Searching, Sorting part 1

Week 3 Objectives

- Searching: binary search
- Comparison-based search: running time bound
- Sorting: bubble, selection, insertion, merge
- Sorting: Heapsort
- Comparison-based sorting time bound

Brute force/linear search

- Linear search: look through all values of the array until the desired value/event/condition found
- Running Time: linear in the number of elements, call it $O(n)$
- Advantage: in most situations, array does not have to be sorted

Binary Search

- Array must be sorted
- Search array A from index b to index e for value V
- Look for value V in the middle index $m=(b+e) / 2$
- That is compare V with $A[m]$; if equal return index m
- If $V<A[m]$ search the first half of the array
- If $\mathrm{V}>\mathrm{A}[\mathrm{m}]$ search the second half of the array

$A[m]=1<V=3=>$ search moves to the right half

Binary Search Efficiency

- every iteration/recursion
- ends the procedure if value is found
- if not, reduces the problem size (search space) by half
- worst case : value is not found until problem size=1
- how many reductions have been done?
- n/2/2/2/..../2=1. How many 2-s do I need?
- if $k 2-s$, then $n=2^{k}$, so k is about $\log (n)$
- worst running time is $O(\log n)$

Search: tree of comparisons

tree of comparisons : essentially what the algorithm does

Search: tree of comparisons

- tree of comparisons : essentially what the algorithm does
- each program execution follows a certain path

Search: tree of comparisons

- tree of comparisons : essentially what the algorithm does
- each program execution follows a certain path
- red nodes are terminal / output
- the algorithm has to have at least n output nodes... why ?

Search: tree of comparisons

tree
depth=5

- tree of comparisons : essentially what the algorithm does
- each program execution follows a certain path
- red nodes are terminal / output
- the algorithm has to have n output nodes... why?
- if tree is balanced, longest path $=$ tree depth $=\log (n)$

Bubble Sort

- Simple idea: as long as there is an inversion, bubble
- inversion =a pair of indices $i<j$ with $A[i]>A[j]$
- swap $A[i]<->A[j]$
- directly swap (A[i], A[j]);
- code it yourself: aux = A[i]; A[i]=A[j];A[j]=aux;
- how long does it take?
- worst case : how many inversions have to be swapped?
- $O\left(n^{2}\right)$

Insertion Sort

- partial array is sorted

get a new element $V=9$

Insertion Sort

- partial array is sorted

1	5	8	20	49					

get a new element $V=9$

- find correct position with binary search $i=3$

Insertion Sort

- partial array is sorted

1	5	8	20	49					

- get a new element $V=9$
- find correct position with binary search $i=3$
- move elements to make space for the new element

I	5	8		20	49				

Insertion Sort

- partial array is sorted

1	5	8	20	49					

- get a new element $V=9$
- find correct position with binary search $i=3$
- move elements to make space for the new element

1	5	8		20	49				

- insert into the existing array at correct position

I	5	8	9	20	49				

Insertion Sort - variant

- partial array is sorted

I	5	8	20	49					

Insertion Sort - variant

- partial array is sorted

I	5	8	20	49					

Insertion Sort - variant

- partial array is sorted

I	5	8	20	49					

- get a new element $V=9$; put it at the end of the array

I	5	8	20	49	9				

Insertion Sort - variant

- partial array is sorted

I	5	8	20	49					

- get a new element $V=9$; put it at the end of the array

I	5	8	20	49	9				

- Move in $V=9$ from the back until reaches correct position

I	5	8	20	9	49				

Insertion Sort - variant

- partial array is sorted

I	5	8	20	49					

- get a new element $V=9$; put it at the end of the array

I	5	8	20	49	9				

- Move in $V=9$ from the back until reaches correct position

Insertion Sort Running Time

- For one element, there might be required to move $O(n)$ elements (worst case $\Theta(n)$)
- $O(n)$ insertion time
- Repeat insertion for each element of the n elements gives $n^{*} O(n)=O\left(n^{2}\right)$ running time

Selection Sort

- sort array $A[]$ into a new array C[]
- while (condition)
- find minimum element x in A at index i, ignore "used" elements
- write x in next available position in C
- mark index i in A as "used" so it doesn't get picked up again

Insertion/Selection
Running Time $=O\left(n^{2}\right)$

Selection Sort

- sort array $A[]$ into a new array C[]
- while (condition)
- find minimum element x in A at index i , ignore "used" elements
- write x in next available position in C
- mark index i in A as "used" so it doesn't get picked up again
- Running Time $=O\left(n^{2}\right)$

