

18 Chapter 2 Getting Started

1 2 3 4 5 6
5 2 4 6 1 3(a)

1 2 3 4 5 6
2 5 4 6 1 3(b)

1 2 3 4 5 6
2 4 5 6 1 3(c)

1 2 3 4 5 6
2 4 5 6 1 3(d)

1 2 3 4 5 6
2 4 5 61 3(e)

1 2 3 4 5 6
2 4 5 61 3(f)

Figure 2.2 The operation of INSERTION-SORT on the array A D h5; 2; 4; 6; 1; 3i. Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)–(e) The iterations of the for loop of lines 1–8. In each iteration, the black rectangle holds the
key taken from AŒj !, which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key moves to in line 8. (f) The final sorted array.

INSERTION-SORT.A/

1 for j D 2 to A: length
2 key D AŒj !
3 // Insert AŒj ! into the sorted sequence AŒ1 : : j ! 1!.
4 i D j ! 1
5 while i > 0 and AŒi ! > key
6 AŒi C 1! D AŒi !
7 i D i ! 1
8 AŒi C 1! D key

Loop invariants and the correctness of insertion sort
Figure 2.2 shows how this algorithm works for A D h5; 2; 4; 6; 1; 3i. The in-
dex j indicates the “current card” being inserted into the hand. At the beginning
of each iteration of the for loop, which is indexed by j , the subarray consisting
of elements AŒ1 : : j ! 1! constitutes the currently sorted hand, and the remaining
subarray AŒj C 1 : : n! corresponds to the pile of cards still on the table. In fact,
elements AŒ1 : : j ! 1! are the elements originally in positions 1 through j ! 1, but
now in sorted order. We state these properties of AŒ1 : : j ! 1! formally as a loop
invariant:

At the start of each iteration of the for loop of lines 1–8, the subarray
AŒ1 : : j !1! consists of the elements originally in AŒ1 : : j !1!, but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:

152 Chapter 6 Heapsort

(a)

16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

(b)

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle
at each node in the tree is the value stored at that node. The number above a node is the corresponding
index in the array. Above and below the array are lines showing parent-child relationships; parents
are always to the left of their children. The tree has height three; the node at index 4 (with value 8)
has height one.

PARENT.i/

1 return bi=2c

LEFT.i/

1 return 2i

RIGHT.i/

1 return 2i C 1

On most computers, the LEFT procedure can compute 2i in one instruction by
simply shifting the binary representation of i left by one bit position. Similarly, the
RIGHT procedure can quickly compute 2iC1 by shifting the binary representation
of i left by one bit position and then adding in a 1 as the low-order bit. The
PARENT procedure can compute bi=2c by shifting i right one bit position. Good
implementations of heapsort often implement these procedures as “macros” or “in-
line” procedures.

There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds,
the values in the nodes satisfy a heap property, the specifics of which depend on
the kind of heap. In a max-heap, the max-heap property is that for every node i
other than the root,
AŒPARENT.i/! ! AŒi ! ;

that is, the value of a node is at most the value of its parent. Thus, the largest
element in a max-heap is stored at the root, and the subtree rooted at a node contains

6.1 Heaps 153

values no larger than that contained at the node itself. A min-heap is organized in
the opposite way; the min-heap property is that for every node i other than the
root,
AŒPARENT.i/! ! AŒi ! :

The smallest element in a min-heap is at the root.
For the heapsort algorithm, we use max-heaps. Min-heaps commonly imple-

ment priority queues, which we discuss in Section 6.5. We shall be precise in
specifying whether we need a max-heap or a min-heap for any particular applica-
tion, and when properties apply to either max-heaps or min-heaps, we just use the
term “heap.”

Viewing a heap as a tree, we define the height of a node in a heap to be the
number of edges on the longest simple downward path from the node to a leaf, and
we define the height of the heap to be the height of its root. Since a heap of n ele-
ments is based on a complete binary tree, its height is ‚.lg n/ (see Exercise 6.1-2).
We shall see that the basic operations on heaps run in time at most proportional
to the height of the tree and thus take O.lg n/ time. The remainder of this chapter
presents some basic procedures and shows how they are used in a sorting algorithm
and a priority-queue data structure.
! The MAX-HEAPIFY procedure, which runs in O.lg n/ time, is the key to main-

taining the max-heap property.
! The BUILD-MAX-HEAP procedure, which runs in linear time, produces a max-

heap from an unordered input array.
! The HEAPSORT procedure, which runs in O.n lg n/ time, sorts an array in

place.
! The MAX-HEAP-INSERT, HEAP-EXTRACT-MAX, HEAP-INCREASE-KEY,

and HEAP-MAXIMUM procedures, which run in O.lg n/ time, allow the heap
data structure to implement a priority queue.

Exercises
6.1-1
What are the minimum and maximum numbers of elements in a heap of height h?
6.1-2
Show that an n-element heap has height blg nc.
6.1-3
Show that in any subtree of a max-heap, the root of the subtree contains the largest
value occurring anywhere in that subtree.

154 Chapter 6 Heapsort

6.1-4
Where in a max-heap might the smallest element reside, assuming that all elements
are distinct?
6.1-5
Is an array that is in sorted order a min-heap?
6.1-6
Is the array with values h23; 17; 14; 6; 13; 10; 1; 5; 7; 12i a max-heap?
6.1-7
Show that, with the array representation for storing an n-element heap, the leaves
are the nodes indexed by bn=2c C 1; bn=2c C 2; : : : ; n.

6.2 Maintaining the heap property

In order to maintain the max-heap property, we call the procedure MAX-HEAPIFY.
Its inputs are an array A and an index i into the array. When it is called, MAX-
HEAPIFY assumes that the binary trees rooted at LEFT.i/ and RIGHT.i/ are max-
heaps, but that AŒi ! might be smaller than its children, thus violating the max-heap
property. MAX-HEAPIFY lets the value at AŒi ! “float down” in the max-heap so
that the subtree rooted at index i obeys the max-heap property.

MAX-HEAPIFY.A; i/

1 l D LEFT.i/
2 r D RIGHT.i/
3 if l ! A:heap-size and AŒl ! > AŒi !
4 largest D l
5 else largest D i
6 if r ! A:heap-size and AŒr ! > AŒlargest!
7 largest D r
8 if largest ¤ i
9 exchange AŒi ! with AŒlargest!

