a pile exists, then return the index of the pile

// Else return -1

 int binSearch(vector<int> &seq, int b){

 int low = 0, high = seq.size()-1, mid, res = -1;

 while(low <= high){

 mid = low + (high-low)/2;

 if(seq[mid] >= b){

 res = mid;

 high = mid-1;

 }else{

 low = mid+1;

 }

 }

 return res;

 }

};

Read though the comments in the code for understanding the implementation details

If you liked the post, please don't forget to upvote.