Selection Sort

- sort array $A[]$ into a new array C[]
- while (condition)
- find minimum element x in A at index i, ignore "used" elements
- write x in next available position
- mark index i in A as "used" so it doesn't get picked up again
- Running Time $=O\left(n^{2}\right)$

Selection Sort

- sort array $A[]$ into a new array C[]
- while (condition)
- find minimum element x in A at index i , ignore "used" elements
- write x in next available position
- mark index i in A as "used" so it doesn't get picked up again
- Running Time $=O\left(n^{2}\right)$

Selection Sort

- sort array $A[]$ into a new array C[]
- while (condition)
- find minimum element x in A at index i , ignore "used" elements
- write x in next available position
- mark index i in A as "used" so it doesn't get picked up again
- Running Time $=O\left(n^{2}\right)$

used	A	C
	10	-5
X	-I	-1
X	-5	-I
	12	9
X	-I	
X	9	

Selection Sort

- sort array $A[]$ into a new array C[]
- while (condition)
- find minimum element x in A at index i , ignore "used" elements
- write x in next available position
- mark index i in A as "used" so it doesn't get picked up again
- Running Time $=O\left(n^{2}\right)$

Selection Sort

- sort array $A[]$ into a new array C[]
- while (condition)
- find minimum element x in A at index i, ignore "used" elements
- write x in next available position in C
- mark index i in A as "used" so it doesn't get picked up again
- Running Time $=O\left(\mathrm{n}^{2}\right)$

	A	C
χ	10	-5
χ	-I	-1
X	-5	-1
x	12	9
χ	-I	10
χ	9	12

Merge two sorted arrays

two sorted arrays

- $A[]=\{1,5,10,100,200,300\} ; B[]=\{2,5,6,10\} ;$
- merge them into a new array C
- index i for array $A[], j$ for $B[], k$ for C[]
- init $i=j=k=0$;
- while (what_condition_?)
- if $(A[i]<=B[j])$ \{ $C[k]=A[i], i++\}$ //advance i
- else \{C[k]=B[j], j++\} // advance j in B
- advance k
- end_while

Merge two sorted arrays

- complete pseudocode
- index i for array $A[], j$ for $B[], k$ for $C[]$
- init $i=j=k=0$;
- while (k < size(A)+size(B)+1)
- if(i>size(A) \{C[k]=B[j], j++\}//copy elem from B
- else if (j>size(B) \{C[k]=A[i], i++\}// copy elem from A
- else if (A[i] <= B[j]) \{ C[k]=A[i], i++ \} //advancei
- else \{C[k]=B[j], j++\} //advance
k++ //advance k
- end_while

MergeSort

- divide and conquer strategy
- MergeSort array A
- divide array A into two halves A-left, A-right
- MergeSort A-left (recursive call)
- MergeSort A-right (recursive call)
- Merge (A-left, A-right) into a fully sorted array
- running time : $O($ nlog(n))

MergeSort running time

- $T(n)=2 T(n / 2)+\Theta(n)$
- 2 sub-problems of size $n / 2$ each, and a linear time to combine results
- Master Theorem case $2(a=2, b=2, c=1)$
- Running time $T(n)=\Theta(n \log n)$

Heap DataStructure

(b)

- binary tree
- max-heap property : parent > children

Max Heap property

(a)

(b)

- Assume the Left and Right subtrees satisfy the MaxHeap property, but the top node does not

Float down the node by consecutively swapping it with higher nodes below it.

Building a heap

- Representing the heap as array datastructure
- Parent(i) = i/2
- Left_child(i)=2i
- Right_child(i) $=2 i+1$
- A = input array has the last half elements leafs
- MAX-HEAPIFY the first half of A, reverse order
for i=size(A)/2 downto 1
- MAX-HEAPIFY (A,i)

Heapsort

- Build a Max-Heap from input array
- LOOP
- swap heap_root (max) with a leaf
- output (take out) the max element; reduce size
- MAX-HEAPIFY from the root to maintain the heap property
- END LOOP
- the output is in order

HeapSort running time

- Max-Heapify procedure time is given by recurrence - $T(n) \leq T(2 n / 3)+\Theta(1)$
- master Theorem $T(n)=O(\operatorname{logn})$
- Build Max-Heap : running n times the Max-Heapify procedure gives the running time O (nlogn)
- Extracting values: again run n times the MaxHeapify procedure gives the running time O(nlogn)
- Total O(nlogn)

Sorting : tree of comparisons

tree depth

- tree of comparisons : essentially what the algorithm does
- each program execution follows a certain path
- red nodes are terminal / output
- the algorithm has to have n! output nodes... why?
- if tree is balanced, longest path $=$ tree depth $=n \log (n)$