10 MAX-HEAPIFY.A; largest/

Figure 6.2 illustrates the action of MAX-HEAPIFY. At each step, the largest of
the elements AŒi !, AŒLEFT.i/!, and AŒRIGHT.i/! is determined, and its index is
stored in largest. If AŒi ! is largest, then the subtree rooted at node i is already a
max-heap and the procedure terminates. Otherwise, one of the two children has the
largest element, and AŒi ! is swapped with AŒlargest!, which causes node i and its

6.2 Maintaining the heap property 155

16

4 10

14 7 9

2 8 1
(a)

16

14 10

4 7 9 3

2 8 1
(b)

16

14 10

8 7 9 3

2 4 1
(c)

3

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

i

i

i

Figure 6.2 The action of MAX-HEAPIFY.A; 2/, where A:heap-size D 10. (a) The initial con-
figuration, with AŒ2! at node i D 2 violating the max-heap property since it is not larger than
both children. The max-heap property is restored for node 2 in (b) by exchanging AŒ2! with AŒ4!,
which destroys the max-heap property for node 4. The recursive call MAX-HEAPIFY.A; 4/ now
has i D 4. After swapping AŒ4! with AŒ9!, as shown in (c), node 4 is fixed up, and the recursive call
MAX-HEAPIFY.A; 9/ yields no further change to the data structure.

children to satisfy the max-heap property. The node indexed by largest, however,
now has the original value AŒi !, and thus the subtree rooted at largest might violate
the max-heap property. Consequently, we call MAX-HEAPIFY recursively on that
subtree.

The running time of MAX-HEAPIFY on a subtree of size n rooted at a given
node i is the ‚.1/ time to fix up the relationships among the elements AŒi !,
AŒLEFT.i/!, and AŒRIGHT.i/!, plus the time to run MAX-HEAPIFY on a subtree
rooted at one of the children of node i (assuming that the recursive call occurs).
The children’s subtrees each have size at most 2n=3—the worst case occurs when
the bottom level of the tree is exactly half full—and therefore we can describe the
running time of MAX-HEAPIFY by the recurrence
T .n/ ! T .2n=3/C‚.1/ :

156 Chapter 6 Heapsort

The solution to this recurrence, by case 2 of the master theorem (Theorem 4.1),
is T .n/ D O.lg n/. Alternatively, we can characterize the running time of MAX-
HEAPIFY on a node of height h as O.h/.

Exercises
6.2-1
Using Figure 6.2 as a model, illustrate the operation of MAX-HEAPIFY.A; 3/ on
the array A D h27; 17; 3; 16; 13; 10; 1; 5; 7; 12; 4; 8; 9; 0i.
6.2-2
Starting with the procedure MAX-HEAPIFY, write pseudocode for the procedure
MIN-HEAPIFY.A; i/, which performs the corresponding manipulation on a min-
heap. How does the running time of MIN-HEAPIFY compare to that of MAX-
HEAPIFY?
6.2-3
What is the effect of calling MAX-HEAPIFY.A; i/ when the element AŒi ! is larger
than its children?
6.2-4
What is the effect of calling MAX-HEAPIFY.A; i/ for i > A:heap-size=2?
6.2-5
The code for MAX-HEAPIFY is quite efficient in terms of constant factors, except
possibly for the recursive call in line 10, which might cause some compilers to
produce inefficient code. Write an efficient MAX-HEAPIFY that uses an iterative
control construct (a loop) instead of recursion.
6.2-6
Show that the worst-case running time of MAX-HEAPIFY on a heap of size n
is ".lg n/. (Hint: For a heap with n nodes, give node values that cause MAX-
HEAPIFY to be called recursively at every node on a simple path from the root
down to a leaf.)

6.3 Building a heap

We can use the procedure MAX-HEAPIFY in a bottom-up manner to convert an
array AŒ1 : : n!, where n D A: length, into a max-heap. By Exercise 6.1-7, the
elements in the subarray AŒ.bn=2cC1/ : : n! are all leaves of the tree, and so each is

6.3 Building a heap 157

a 1-element heap to begin with. The procedure BUILD-MAX-HEAP goes through
the remaining nodes of the tree and runs MAX-HEAPIFY on each one.
BUILD-MAX-HEAP.A/

1 A:heap-size D A: length
2 for i D bA: length=2c downto 1
3 MAX-HEAPIFY.A; i/

Figure 6.3 shows an example of the action of BUILD-MAX-HEAP.
To show why BUILD-MAX-HEAP works correctly, we use the following loop

invariant:
At the start of each iteration of the for loop of lines 2–3, each node i C 1;
i C 2; : : : ; n is the root of a max-heap.

We need to show that this invariant is true prior to the first loop iteration, that each
iteration of the loop maintains the invariant, and that the invariant provides a useful
property to show correctness when the loop terminates.
Initialization: Prior to the first iteration of the loop, i D bn=2c. Each node
bn=2cC 1; bn=2cC 2; : : : ; n is a leaf and is thus the root of a trivial max-heap.

Maintenance: To see that each iteration maintains the loop invariant, observe that
the children of node i are numbered higher than i . By the loop invariant, there-
fore, they are both roots of max-heaps. This is precisely the condition required
for the call MAX-HEAPIFY.A; i/ to make node i a max-heap root. Moreover,
the MAX-HEAPIFY call preserves the property that nodes i C 1; i C 2; : : : ; n
are all roots of max-heaps. Decrementing i in the for loop update reestablishes
the loop invariant for the next iteration.

Termination: At termination, i D 0. By the loop invariant, each node 1; 2; : : : ; n
is the root of a max-heap. In particular, node 1 is.

We can compute a simple upper bound on the running time of BUILD-MAX-
HEAP as follows. Each call to MAX-HEAPIFY costs O.lg n/ time, and BUILD-
MAX-HEAP makes O.n/ such calls. Thus, the running time is O.n lg n/. This
upper bound, though correct, is not asymptotically tight.

