Median Stats

- ranked -N-> wax "find k-th element" Kz 16 > median better approach, based on QuickSort Medican (A,b,e,k) // find k-th greatest in array A, sort between indices b=1 and e=n K=7 task => left K=7 K=7 task => left K=7 K=7 task => left K=7q = Partition(A,b,e) / returns pivot index, q, b = q <= e// Partition at rearranges A so that if i < q then A[i] < = A[q]and $g_{ij}>q$ then A[i]>=A[q]if(q==k) return A[q] //found the k-th greatest - if(q>k) Median(A,b,q-1,k) Spot /rank - else Median (A,q+1,e,e)
- Not like Quiksort, Median recursion goes only on one side, depending on the pivot
- why the second Median call has $k_{(new)}=q-k_{(old)}$?

Median Stats

- Running Time of Median
- the recursive calls makes $T(n) = n + \max(T(q), T(n-q))$
 - "max": assuming the recursion has to call the longer side
 - just like QuickSort, average case is when q is "balanced", i.e. cn<q< (1-c)n for some constant 0<c<1
 - balanced case: T(n) = n + T(cn); Master Theorem gives linear time Θ expected (average) case can be proven linear time (see book); worst case $\Theta(n^2)$
 - T(u)= n+ T(n-1) => &(u2
- worst case can run in linear time with a rather complicated choice of the pivot value before each partition call (see book)

Elel + 15x for linear line 5 , groups are not worked across esset each group (Telan) const true Tone ownsider Woundown - of 5 in each group => = medans · Filmd median (= medians) & "center value" e la cente relue as phot

Run Time (Qsel+ Likear Fix) $T(v) = \frac{\partial(v)}{\partial v} + \frac{\partial(v)}{\partial v}$ $= \bigoplus(n) + T(N/s) + T(Tu) = 1000$ exer: paladocodi
- solve/orque removeres
- trick alsa applies to QSort?

Soot by comparisons Als => K.T = 52 (n/gn

Sorting: tree of comparisons

- tree of comparisons: essentially what the - each program execution follows a certain path

 - red nodes are terminal / output
 - the algorithm has to have n! output nodes... why?
 - if tree is balanced, longest path = tree depth = n log(n)

Sorting: tree of comparisons

- tree of comparisons: essentially what the algorithm does
 - each program execution follows a certain path
 - red nodes are terminal / output
 - the algorithm has to have n! output nodes... why?
 - if tree is balanced, longest path = tree depth = n log(n)

Inear time! BUT

- RANGE Fixed, constant, discrete

- constant k = reasonable in practice

MK N IN prechie

Linear-time Sorting: Counting Sort

- Counting Sort (A[]): count values, NO comparisons
- STEP 1: build array C that counts A values

```
- init C[]=0 ;
- run index i through A
- value = A[i]
- C[value] ++; //counts each value occurrence
```

STEP 2: assign values to counted positions

```
init position=0;
for value=0:RANGE
  for i=1:C[value]
  position = position+1;

OUTPUT[position]=value;
```

Counting Sort

- \bullet n elements with values in k-range of $\{v_1,v_2,...v_k\}$
 - for example: 100,000 people sorted by age: n=100,000; $k=\{1,2,3,...170\}$ since 170 is maximum reasonable age in years.
- Linear Time $\Theta(n+k)$
 - Beats the bound? YES, linear $\Theta(n)$, not $\Theta(n^* \log n)$, if k is a constant
 - Definitely appropriate when k is constant or increases very slowly
 - Not good when k can be large. Example: sort pictures by their size; n=10000 (typical picture collection), size range k can be any number from 200Bytes to 40MBytes.
- Stable (equal input elements preserve original order)

Counting sort on each digit

Counting sort on each digit

Counting sort on each digit

329	720
457	355
657	436
839	457
436	657
720	329
355	839

Counting sort on each digit

329	720	720
457	355	329
657	436	436
839	457	839
436	657	355
720	329	457
355	839	4657

Counting sort on each digit

329	720	720
457	355	329
657	436	436
839	457	839
436	657	355
720	329	457
355	839	657

Still sorted (due to stability) if the current sort column does not

Counting sort on each digit

329	720	720	329
457	355	329	355
657	436	436	436
839	457	839	457
436	657	355	657
720	329	457	720
355	839	657	839

Still sorted (due to stability) if the current sort column does not

Radix Sort Analysis

- o hotal run five \tdyits \times \to(n+k)

 Raupe 32545/0-23-1]
- critical that the digit-sorting procedure is stable
 - (329, 355) remain properly sorted when the third digit is used
- counting sort fits the bill: stable, also linear when the range is fixed, like base 10 digits {0-9}
- each digit-sort is linear. But how many digits?
 - quick informal answer: log(n) digits with fixed range, so O(n*logn) total.

Radix Sort Analysis

- each digit-sort is linear. We can represent items with few/many bits by choosing representation base
- b bits per item, n items. (b,n fixed).
 - for example computers typically represent integers on b=32 bits and long integers on b=64 bits
 - limit to 2^b items total (=3 =) hase 8
- use r bits per digit -> number of digits d = b/r. (r,d up to us, variables)
 - each digit sort $\Theta(n+2^n)$, d=b/r digits, so total $\Theta(b/r^*(n+2^n))$
 - choosing $r \approx \log(n)$, total is $\Theta(b/\log(n)^*(n+n)) = \Theta(bn/\log(n))$

Sorting: stable; in place

 stable: preserve relative order of elements with same value

• in place: dont use significant additional space

(arrays)

	time	in-place	stable
Bubble	n ²		
Insertion	n ²		
Selection	n ²	X	?
QuickSort	n*log(n)		?
MergeSort	n*log(n)	X	

Sorting: stable; in place

 stable: preserve relative order of elements with same value

• in place: dont use significant additional space

(arrays)

	time	in-place	stable
Bubble	n ²		
Insertion	n ²		
Selection	n ²	X	?
QuickSort	n*log(n)		?
MergeSort	n*log(n)	X	

Sorting: stable; in place

 stable: preserve relative order of elements with same value

• in place: dont use significant additional space

(arrays)

	time	in-place	stable
Bubble	n ²		
Insertion	n ²		
Selection	n ²	X	?
QuickSort	n*log(n)		?
MergeSort	n*log(n)	X	

Bucket Sort & Range +Split 20 30 60 1) a place each value into correct buchet. To for each bucket soffsuchet?)

Cert values in suchet, output then 2 hack ors: BS works Grang K noux K=n

blal apaz-R.T. n élonents & Luckets unform assupt M, M21 - MK = Size of the suckets t[ni]=1 Caller the fad]

Matheting. - the = h

random variables

Muturethy. - the = h

random variables R. Tang ase $T(n) = |\partial(n)| + \sum_{b=1}^{\infty} O(n_b^2)$ $E[T(n)] = \partial(n) + E[Z] o(n_b)] =$ dos thens Hens bouckets = O(n) + \(\subsets = \langle (n) + \subsets = \langle (n) + \subsets = \langle (n) + \langle (n) \rangle (n) \ $\leq \partial(n) + \leq 2 = \partial(n)$

proof i deap R.V. $Xij = \begin{cases} 1 & \text{if } \\ 0 & \text{if } \end{cases}$ ikuri -> sucket j - vot Nj =# offens in