
Notes on the Master Theorem

These notes refer to the Master Theorem as presented in Sections 4.3 and
4.4 of

• [CLR] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest,
Introduction to Algorithms MIT Press/ McGraw-Hill, 1990

and of

• [CLRS] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Cliff Stein, Introduction to Algorithms (Second Edition) MIT Press/
McGraw-Hill, 2001.

1 The recurrence and the recursion tree

A hypothetical divide-and-conquer algorithm divides a problem of size n
(greater than 1) into a subproblems of size n/b, solves these subproblems
recursively, and then combines their solutions into a solution of the original
problem; problems of size 1 are solved directly, without any recursive calls.
Naturally, a is a positive integer; in order for the size n/b of the subproblems,
the size n/b2 of the sub-subproblems, etc. to become smaller and smaller,
we assume that b > 1; in order for these sizes to remain integral, we assume
that b is an integer and that

n = bm

for some nonnegative integer m. With f(bk) standing for the amount of
work required first to divide a problem of size bk into a subproblems of size
bk−1 and later to combine solutions of these subproblems into a solution of
the problem of size bk, the total amount T (n) of work required to solve the
original problem satisfies the recurrence equation

T (bk) = aT (bk−1) + f(bk)

whenever k > 0.

In the corresponding recursion tree, the root represents the original prob-
lem of size n, its children represent the subproblems, their children represent
the sub-sub problems, etc. Each internal node has precisely a children, and

1

so there are precisely aj nodes on level j (the root being on level 0, its children
on level 1, their children on level 2, etc.); each of these aj nodes represents
a problem of size bm−j; in particular, each of the am nodes on level m repre-
sents a problem of size 1, and so it is a leaf of the tree. If 0 ≤ j < m, then
the amount of work performed at a particular node on level j (not counting
any of the work involved in the a recursive calls spawned from this node) is
f(bm−j); the amount of work performed at a particular leaf is T (1); it follows
that

T (n) =
m−1∑
j=0

ajf(bm−j) + amT (1). (1)

2 Very special cases of the Master Theorem

2.1 Starting point.

Formula (1) is particularly easy to simplify when the total work done on a
level of the recursion tree is independent of the depth of the level:

f(n) = af(bm−1) = a2f(bm−2) = . . . = am−1f(b) = amT (1).

This is the case if and only if

f(bk) = akT (1) for all k = 1, 2, . . . ,m; (2)

under this assumption, T (n) = (m + 1)f(n); now, since

m =
lg n

lg b
,

it follows that
T (n) = Θ(f(n) log n).

For future reference, note that the assumption (2) may be recorded as

f(x) = T (1)xt for all x = b, b2, . . . , n (3)

with

t =
lg a

lg b
.

2

2.2 Continuation.

Next, we are going to consider the more general class of functions defined by

f(x) = dxs

with arbitrary positive constants d and s. Here,

T (n) =
m−1∑
j=0

aj · d(n/bj)s + amT (1) = dns
m−1∑
j=0

(a/bs)j + T (1)nt,

and so, as long as a/bs 6= 1 (which is equivalent to s 6= t),

T (n) = dns (a/bs)m − 1

(a/bs)− 1
+ T (1)nt =

dbs

a− bs
(nt − ns) + T (1)nt. (4)

If s < t, then f(n) grows more slowly than the benchmark (3), and so the
higher levels of the recursion tree contribute relatively less to the total work
T (n) and the lower levels contribute relatively more. In fact, the amount of
work done in the leaves alone is representative of the grand total T (n): since
a− bs > 0, formula (4) implies that T (n) = Θ(nt).

If s > t, then f(n) grows faster than the benchmark (3), and so the
lower levels of the recursion tree contribute relatively less to the total work
T (n) and the higher levels contribute relatively more. In fact, the amount of
work done in the root alone is representative of the grand total T (n): since
a− bs < 0, formula (4) implies that T (n) = Θ(ns) = Θ(f(n)).

2.3 Conclusion.

Theorem 1 Let a be a positive integer, let b be an integer greater than 1,
and let d and s be positive real numbers. For all perfect powers n of b, define
T (n) by the recurrence

T (n) = aT (n/b) + dns

with a nonnegative initial value T (1); write

t =
lg a

lg b
.

• If s < t, then T (n) = Θ(nt).
• If s = t, then T (n) = Θ(f(n) log n).
• If s > t, then T (n) = Θ(f(n)).

3

3 Less special cases of the Master Theorem

Theorem 1 generalizes as follows:

Theorem 2 Let a be a positive integer, let b be an integer greater than 1,
and let f be a real-valued function defined on perfect powers of b. For all
perfect powers n of b, define T (n) by the recurrence

T (n) = aT (n/b) + f(n)

with a nonnegative initial value T (1); write

t =
lg a

lg b
.

• If f(n) = O(ns) with s < t, then T (n) = Θ(nt).
• If f(n) = Θ(nt), then T (n) = Θ(f(n) log n).
• If f(n) = Ω(ns) with s > t and if

∃c (c < 1 ∧ (∃k0∀k (k ≥ k0 ⇒ af(bk−1) ≤ cf(bk)))), (5)

then T (n) = Θ(f(n)).

In response to a challenge that I proposed in class, Antonyi Ganchev
constructed an example showing that the conclusion of the third case of
Theorem 2 may be false if the “regularity condition” (5) is dropped. Here is
his example with a slight modification: If

f(n) =

{
n3 when lg n is an even integer,
n2 otherwise,

and

T (n) =

{
(16n3 + 10n2 − 11n)/15 when lg n is an even integer,
(4n3 + 20n2 − 11n)/15 when lg n is an odd integer,

then
T (n) = 2T (n/2) + f(n)

whenever n is a power of 2 greater than 1.

4