We can derive a tighter bound by observing that the time for MAX-HEAPIFY to
run at a node varies with the height of the node in the tree, and the heights of most
nodes are small. Our tighter analysis relies on the properties that an n-element heap
has height blg nc (see Exercise 6.1-2) and at most ˙n=2hC1

! nodes of any height h
(see Exercise 6.3-3).

The time required by MAX-HEAPIFY when called on a node of height h is O.h/,
and so we can express the total cost of BUILD-MAX-HEAP as being bounded from
above by

158 Chapter 6 Heapsort

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

4

1 3

2 9 10

14 8 7
(a)

16

4 1 23 16 9 10 14 8 7

4

1 3

2 9 10

14 8 7
(b)

16

4

1 3

14 9 10

2 8 7
(c)

16

4

1 10

14 9 3

2 8 7
(d)

16

4

16 10

14 9 3

2 8 1
(e)

7

16

14 10

8 9 3

2 4 1
(f)

7

A

i i

ii

i

Figure 6.3 The operation of BUILD-MAX-HEAP, showing the data structure before the call to
MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. (a) A 10-element input array A and the bi-
nary tree it represents. The figure shows that the loop index i refers to node 5 before the call
MAX-HEAPIFY.A; i/. (b) The data structure that results. The loop index i for the next iteration
refers to node 4. (c)–(e) Subsequent iterations of the for loop in BUILD-MAX-HEAP. Observe that
whenever MAX-HEAPIFY is called on a node, the two subtrees of that node are both max-heaps.
(f) The max-heap after BUILD-MAX-HEAP finishes.

6.4 The heapsort algorithm 159

blg ncX

hD0

l n

2hC1

m
O.h/ D O

n

blg ncX

hD0

h

2h

!

:

We evalaute the last summation by substituting x D 1=2 in the formula (A.8),
yielding
1X

hD0

h

2h
D

1=2

.1 ! 1=2/2

D 2 :

Thus, we can bound the running time of BUILD-MAX-HEAP as

O

n

blg ncX

hD0

h

2h

!

D O

n

1X

hD0

h

2h

!

D O.n/ :

Hence, we can build a max-heap from an unordered array in linear time.
We can build a min-heap by the procedure BUILD-MIN-HEAP, which is the

same as BUILD-MAX-HEAP but with the call to MAX-HEAPIFY in line 3 replaced
by a call to MIN-HEAPIFY (see Exercise 6.2-2). BUILD-MIN-HEAP produces a
min-heap from an unordered linear array in linear time.

Exercises
6.3-1
Using Figure 6.3 as a model, illustrate the operation of BUILD-MAX-HEAP on the
array A D h5; 3; 17; 10; 84; 19; 6; 22; 9i.
6.3-2
Why do we want the loop index i in line 2 of BUILD-MAX-HEAP to decrease from
bA: length=2c to 1 rather than increase from 1 to bA: length=2c?
6.3-3
Show that there are at most ˙n=2hC1

! nodes of height h in any n-element heap.

6.4 The heapsort algorithm

The heapsort algorithm starts by using BUILD-MAX-HEAP to build a max-heap
on the input array AŒ1 : : n!, where n D A: length. Since the maximum element
of the array is stored at the root AŒ1!, we can put it into its correct final position

160 Chapter 6 Heapsort

by exchanging it with AŒn!. If we now discard node n from the heap—and we
can do so by simply decrementing A:heap-size—we observe that the children of
the root remain max-heaps, but the new root element might violate the max-heap
property. All we need to do to restore the max-heap property, however, is call
MAX-HEAPIFY.A; 1/, which leaves a max-heap in AŒ1 : : n ! 1!. The heapsort
algorithm then repeats this process for the max-heap of size n ! 1 down to a heap
of size 2. (See Exercise 6.4-2 for a precise loop invariant.)

HEAPSORT.A/

1 BUILD-MAX-HEAP.A/
2 for i D A: length downto 2
3 exchange AŒ1! with AŒi !
4 A:heap-size D A:heap-size ! 1
5 MAX-HEAPIFY.A; 1/

Figure 6.4 shows an example of the operation of HEAPSORT after line 1 has built
the initial max-heap. The figure shows the max-heap before the first iteration of
the for loop of lines 2–5 and after each iteration.

The HEAPSORT procedure takes time O.n lg n/, since the call to BUILD-MAX-
HEAP takes time O.n/ and each of the n ! 1 calls to MAX-HEAPIFY takes
time O.lg n/.

Exercises
6.4-1
Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on the array
A D h5; 13; 2; 25; 7; 17; 20; 8; 4i.
6.4-2
Argue the correctness of HEAPSORT using the following loop invariant:

At the start of each iteration of the for loop of lines 2–5, the subarray
AŒ1 : : i ! is a max-heap containing the i smallest elements of AŒ1 : : n!, and
the subarray AŒi C 1 : : n! contains the n ! i largest elements of AŒ1 : : n!,
sorted.

6.4-3
What is the running time of HEAPSORT on an array A of length n that is already
sorted in increasing order? What about decreasing order?
6.4-4
Show that the worst-case running time of HEAPSORT is ".n lg n/.

6.4 The heapsort algorithm 161

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

1 2 3 4 7 8 9 10 14 16

10

2
1 3

4 7 8 9
1614

1
2 3

4 7 8 9
161410

3
2 1

9874
10 14 16

4
2 3

9871
10 14 16

8
37

4 2 1 9
161410

7
4 3

9821
10 14 16

9
8 3

2174
161410

10
8 9

3174
16142

14
8 10

3974
1612

16
14 10

3978
142

A

i
i

i
i i

i i
i

i

Figure 6.4 The operation of HEAPSORT. (a) The max-heap data structure just after BUILD-MAX-
HEAP has built it in line 1. (b)–(j) The max-heap just after each call of MAX-HEAPIFY in line 5,
showing the value of i at that time. Only lightly shaded nodes remain in the heap. (k) The resulting
sorted array A.

162 Chapter 6 Heapsort

6.4-5 ?
Show that when all elements are distinct, the best-case running time of HEAPSORT
is !.n lg n/.

