Median Stats

(= —= wun
=W~ waelK

® “find k-th i e dien

@ befter approach, based on QuickSort

® rz%\“dtl QC(U?L Ab @ (=t sk = left =1
/0,€ Jdi\l K="1F Hosk = Lugiet €55

- \q = Parfition(Abe) k e e

- s E 0 'tz\l whya thek

- if(q==k) re’ruan Alq]

- if(g>k) Medi - A,b,g-1k) C”‘wk /mm
— else Megian(A,q+l,e,gek)
ke~
@ Not like Quiksort, Mecgian recursion goes only on one
side, depending on the pivot

@® why the second Median call has Kpnewy=q-Keld) ?

Median Stats

® Running Time of Median \,\w(i,z

® the recursive calls makes T(n) =n +/max(T(q), T(n-q))
— "max” : assuming the recursion has to call the Tonger side

— just like QuickSort, average case is when q is "balanced”, i.e. cn<q<
il-c)n for some constant O<c<l

— [balanced case: T(n) = n + T(cn); Master Theorem (%ives linear time ©

(n) a)= N\ %T(qfi t\))
book);

| . (090
— expected (avera?e) case can be proven linear time (se

worst case O(n? . | :
RN Tl nA) =) (u”
@® worst case can run in linear time with a rather

complicated choice of the pivot value before each
partition call (see book)

2V
Vs e
s b 7’\’\ w(adtea(QM),.,\

8ok eacia oyOIp (I“chw) st e \fw\
@ ULS‘V@\AQ(% Mclva\JOf (- w\ ea{c(/\ @WQ;)S_UU\QO(QNS
© —\\M V\/&A\ < T \/uo_&/v\/vg) ® (\Cgu\ﬁv mlme(/

Q@(} L\Ip u\w\w\‘m@ Mg —> Q.T — g?—(\f\(ogm
Sorting : tree of comparisons

| A |
@® tree of comparisons : essentially Wha the 7"

. ost
algorithm does wi& Q\P&Sﬂﬂ = @qﬁk Z Cﬁg(&«t)

— each program execution follows‘a certain |

A

exec
— red nodes are terminal / output

— the algorithm has fo have n! output nodes.. why ?

— if tree is balanced, longest

Sorting : tree of comparisons

@® tree of comparisons : essentially what the
algorithm does

— each program execution follows a certain
— red nodes are terminal / output
— the algorithm has fo have n! output nodes.. why ?

— if tree is balanced, longest

(CW Yawe | %Ug
l

— UNGE
e d)U\\«&W’F) discele.

— C/(\/\ ot F
MM < =(taconalle X
™ .
\ =

Linear-time Sorting: Counting Sort

@® Counting Sort (A[]) : count values,
® STEP 1: build array C that counts A values

- 1nit C[]=0 ;
— run 1ndex 1 through A
- value =_A[1]

l - C [Value] +4; //counts each value occurrence

@ STEP 2: assign values to counted positions
P 1init position=0;
for value=0:RANGE
for 1=1:Cl[value]
D) position = position+l;

p OUTPUT [position] =value;

Counting Sort

@® n elements with values in k-range of {vi,vz,..vk}

- for examBIe: 100,000 people sorted by age: n=100,000; k =
i1,2,3,..170} since 170 is maximum reasonable age In years.

@® Linear Time O(n+k)
Beats the bound? YES, linear O(n), not ©(n*logn), if k is a constant
Definitely appropriate when Kk is constant or increases very slowly

Not good when k can be large. Example: sort pictures by their size;

n=10000 (typical picture collection), size range k can be any number
from 200Bytes to 40MBytes.

@® Stable (equal input elements preserve original order)

Radix Sort

@ Counting sort on each digit

Radix Sort

@ Counting sort on each digit
329
457
657

839
436
720
355

Radix Sort

@ Counting sort on each digit

329
457
657

839
436
720
355

720
355
4 3|6
4 5[7
657
329
839

Radix Sort

@ Counting sort on each digit
329 | 720 | 720

457 E@_@\ 312/9

657 436
839 » 8 3|9

436 55
720 5|/
355 5|7

Radix Sort

@ Counting sort on each digit
329 | 720 720
457 | 355 9
657 | 436
839 | 457
.
9
9

436 65
720 32
355 83

3
4
8..
355
i
6

Still sorted (due to stability) if the
current sort column does not

Radix Sort

@® Counting sort on each digi

329 | 720 720
457 | 35 9
657 | 43
839 | 45
436 | 65
720 | 32
355 | 83

Still sorted (due to stability) if the
current sort column does not

Radix Sort Analysis

o\\\k@i\u W\(%S(Hu\ ?\FOC = @O'J“h@ %D(%‘? |
Aiscde (ownsk (gu Loﬂ K=lo &£ @(MH—(L)
o okl ru hoe \Adnits % %("\HQ)
Ly el s2bis /(022 .
® critical that the digif-sorting procedure is stable

— (329, 355) remain properly sorted when the third digit is used

@® counting sort fits the bill: stable, also linear when
the range is fixed, like base 10 digits {0-9}

@® each digit-sort is linear. But how many digits ?

— -|-u-|i-CI|(informal answer: log(n) digits with fixed range, so O(n*logn)
otal.

Radix Sort Analysis

@® each digit-sort is linear. We can represent items with
few/many bits by choosing representation base

® b bits per item, n items. (b,n fixed).

— for example computers typically represent integers on b=32 bits and
long integers on b=64 bifs

— limit to 2° items total =7 =)L
(= =D =4

® use|r bits per digit/-> number of digits d = b/r. (rd
up to us, variables

— each digit sort O(n+2Y), d=b/r digits, so total O(b/r*(n+2"))
— choosing(r=log(n), total is O(b/log(n)*(n+n)) = ©(bn/log(n))

\—

Sorting : stable; in place

@ stable: preserve relative order of elements with
same value

® in place: dont use significant additional space
(arrays)

time in-place | stable

Bubble

Insertion

Selection

QuickSort

MergeSort

Sorting : stable; in place

@ stable: preserve relative order of elements with
same value

® in place: dont use significant additional space
(arrays)

time in-place | stable

Bubble

Insertion

Selection

QuickSort

MergeSort

Sorting : stable; in place

@ stable: preserve relative order of elements with
same value

® in place: dont use significant additional space
(arrays)

time in-place | stable

Bubble

Insertion

Selection

QuickSort

MergeSort

Lo 20 » Ao {0 bo Fo Ko B 1o
LO(R Q_O\Cll\ \I\GDJAQ E\VLO osmc& L*CL&

O +Hc
% fnc eadn Gudect ﬁé{j%ucudj\g) MZ sz(%\\?(@m u)
st el e otpudthen &

oS B aocleg (e Gy k.

K Qﬂw&a

[Z:—(\ W QW ié’lﬁ-()\ C\\ a,. . — QAn

‘4 WC[MJJ’S WA an GSG t
N By - e —Ge I e Suckels C{V\ (l=i
@Q@V b 4add 1 AERtn . tue =N
f(l\:\(g\ew (=M ak/(ej Mﬁ/\l«\u Sort(Uocled S)

\
L Targ e () =B+ 2(0(%)
| = a¢ e
&% \(QM — G{V\)‘E‘!E E:/(B(mt)} —
S | n o v
M7 J et ZeGe])
| RSl
oy)
= (n)\y =22 —=

L —7 Q/\AC.QQ‘IL d

(\}moﬁ(im%\@‘\ﬁ %L& % \@ \,@T
=t obloes ca et | = Z <

