Notes on the Master Theorem

These notes refer to the Master Theorem as presented in Sections 4.3 and
4.4 of

e [CLR] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest,
Introduction to Algorithms MIT Press/ McGraw-Hill, 1990

and of

e [CLRS] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Cliff Stein, Introduction to Algorithms (Second Edition) MIT Press/
McGraw-Hill, 2001.

1 The recurrence and the recursion tree

A hypothetical divide-and-conquer algorithm divides a problem of size n
(greater than 1) into a subproblems of size n/b, solves these subproblems
recursively, and then combines their solutions into a solution of the original
problem; problems of size 1 are solved directly, without any recursive calls.
Naturally, a is a positive integer; in order for the size n/b of the subproblems,
the size n/b? of the sub-subproblems, etc. to become smaller and smaller,
we assume that b > 1; in order for these sizes to remain integral, we assume
that b is an integer and that
n=>b"

for some nonnegative integer m. With f(b*) standing for the amount of
work required first to divide a problem of size b* into a subproblems of size
b*~1 and later to combine solutions of these subproblems into a solution of
the problem of size b*, the total amount T'(n) of work required to solve the
original problem satisfies the recurrence equation

T(b*) = aT(0"") + f(b")
whenever k > 0.

In the corresponding recursion tree, the root represents the original prob-
lem of size n, its children represent the subproblems, their children represent
the sub-sub problems, etc. Each internal node has precisely a children, and
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so there are precisely @’ nodes on level j (the root being on level 0, its children
on level 1, their children on level 2, etc.); each of these a/ nodes represents
a problem of size ™ 7; in particular, each of the a™ nodes on level m repre-
sents a problem of size 1, and so it is a leaf of the tree. If 0 < 7 < m, then
the amount of work performed at a particular node on level j (not counting
any of the work involved in the a recursive calls spawned from this node) is
f(0™9); the amount of work performed at a particular leaf is 7'(1); it follows
that

T(n) = 2 a f(b"7) + a™T(1). (1)

2 Very special cases of the Master Theorem

2.1 Starting point.

Formula (1) is particularly easy to simplify when the total work done on a
level of the recursion tree is independent of the depth of the level:

fn) = af(™ ) = A" = .. = @ H(b) = a"T(1).
This is the case if and only if
f*) = a*T(1) forallk =1,2,...,m; (2)

under this assumption, T'(n) = (m + 1) f(n); now, since

it follows that
T(n) = O(f(n)logn).
For future reference, note that the assumption (2) may be recorded as
f(z) = T(1)a" forallx =00 ....n (3)
with
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2.2 Continuation.

Next, we are going to consider the more general class of functions defined by

flz) = da
with arbitrary positive constants d and s. Here,

m—

Z a -d(n/V)* + a™T(1 Z (a/b%) + T(1)n',

and so, as long as a/b° # 1 (which is equivalent to s # t),

J(a/b)ym —1 abv®
T(n) =dn W =1 — %

If s < t, then f(n) grows more slowly than the benchmark (3), and so the
higher levels of the recursion tree contribute relatively less to the total work
T'(n) and the lower levels contribute relatively more. In fact, the amount of
work done in the leaves alone is representative of the grand total T'(n): since
a — b* > 0, formula (4) implies that T'(n) = O(n').

If s > ¢, then f(n) grows faster than the benchmark (3), and so the
lower levels of the recursion tree contribute relatively less to the total work
T'(n) and the higher levels contribute relatively more. In fact, the amount of
work done in the root alone is representative of the grand total T'(n): since
a—b® <0, formula (4) implies that T'(n) = ©(n*) = O(f(n)).

+ T(1)n' = (n* —n®) + T()n'. (4

2.3 Conclusion.

Theorem 1 Let a be a positive integer, let b be an integer greater than 1,
and let d and s be positive real numbers. For all perfect powers n of b, define
T(n) by the recurrence

T(n)=aT(n/b) + dn’

with a nonnegative initial value T'(1); write

_lga
= b
o [f s <t, then T(n) = O(n').
o If s=t, then T'(n) = O(f(n)logn).
o If s >t, then T(n) = O(f(n)).



3 Less special cases of the Master Theorem

Theorem 1 generalizes as follows:

Theorem 2 Let a be a positive integer, let b be an integer greater than 1,
and let f be a real-valued function defined on perfect powers of b. For all
perfect powers n of b, define T'(n) by the recurrence

T(n) =aT(n/b) + f(n)

with a nonnegative initial value T(1); write

lga
e If f(n) = 0O(n®) with s < t, then T'(n) = O(n').
o If f(n) =0O(n'), then T(n) = O(f(n)logn).
o If f(n) =Q(n®*) with s >t and if
Je (¢ < 1A (BkoVk (k> ko = af (0" < cf(V%)))), (5)

then T'(n) = ©(f(n)).

In response to a challenge that I proposed in class, Antonyi Ganchev
constructed an example showing that the conclusion of the third case of
Theorem 2 may be false if the “regularity condition” (5) is dropped. Here is
his example with a slight modification: If
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n® when Ign is an even integer,

n” otherwise,
and

T(n) = (16n3 4+ 10n? — 11n)/15 when lgn is an even integer,
| (4n®+20n? — 11n)/15 when Ign is an odd integer,

then
T(n) = 2T(n/2) + /(1)

whenever n is a power of 2 greater than 1.