6.5 Priority queues

Heapsort is an excellent algorithm, but a good implementation of quicksort, pre-
sented in Chapter 7, usually beats it in practice. Nevertheless, the heap data struc-
ture itself has many uses. In this section, we present one of the most popular ap-
plications of a heap: as an efficient priority queue. As with heaps, priority queues
come in two forms: max-priority queues and min-priority queues. We will focus
here on how to implement max-priority queues, which are in turn based on max-
heaps; Exercise 6.5-3 asks you to write the procedures for min-priority queues.

A priority queue is a data structure for maintaining a set S of elements, each
with an associated value called a key. Amax-priority queue supports the following
operations:
INSERT.S; x/ inserts the element x into the set S , which is equivalent to the oper-

ation S D S [fxg.
MAXIMUM.S/ returns the element of S with the largest key.
EXTRACT-MAX.S/ removes and returns the element of S with the largest key.
INCREASE-KEY.S; x; k/ increases the value of element x’s key to the new value k,

which is assumed to be at least as large as x’s current key value.
Among their other applications, we can use max-priority queues to schedule

jobs on a shared computer. The max-priority queue keeps track of the jobs to
be performed and their relative priorities. When a job is finished or interrupted,
the scheduler selects the highest-priority job from among those pending by calling
EXTRACT-MAX. The scheduler can add a new job to the queue at any time by
calling INSERT.

Alternatively, amin-priority queue supports the operations INSERT, MINIMUM,
EXTRACT-MIN, and DECREASE-KEY. A min-priority queue can be used in an
event-driven simulator. The items in the queue are events to be simulated, each
with an associated time of occurrence that serves as its key. The events must be
simulated in order of their time of occurrence, because the simulation of an event
can cause other events to be simulated in the future. The simulation program calls
EXTRACT-MIN at each step to choose the next event to simulate. As new events are
produced, the simulator inserts them into the min-priority queue by calling INSERT.

6.5 Priority queues 163

We shall see other uses for min-priority queues, highlighting the DECREASE-KEY
operation, in Chapters 23 and 24.

Not surprisingly, we can use a heap to implement a priority queue. In a given ap-
plication, such as job scheduling or event-driven simulation, elements of a priority
queue correspond to objects in the application. We often need to determine which
application object corresponds to a given priority-queue element, and vice versa.
When we use a heap to implement a priority queue, therefore, we often need to
store a handle to the corresponding application object in each heap element. The
exact makeup of the handle (such as a pointer or an integer) depends on the ap-
plication. Similarly, we need to store a handle to the corresponding heap element
in each application object. Here, the handle would typically be an array index.
Because heap elements change locations within the array during heap operations,
an actual implementation, upon relocating a heap element, would also have to up-
date the array index in the corresponding application object. Because the details
of accessing application objects depend heavily on the application and its imple-
mentation, we shall not pursue them here, other than noting that in practice, these
handles do need to be correctly maintained.

Now we discuss how to implement the operations of a max-priority queue. The
procedure HEAP-MAXIMUM implements the MAXIMUM operation in ‚.1/ time.

HEAP-MAXIMUM.A/

1 return AŒ1!

The procedure HEAP-EXTRACT-MAX implements the EXTRACT-MAX opera-
tion. It is similar to the for loop body (lines 3–5) of the HEAPSORT procedure.

HEAP-EXTRACT-MAX.A/

1 if A:heap-size < 1
2 error “heap underflow”
3 max D AŒ1!
4 AŒ1! D AŒA:heap-size!
5 A:heap-size D A:heap-size ! 1
6 MAX-HEAPIFY.A; 1/
7 return max

The running time of HEAP-EXTRACT-MAX is O.lg n/, since it performs only a
constant amount of work on top of the O.lg n/ time for MAX-HEAPIFY.

The procedure HEAP-INCREASE-KEY implements the INCREASE-KEY opera-
tion. An index i into the array identifies the priority-queue element whose key we
wish to increase. The procedure first updates the key of element AŒi ! to its new
value. Because increasing the key of AŒi ! might violate the max-heap property,

164 Chapter 6 Heapsort

the procedure then, in a manner reminiscent of the insertion loop (lines 5–7) of
INSERTION-SORT from Section 2.1, traverses a simple path from this node toward
the root to find a proper place for the newly increased key. As HEAP-INCREASE-
KEY traverses this path, it repeatedly compares an element to its parent, exchang-
ing their keys and continuing if the element’s key is larger, and terminating if the el-
ement’s key is smaller, since the max-heap property now holds. (See Exercise 6.5-5
for a precise loop invariant.)

HEAP-INCREASE-KEY.A; i; key/

1 if key < AŒi !
2 error “new key is smaller than current key”
3 AŒi ! D key
4 while i > 1 and AŒPARENT.i/! < AŒi !
5 exchange AŒi ! with AŒPARENT.i/!
6 i D PARENT.i/

Figure 6.5 shows an example of a HEAP-INCREASE-KEY operation. The running
time of HEAP-INCREASE-KEY on an n-element heap is O.lg n/, since the path
traced from the node updated in line 3 to the root has length O.lg n/.

The procedure MAX-HEAP-INSERT implements the INSERT operation. It takes
as an input the key of the new element to be inserted into max-heap A. The proce-
dure first expands the max-heap by adding to the tree a new leaf whose key is !1.
Then it calls HEAP-INCREASE-KEY to set the key of this new node to its correct
value and maintain the max-heap property.

MAX-HEAP-INSERT.A; key/

1 A:heap-size D A:heap-sizeC 1
2 AŒA:heap-size! D !1
3 HEAP-INCREASE-KEY.A; A:heap-size; key/

The running time of MAX-HEAP-INSERT on an n-element heap is O.lg n/.
In summary, a heap can support any priority-queue operation on a set of size n

in O.lg n/ time.

Exercises
6.5-1
Illustrate the operation of HEAP-EXTRACT-MAX on the heap A D h15; 13; 9; 5;
12; 8; 7; 4; 0; 6; 2; 1i.

