Algorithms

Introduction
Algorithm Examples
Pseudocode
Order of Growth

Algorithms - what are they

@® series of computational steps given an inpuf, to
produce an output

@ desirable properties:
— correctness
— efficient (time, space)
— elegant

— easy to implement

Week 1 Objectives

® understand the importance of algorithms

® Example of
m

— emphasize running time
® Example of
® Example of

® Running time analysis, intro
— Order of growth
— Big-O notation

Example 1 : MAX

® given an array A, find maximum value
P input A[l:n]
P maxi=1

P for i=2:n

p if A[i]>A[maxi] then maxi=i
P endfor

P return (maxi, A[maxil])
@® number of comparisons: n-1. Running Time o(n)
@® observe correctness

@ observe pseudocode

Example 2 : Fibonacci

® Fibonacci numbers are defined as
— F(0)=0; F(1) =1;
— F(n) = F(n-1) + F(n-2) for all n>1

® Observe the recursive definition

@® Task: given n, calculate F(n)

Fibonacci - recursive solution

P Fib(n)
P if n<2
P return n
P endif
p val = Fib(n-1) + Fib(n-2)

P return val

® correct

@® exponential running time (bad)
@® see recursion tree

Fibonacci - recursive solution tree

F(n)
F(n-1) F(n-2)
F(n-2) F(n-3) F(n-3) F(n-4)
F(n-3)||F(n-4) F(n-4)||F(n-5) F(n-4)||F(n-5) F(n-5)||F(n-6)
4
....... F(1)
B

tree= stack
of function
calls

n levels on
the left

n/2 levels
on the
right

at least n/2
levels full
binary tree

— at least 20/2)
calls

Fibonacci - array solution

p Fib(n) ® one for loop
P array A[0..n] initialized runs across the
) A[0]=0; A[1l]=1; array

P for i=2:n

@® inside the loop

) A[i]=A[i-1] + A[i-2]; a consfant time
) endfor operation O(1)
p return A[n]; ® overall linear

time O(n)

Fibonacci - Matrix Multiplication

Ak — [y F

S
M__lo_ Py Fpa

@® proof by mathematical induction

Mk_l_]‘:M*Mk:_l].__Fk_|_]_ Fk

1 0|| F. Fu,
| e+ Pt b1 || Fre2 Fraa
Fliq Fy Fri1 Fi

® 5o we have to multiply M with itself n times
— how fast can it be done?

— naively : each multiplication of 2x2 matrixes takes constant O(1)
time so linear time O(n) total

Fibonacci - Matrix Multiplication

(S W
O =
| |

® want to compute M": multiply M with itself n
times

— each multiplication of 2x2 matrixes takes constant O(1) time

@ idea: repeated squaring
— M2=M*M; MA=MZ*M2; MB=M**M* etc

® then multiply only the powers needed

— for example n=13 gives MB3=ME*M**M

Fibonacci - Matrix Multiplication

p Fib(n)
U 1 1 I 1
) lnltM:[1 0]A:[1 o]
p for i=0:log(n)
} if(n%2 ==l) A=A*M; endif /addthis power of M only if the respective bitin n is 1

} M=M*M73 //get the next squaring M

} Nn=n/ 2 // move on to the next bit(right to left) in n - think of n represented in binary
P endfor

p return A[l,1]

® only log(n) iterations in for loop, each constant time
® |ogarithmic time O(log n) total

Fibonacci - generative function

@® use the generative function (requires analytic
solution) o o

F, =
V5

® where

1++v5 » 1—4+/5
= — L =

? 2

@® practically constant time, if scalar expoential is
done with a dedicated math processor

Conclusions

@® Algorithms matter, even if the problem is very
simple

® They matter a lot if the problem is BIG
— think of big data today, or the web search

® Analysis of algorithms: running time, space
requirements, bottlenecks

® Implementation makes a difference too

CheckPoint

@® Consider the first Fibonacci solution (recursion) vs
the second (array)

— how is it possible fo reduce an exponential number of
computations to a linear number?

— are some of the computations in the first solutions not
necessary?

— can You speed up the recursion for the first solution?

