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@ Not like Quiksort, Mecgian recursion goes only on one
side, depending on the pivot

@® why the second Median call has Kpnewy=q-Keld) ?



Median Stats

® Running Time of Median \,\w(i,z

® the recursive calls makes T(n) =n +/max( T(q), T(n-q))
— "max” : assuming the recursion has to call the Tonger side

— just like QuickSort, average case is when q is "balanced”, i.e. cn<q<
il-c)n for some constant O<c<l

— [ balanced case: T(n) = n + T(cn); Master Theorem (%ives linear time ©

(n) a)= N\ %T(qfi t\) )
book);
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— expected (avera?e) case can be proven linear time (se

worst case O(n? . | :
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@® worst case can run in linear time with a rather

complicated choice of the pivot value before each
partition call (see book)
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Sorting : tree of comparisons

| A |
@® tree of comparisons : essentially Wha the 7"

. ost
algorithm does wi& Q\P&Sﬂﬂ = @qﬁk Z Cﬁg(&«t)

— each program execution follows‘a certain |

A

exec
— red nodes are terminal / output

— the algorithm has fo have n! output nodes.. why ?

— if tree is balanced, longest




Sorting : tree of comparisons

@® tree of comparisons : essentially what the
algorithm does

— each program execution follows a certain
— red nodes are terminal / output
— the algorithm has fo have n! output nodes.. why ?
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Linear-time Sorting: Counting Sort

@® Counting Sort (A[]) : count values,
® STEP 1: build array C that counts A values

- 1nit C[]=0 ;
— run 1ndex 1 through A
- value =_A[1]

l - C [Value] +4; //counts each value occurrence

@ STEP 2: assign values to counted positions
P 1init position=0;
for value=0:RANGE
for 1=1:Cl[value]
D) position = position+l;

p OUTPUT [position] =value;




Counting Sort

@® n elements with values in k-range of {vi,vz,..vk}

- for examBIe: 100,000 people sorted by age: n=100,000; k =
i1,2,3,..170} since 170 is maximum reasonable age In years.

@® Linear Time O(n+k)
Beats the bound? YES, linear O(n), not ©(n*logn), if k is a constant
Definitely appropriate when Kk is constant or increases very slowly

Not good when k can be large. Example: sort pictures by their size;

n=10000 (typical picture collection), size range k can be any number
from 200Bytes to 40MBytes.

@® Stable (equal input elements preserve original order)




Radix Sort

@ Counting sort on each digit




Radix Sort

@ Counting sort on each digit
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Radix Sort

@ Counting sort on each digit
329 | 720 | 720
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Radix Sort

@ Counting sort on each digit
329 | 720 720
457 | 355 9
657 | 436
839 | 457
.
9
9

436 65
720 32
355 83

3
4
8..
355
i
6

Still sorted (due to stability) if the
current sort column does not




Radix Sort

@® Counting sort on each digi

329 | 720 720
457 | 35 9
657 | 43
839 | 45
436 | 65
720 | 32
355 | 83

Still sorted (due to stability) if the
current sort column does not




Radix Sort Analysis
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® critical that the digif-sorting procedure is stable

— (329, 355) remain properly sorted when the third digit is used

@® counting sort fits the bill: stable, also linear when
the range is fixed, like base 10 digits {0-9}

@® each digit-sort is linear. But how many digits ?

— -|-u-|i-CI|( informal answer: log(n) digits with fixed range, so O(n*logn)
otal.




Radix Sort Analysis

@® each digit-sort is linear. We can represent items with
few/many bits by choosing representation base

® b bits per item, n items. (b,n fixed).

— for example computers typically represent integers on b=32 bits and
long integers on b=64 bifs

— limit to 2° items total =7 =)L
(= =D =4

® use|r bits per digit/-> number of digits d = b/r. (rd
up to us, variables

— each digit sort O(n+2Y), d=b/r digits, so total O(b/r*(n+2"))
— choosing(r=log(n), total is O(b/log(n)*(n+n)) = ©(bn/log(n))
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Sorting : stable; in place

@ stable: preserve relative order of elements with
same value

® in place: dont use significant additional space
(arrays)

time in-place | stable

Bubble

Insertion

Selection

QuickSort

MergeSort




Sorting : stable; in place

@ stable: preserve relative order of elements with
same value

® in place: dont use significant additional space
(arrays)

time in-place | stable

Bubble

Insertion

Selection

QuickSort

MergeSort




Sorting : stable; in place

@ stable: preserve relative order of elements with
same value

® in place: dont use significant additional space
(arrays)
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