6.5 Priority queues 165

16

14 10

8 7 9 3

2 4 1

(a)

i

16

14 10

8 7 9 3

2 15 1
(b)

16

14 10

8

7 9 3

2

15

1
(c)

i

i

16

14

10

8

7 9 3

2

15

1
(d)

i

Figure 6.5 The operation of HEAP-INCREASE-KEY. (a) The max-heap of Figure 6.4(a) with a
node whose index is i heavily shaded. (b) This node has its key increased to 15. (c) After one
iteration of the while loop of lines 4–6, the node and its parent have exchanged keys, and the index i
moves up to the parent. (d) The max-heap after one more iteration of the while loop. At this point,
AŒPARENT.i/! ! AŒi !. The max-heap property now holds and the procedure terminates.

6.5-2
Illustrate the operation of MAX-HEAP-INSERT.A; 10/ on the heap A D h15; 13; 9;
5; 12; 8; 7; 4; 0; 6; 2; 1i.
6.5-3
Write pseudocode for the procedures HEAP-MINIMUM, HEAP-EXTRACT-MIN,
HEAP-DECREASE-KEY, and MIN-HEAP-INSERT that implement a min-priority
queue with a min-heap.
6.5-4
Why do we bother setting the key of the inserted node to "1 in line 2 of MAX-
HEAP-INSERT when the next thing we do is increase its key to the desired value?

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8-element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

172 Chapter 7 Quicksort

2 8 7 1 3 5 6 4
p,j ri

(a)

2 8 7 1 3 5 6 4
p,i rj

(b)

2 8 7 1 3 5 6 4
p,i rj

(c)

2 8 7 1 3 5 6 4
p,i rj

(d)

2 871 3 5 6 4
p rj

(e)
i

2 8 71 3 5 6 4
p rj

(f)
i

2 8 71 3 5 6 4
p rj

(g)
i

2 8 71 3 5 6 4
p r

(h)
i

2 871 3 5 64
p r

(i)
i

Figure 7.1 The operation of PARTITION on a sample array. Array entry AŒr ! becomes the pivot
element x. Lightly shaded array elements are all in the first partition with values no greater than x.
Heavily shaded elements are in the second partition with values greater than x. The unshaded el-
ements have not yet been put in one of the first two partitions, and the final white element is the
pivot x. (a) The initial array and variable settings. None of the elements have been placed in either
of the first two partitions. (b) The value 2 is “swapped with itself” and put in the partition of smaller
values. (c)–(d) The values 8 and 7 are added to the partition of larger values. (e) The values 1 and 8
are swapped, and the smaller partition grows. (f) The values 3 and 7 are swapped, and the smaller
partition grows. (g)–(h) The larger partition grows to include 5 and 6, and the loop terminates. (i) In
lines 7–8, the pivot element is swapped so that it lies between the two partitions.

The indices between j and r ! 1 are not covered by any of the three cases, and the
values in these entries have no particular relationship to the pivot x.

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

7.1 Description of quicksort 173

≤ x > x unrestricted

x
p i j r

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray AŒp : : r !. The
values in AŒp : : i ! are all less than or equal to x, the values in AŒi C 1 : : j ! 1! are all greater than x,
and AŒr ! D x. The subarray AŒj : : r ! 1! can take on any values.

Initialization: Prior to the first iteration of the loop, i D p ! 1 and j D p. Be-
cause no values lie between p and i and no values lie between i C 1 and j ! 1,
the first two conditions of the loop invariant are trivially satisfied. The assign-
ment in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, we consider two cases, depending on the
outcome of the test in line 4. Figure 7.3(a) shows what happens when AŒj ! > x;
the only action in the loop is to increment j . After j is incremented, condition 2
holds for AŒj ! 1! and all other entries remain unchanged. Figure 7.3(b) shows
what happens when AŒj ! " x; the loop increments i , swaps AŒi ! and AŒj !,
and then increments j . Because of the swap, we now have that AŒi ! " x, and
condition 1 is satisfied. Similarly, we also have that AŒj ! 1! > x, since the
item that was swapped into AŒj ! 1! is, by the loop invariant, greater than x.

Termination: At termination, j D r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x, those greater than x,
and a singleton set containing x.

The final two lines of PARTITION finish up by swapping the pivot element with
the leftmost element greater than x, thereby moving the pivot into its correct place
in the partitioned array, and then returning the pivot’s new index. The output of
PARTITION now satisfies the specifications given for the divide step. In fact, it
satisfies a slightly stronger condition: after line 2 of QUICKSORT, AŒq! is strictly
less than every element of AŒq C 1 : : r !.

The running time of PARTITION on the subarray AŒp : : r ! is ‚.n/, where
n D r ! p C 1 (see Exercise 7.1-3).

Exercises
7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A D h13; 19; 9; 5; 12; 8; 7; 4; 21; 2; 6; 11i.

174 Chapter 7 Quicksort

≤ x > x

x
p i j r

>x(a)

≤ x > x

x
p i j r

≤ x > x

x
p i j r

≤ x(b)

≤ x > x

x
p i j r

Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If AŒj ! > x, the only
action is to increment j , which maintains the loop invariant. (b) If AŒj ! ! x, index i is incremented,
AŒi ! and AŒj ! are swapped, and then j is incremented. Again, the loop invariant is maintained.

7.1-2
What value of q does PARTITION return when all elements in the array AŒp : : r !
have the same value? Modify PARTITION so that q D b.p C r/=2c when all
elements in the array AŒp : : r ! have the same value.
7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n
is ‚.n/.
7.1-4
How would you modify QUICKSORT to sort into nonincreasing order?

7.2 Performance of quicksort

The running time of quicksort depends on whether the partitioning is balanced or
unbalanced, which in turn depends on which elements are used for partitioning.
If the partitioning is balanced, the algorithm runs asymptotically as fast as merge

7.2 Performance of quicksort 175

sort. If the partitioning is unbalanced, however, it can run asymptotically as slowly
as insertion sort. In this section, we shall informally investigate how quicksort
performs under the assumptions of balanced versus unbalanced partitioning.

Worst-case partitioning
The worst-case behavior for quicksort occurs when the partitioning routine pro-
duces one subproblem with n ! 1 elements and one with 0 elements. (We prove
this claim in Section 7.4.1.) Let us assume that this unbalanced partitioning arises
in each recursive call. The partitioning costs ‚.n/ time. Since the recursive call
on an array of size 0 just returns, T .0/ D ‚.1/, and the recurrence for the running
time is
T .n/ D T .n ! 1/C T .0/C‚.n/

D T .n ! 1/C‚.n/ :

Intuitively, if we sum the costs incurred at each level of the recursion, we get
an arithmetic series (equation (A.2)), which evaluates to ‚.n2/. Indeed, it is
straightforward to use the substitution method to prove that the recurrence T .n/ D
T .n ! 1/C‚.n/ has the solution T .n/ D ‚.n2/. (See Exercise 7.2-1.)

Thus, if the partitioning is maximally unbalanced at every recursive level of the
algorithm, the running time is ‚.n2/. Therefore the worst-case running time of
quicksort is no better than that of insertion sort. Moreover, the ‚.n2/ running time
occurs when the input array is already completely sorted—a common situation in
which insertion sort runs in O.n/ time.

Best-case partitioning
In the most even possible split, PARTITION produces two subproblems, each of
size no more than n=2, since one is of size bn=2c and one of size dn=2e!1. In this
case, quicksort runs much faster. The recurrence for the running time is then
T .n/ D 2T .n=2/C‚.n/ ;

where we tolerate the sloppiness from ignoring the floor and ceiling and from sub-
tracting 1. By case 2 of the master theorem (Theorem 4.1), this recurrence has the
solution T .n/ D ‚.n lg n/. By equally balancing the two sides of the partition at
every level of the recursion, we get an asymptotically faster algorithm.

Balanced partitioning
The average-case running time of quicksort is much closer to the best case than to
the worst case, as the analyses in Section 7.4 will show. The key to understand-

176 Chapter 7 Quicksort

n

cn

cn

cn

cn

! cn

! cn

1

1

O.n lg n/

log10 n

log10=9 n

1
10

n 9
10

n

1
100

n 9
100

n9
100

n 81
100

n

81
1000

n 729
1000

n

Figure 7.4 A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1 split,
yielding a running time of O.n lg n/. Nodes show subproblem sizes, with per-level costs on the right.
The per-level costs include the constant c implicit in the ‚.n/ term.

ing why is to understand how the balance of the partitioning is reflected in the
recurrence that describes the running time.

Suppose, for example, that the partitioning algorithm always produces a 9-to-1
proportional split, which at first blush seems quite unbalanced. We then obtain the
recurrence
T .n/ D T .9n=10/C T .n=10/C cn ;

on the running time of quicksort, where we have explicitly included the constant c
hidden in the ‚.n/ term. Figure 7.4 shows the recursion tree for this recurrence.
Notice that every level of the tree has cost cn, until the recursion reaches a bound-
ary condition at depth log10 n D ‚.lg n/, and then the levels have cost at most cn.
The recursion terminates at depth log10=9 n D ‚.lg n/. The total cost of quick-
sort is therefore O.n lg n/. Thus, with a 9-to-1 proportional split at every level of
recursion, which intuitively seems quite unbalanced, quicksort runs in O.n lg n/
time—asymptotically the same as if the split were right down the middle. Indeed,
even a 99-to-1 split yields an O.n lg n/ running time. In fact, any split of constant
proportionality yields a recursion tree of depth ‚.lg n/, where the cost at each level
is O.n/. The running time is therefore O.n lg n/ whenever the split has constant
proportionality.

7.2 Performance of quicksort 177

n

0 n–1

(n–1)/2 – 1 (n–1)/2

n

(n–1)/2

(a) (b)

(n–1)/2

Θ(n) Θ(n)

Figure 7.5 (a) Two levels of a recursion tree for quicksort. The partitioning at the root costs n
and produces a “bad” split: two subarrays of sizes 0 and n ! 1. The partitioning of the subarray of
size n ! 1 costs n ! 1 and produces a “good” split: subarrays of size .n ! 1/=2 ! 1 and .n ! 1/=2.
(b)A single level of a recursion tree that is very well balanced. In both parts, the partitioning cost for
the subproblems shown with elliptical shading is ‚.n/. Yet the subproblems remaining to be solved
in (a), shown with square shading, are no larger than the corresponding subproblems remaining to be
solved in (b).

Intuition for the average case
To develop a clear notion of the randomized behavior of quicksort, we must make
an assumption about how frequently we expect to encounter the various inputs.
The behavior of quicksort depends on the relative ordering of the values in the
array elements given as the input, and not by the particular values in the array. As
in our probabilistic analysis of the hiring problem in Section 5.2, we will assume
for now that all permutations of the input numbers are equally likely.

When we run quicksort on a random input array, the partitioning is highly un-
likely to happen in the same way at every level, as our informal analysis has as-
sumed. We expect that some of the splits will be reasonably well balanced and
that some will be fairly unbalanced. For example, Exercise 7.2-6 asks you to show
that about 80 percent of the time PARTITION produces a split that is more balanced
than 9 to 1, and about 20 percent of the time it produces a split that is less balanced
than 9 to 1.

In the average case, PARTITION produces a mix of “good” and “bad” splits. In a
recursion tree for an average-case execution of PARTITION, the good and bad splits
are distributed randomly throughout the tree. Suppose, for the sake of intuition,
that the good and bad splits alternate levels in the tree, and that the good splits
are best-case splits and the bad splits are worst-case splits. Figure 7.5(a) shows
the splits at two consecutive levels in the recursion tree. At the root of the tree,
the cost is n for partitioning, and the subarrays produced have sizes n ! 1 and 0:
the worst case. At the next level, the subarray of size n ! 1 undergoes best-case
partitioning into subarrays of size .n ! 1/=2 ! 1 and .n ! 1/=2. Let’s assume that
the boundary-condition cost is 1 for the subarray of size 0.

178 Chapter 7 Quicksort

The combination of the bad split followed by the good split produces three sub-
arrays of sizes 0, .n ! 1/=2 ! 1, and .n ! 1/=2 at a combined partitioning cost
of ‚.n/ C ‚.n ! 1/ D ‚.n/. Certainly, this situation is no worse than that in
Figure 7.5(b), namely a single level of partitioning that produces two subarrays of
size .n ! 1/=2, at a cost of ‚.n/. Yet this latter situation is balanced! Intuitively,
the ‚.n ! 1/ cost of the bad split can be absorbed into the ‚.n/ cost of the good
split, and the resulting split is good. Thus, the running time of quicksort, when lev-
els alternate between good and bad splits, is like the running time for good splits
alone: still O.n lg n/, but with a slightly larger constant hidden by the O-notation.
We shall give a rigorous analysis of the expected running time of a randomized
version of quicksort in Section 7.4.2.

Exercises
7.2-1
Use the substitution method to prove that the recurrence T .n/ D T .n ! 1/C‚.n/
has the solution T .n/ D ‚.n2/, as claimed at the beginning of Section 7.2.
7.2-2
What is the running time of QUICKSORT when all elements of array A have the
same value?
7.2-3
Show that the running time of QUICKSORT is ‚.n2/ when the array A contains
distinct elements and is sorted in decreasing order.
7.2-4
Banks often record transactions on an account in order of the times of the transac-
tions, but many people like to receive their bank statements with checks listed in
order by check number. People usually write checks in order by check number, and
merchants usually cash them with reasonable dispatch. The problem of converting
time-of-transaction ordering to check-number ordering is therefore the problem of
sorting almost-sorted input. Argue that the procedure INSERTION-SORT would
tend to beat the procedure QUICKSORT on this problem.
7.2-5
Suppose that the splits at every level of quicksort are in the proportion 1 ! ˛ to ˛,
where 0 < ˛ " 1=2 is a constant. Show that the minimum depth of a leaf in the re-
cursion tree is approximately ! lg n= lg ˛ and the maximum depth is approximately
! lg n= lg.1 ! ˛/. (Don’t worry about integer round-off.)

7.3 A randomized version of quicksort 179

7.2-6 ?
Argue that for any constant 0 < ˛ ! 1=2, the probability is approximately 1 " 2˛
that on a random input array, PARTITION produces a split more balanced than 1"˛
to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the in-
put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr !
as the pivot, we will select a randomly chosen element from the subarray AŒp : : r !.
We do so by first exchanging element AŒr ! with an element chosen at random
from AŒp : : r !. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr ! is equally likely to be any of the r " p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:
RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/
2 exchange AŒr ! with AŒi !
3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:
RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r
2 q D RANDOMIZED-PARTITION.A; p; r/
3 RANDOMIZED-QUICKSORT.A; p; q " 1/
4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.

180 Chapter 7 Quicksort

Exercises
7.3-1
Why do we analyze the expected running time of a randomized algorithm and not
its worst-case running time?
7.3-2
When RANDOMIZED-QUICKSORT runs, how many calls are made to the random-
number generator RANDOM in the worst case? How about in the best case? Give
your answer in terms of ‚-notation.

7.4 Analysis of quicksort

Section 7.2 gave some intuition for the worst-case behavior of quicksort and for
why we expect it to run quickly. In this section, we analyze the behavior of quick-
sort more rigorously. We begin with a worst-case analysis, which applies to either
QUICKSORT or RANDOMIZED-QUICKSORT, and conclude with an analysis of the
expected running time of RANDOMIZED-QUICKSORT.

7.4.1 Worst-case analysis
We saw in Section 7.2 that a worst-case split at every level of recursion in quicksort
produces a ‚.n2/ running time, which, intuitively, is the worst-case running time
of the algorithm. We now prove this assertion.

Using the substitution method (see Section 4.3), we can show that the running
time of quicksort is O.n2/. Let T .n/ be the worst-case time for the procedure
QUICKSORT on an input of size n. We have the recurrence
T .n/ D max

0!q!n"1
.T .q/C T .n ! q ! 1//C‚.n/ ; (7.1)

where the parameter q ranges from 0 to n ! 1 because the procedure PARTITION
produces two subproblems with total size n ! 1. We guess that T .n/ " cn2 for
some constant c. Substituting this guess into recurrence (7.1), we obtain
T .n/ " max

0!q!n"1
.cq2 C c.n ! q ! 1/2/C‚.n/

D c # max
0!q!n"1

.q2 C .n ! q ! 1/2/C‚.n/ :

The expression q2 C .n ! q ! 1/2 achieves a maximum over the parameter’s
range 0 " q " n ! 1 at either endpoint. To verify this claim, note that the second
derivative of the expression with respect to q is positive (see Exercise 7.4-3). This

7.4 Analysis of quicksort 181

observation gives us the bound max0!q!n"1.q2 C .n ! q ! 1/2/ " .n ! 1/2 D
n2 ! 2nC 1. Continuing with our bounding of T .n/, we obtain
T .n/ " cn2 ! c.2n ! 1/C‚.n/

" cn2 ;

since we can pick the constant c large enough so that the c.2n ! 1/ term dom-
inates the ‚.n/ term. Thus, T .n/ D O.n2/. We saw in Section 7.2 a specific
case in which quicksort takes !.n2/ time: when partitioning is unbalanced. Al-
ternatively, Exercise 7.4-1 asks you to show that recurrence (7.1) has a solution of
T .n/ D !.n2/. Thus, the (worst-case) running time of quicksort is ‚.n2/.

7.4.2 Expected running time
We have already seen the intuition behind why the expected running time of
RANDOMIZED-QUICKSORT is O.n lg n/: if, in each level of recursion, the split
induced by RANDOMIZED-PARTITION puts any constant fraction of the elements
on one side of the partition, then the recursion tree has depth ‚.lg n/, and O.n/
work is performed at each level. Even if we add a few new levels with the most un-
balanced split possible between these levels, the total time remains O.n lg n/. We
can analyze the expected running time of RANDOMIZED-QUICKSORT precisely
by first understanding how the partitioning procedure operates and then using this
understanding to derive an O.n lg n/ bound on the expected running time. This
upper bound on the expected running time, combined with the ‚.n lg n/ best-case
bound we saw in Section 7.2, yields a ‚.n lg n/ expected running time. We assume
throughout that the values of the elements being sorted are distinct.

Running time and comparisons
The QUICKSORT and RANDOMIZED-QUICKSORT procedures differ only in how
they select pivot elements; they are the same in all other respects. We can therefore
couch our analysis of RANDOMIZED-QUICKSORT by discussing the QUICKSORT
and PARTITION procedures, but with the assumption that pivot elements are se-
lected randomly from the subarray passed to RANDOMIZED-PARTITION.

The running time of QUICKSORT is dominated by the time spent in the PARTI-
TION procedure. Each time the PARTITION procedure is called, it selects a pivot
element, and this element is never included in any future recursive calls to QUICK-
SORT and PARTITION. Thus, there can be at most n calls to PARTITION over the
entire execution of the quicksort algorithm. One call to PARTITION takes O.1/
time plus an amount of time that is proportional to the number of iterations of the
for loop in lines 3–6. Each iteration of this for loop performs a comparison in
line 4, comparing the pivot element to another element of the array A. Therefore,

182 Chapter 7 Quicksort

if we can count the total number of times that line 4 is executed, we can bound the
total time spent in the for loop during the entire execution of QUICKSORT.

Lemma 7.1
Let X be the number of comparisons performed in line 4 of PARTITION over the
entire execution of QUICKSORT on an n-element array. Then the running time of
QUICKSORT is O.nCX/.

Proof By the discussion above, the algorithm makes at most n calls to PARTI-
TION, each of which does a constant amount of work and then executes the for
loop some number of times. Each iteration of the for loop executes line 4.

Our goal, therefore, is to compute X , the total number of comparisons performed
in all calls to PARTITION. We will not attempt to analyze how many comparisons
are made in each call to PARTITION. Rather, we will derive an overall bound on the
total number of comparisons. To do so, we must understand when the algorithm
compares two elements of the array and when it does not. For ease of analysis, we
rename the elements of the array A as ´1; ´2; : : : ; ´n, with ´i being the i th smallest
element. We also define the set Zij D f´i ; ´iC1; : : : ; j́ g to be the set of elements
between ´i and j́ , inclusive.

When does the algorithm compare ´i and j́ ? To answer this question, we first
observe that each pair of elements is compared at most once. Why? Elements
are compared only to the pivot element and, after a particular call of PARTITION
finishes, the pivot element used in that call is never again compared to any other
elements.

Our analysis uses indicator random variables (see Section 5.2). We define
Xij D I f´i is compared to j́ g ;

where we are considering whether the comparison takes place at any time during
the execution of the algorithm, not just during one iteration or one call of PARTI-
TION. Since each pair is compared at most once, we can easily characterize the
total number of comparisons performed by the algorithm:

X D
n!1X

iD1

nX

j DiC1

Xij :

Taking expectations of both sides, and then using linearity of expectation and
Lemma 5.1, we obtain

E ŒX ! D E
"

n!1X

iD1

nX

j DiC1

Xij

#

7.4 Analysis of quicksort 183

D
n!1X

iD1

nX

j DiC1

E ŒXij !

D
n!1X

iD1

nX

j DiC1

Pr f´i is compared to j́ g : (7.2)

It remains to compute Pr f´i is compared to j́ g. Our analysis assumes that the
RANDOMIZED-PARTITION procedure chooses each pivot randomly and indepen-
dently.

Let us think about when two items are not compared. Consider an input to
quicksort of the numbers 1 through 10 (in any order), and suppose that the first
pivot element is 7. Then the first call to PARTITION separates the numbers into two
sets: f1; 2; 3; 4; 5; 6g and f8; 9; 10g. In doing so, the pivot element 7 is compared
to all other elements, but no number from the first set (e.g., 2) is or ever will be
compared to any number from the second set (e.g., 9).

In general, because we assume that element values are distinct, once a pivot x
is chosen with ´i < x < j́ , we know that ´i and j́ cannot be compared at any
subsequent time. If, on the other hand, ´i is chosen as a pivot before any other item
in Zij , then ´i will be compared to each item in Zij , except for itself. Similarly,
if j́ is chosen as a pivot before any other item in Zij , then j́ will be compared to
each item in Zij , except for itself. In our example, the values 7 and 9 are compared
because 7 is the first item from Z7;9 to be chosen as a pivot. In contrast, 2 and 9 will
never be compared because the first pivot element chosen from Z2;9 is 7. Thus, ´i

and j́ are compared if and only if the first element to be chosen as a pivot from Zij

is either ´i or j́ .
We now compute the probability that this event occurs. Prior to the point at

which an element from Zij has been chosen as a pivot, the whole set Zij is together
in the same partition. Therefore, any element of Zij is equally likely to be the first
one chosen as a pivot. Because the set Zij has j !iC1 elements, and because pivots
are chosen randomly and independently, the probability that any given element is
the first one chosen as a pivot is 1=.j ! i C 1/. Thus, we have
Pr f´i is compared to j́ g D Pr f´i or j́ is first pivot chosen from Zij g

D Pr f´i is first pivot chosen from Zij g
C Pr f j́ is first pivot chosen from Zij g

D
1

j ! i C 1
C

1

j ! i C 1

D
2

j ! i C 1
: (7.3)

184 Chapter 7 Quicksort

The second line follows because the two events are mutually exclusive. Combining
equations (7.2) and (7.3), we get that

E ŒX ! D
n!1X

iD1

nX

j DiC1

2

j ! i C 1
:

We can evaluate this sum using a change of variables (k D j ! i) and the bound
on the harmonic series in equation (A.7):

E ŒX ! D
n!1X

iD1

nX

j DiC1

2

j ! i C 1

D
n!1X

iD1

n!iX

kD1

2

k C 1

<

n!1X

iD1

nX

kD1

2

k

D
n!1X

iD1

O.lg n/

D O.n lg n/ : (7.4)
Thus we conclude that, using RANDOMIZED-PARTITION, the expected running
time of quicksort is O.n lg n/ when element values are distinct.

Exercises
7.4-1
Show that in the recurrence
T .n/ D max

0"q"n!1
.T .q/C T .n ! q ! 1//C‚.n/ ;

T .n/ D ".n2/.
7.4-2
Show that quicksort’s best-case running time is ".n lg n/.
7.4-3
Show that the expression q2 C .n ! q ! 1/2 achieves a maximum over q D
0; 1; : : : ; n ! 1 when q D 0 or q D n ! 1.
7.4-4
Show that RANDOMIZED-QUICKSORT’s expected running time is ".n lg n/.