Matrix multiplication

@® multiply nxn matrices
C :nAB

Cij = E @ik
k=1

@® running time ©(n°)
— ©(n3) means actual number of multiplications T(n) is about n’
- C*n3 < T(n) < C.*n3, for fixed constants C; and C»

— count the number of multiplications

Strassen's Algorithm

@ n=2: Multiplay 2x2 matrix using 7 multiplications

instead of 8
| T S
- t u -

@® Strassen's equations

Pl =a(g — h)
P2 = (a+0b)h
P3 = (c+d)e
Pi=(f -0
P5 = (a +d)(e + h)
P6 = (b—d)(f +h)
P7=(a—c)(e+g)

a
C

- O
o> Q

b
d -

r=P5+ P4 — P2+ P6
s = P11+ P2
t =P34+ P4
vw= P+ P1—-P3—-P7

Strassen's Algorithm

® : partition A, B each in four "/ x "/
matrices

® : perform 7 multiplications

— each multiplication of 2 matrices of size /2, done recursively
with divide-conquer mechanism for n= />

® : find C=AxB using Strassen's equations

® T(n) = time fo multiply nxn matrices
— recursively: T(n) = 7T(n/2) + ©(n?)

- how to solve this recursion?

Running time

@® Solve equation T(n) = 7T(n/2) + ©(n?) as order of
growth

— no interest in T(1), T(2) etc, but the general growth of the
function

@® solution next module: T(n) is like nlos?
— approx n%8, better than n’ the running time of multiplication

® that means C;*n'9"< T(n) < C2*n's") for some
constants C; and C;, for n2no some starting value

checkpoint: matrix multiplication

® verify that Strassen's equation produce indeed
the correct matrix multiplication

Asympftotic Notation : ©

® f(n) = B(g(n)) if Cig(n)<f(n)<Cag(n)

for some positive constants C; and Cz, and starting at n2ng

T(n) for Strassen's multiplication is © (n°s")

we cannot compu’re T(n) exactly, but we know its growing like
constant™ nloa”)

example: f(n)=1/2*n%-2n is ©(n?)

® a simple loop through data = linear algorithm

B (n) or growing like constant*n
for example the MAX algorithm enrlior

/____/ Czlﬁfy\)
Y

/ J74a
NAWE oA WAvli
| A
1/] il ‘C’i@

g

Asymptotic Notation : "big" O

® f(n) = O(g(n)) if f(n)<Cag(n)
— for some positive constant Cz, and starting at n2no
— only bounding T(n) up, not down
— "worst case” = longest running time

— worst case not worse than g(n) growth
- if T(n) is ©(g(n)), then T(n) is also O(g(n)), but not the converse!

@® expression f(n) = n +O(n), or n° plus "linear”
— means f(n)<n%+Czn, for some constant C,, and initial no

[(/ 2\

/\/67(0\
Ao A ()

Asymptotic Notation : (2

@® lower bound: f(n) = Q(g(n)) if f(n)>Cig(n)
— for some positive constant C;, and starting at n2nog

— example: f(n)=n® is Q(nlog(n))

.
— c)j_@

Asymptotic Notation : summary

Notation Name Intuition As N — ©OQ, eventually... Definition
Big Omicron; Big f is bounded abov
f(n) € O(g(n)) O'?Bigmggon - {:fnstal:\t factir) a:yt:nypfo(:i’:atlf; fn)<g(n)-k A(k > 0),n9 : V(n > no) | f(n)| < |g(n)-klorI(k > 0),n0 : V(n > ng) f(n) <g(n)-k

f(n) € Qg(n)) Bigomega /' Poundedbelowby g upto)y o oy 3(k > 0),n0 : V(n > ng) |g(n) - k| < |f(n)]

constant factor) asymptotically

f(n) € O(g(n))BaTroa Lo boumsestoaboneard () fy < f(n) < g(n) - ky ks, Ky > 0),m0 : ¥ > mo) lg(n) - hul < |£()| < lg(n) - Kol

Small Omicron;

f(n) € o(g(n)) |small 0; Sman /'S dominatedby g f(n) < g(n)-k V(k > 0),3ng : V(n > ng) | f(n)| < |g(n) - k|

4 asymptotically

Oh
f(n) € w(g(n)) small Omega fdominates g asymptotically f(n) > g(n)- k V(k > 0),3ng : V(n > no) |g(n)- k| <|f(n)]
f(n.) ~ g(n.) on the order of fis equal to g asymptotically |f(n) - g(n.) . Al <4 lim f(n) = k,O <k <o

% g(n)

Ten orders of growth

Let's assume that your computer can perform 10,000 operations (e.g., data structure manipulations, database
inserts, etc.) per second. Given algorithms that require Ig n, n”2, n, i, ?, *, i, 2", and n! operations to perform a
given task on nitems, here's how long it would take to process 10, 50, 100 and 1,000 items.

n
| 10 | 50 | 100 1,000

Ig n | 0.0003 sec| 0.0006 sec| 0.0007 sec| 0.0010 sec
n” 0.0003 sec| 0.0007 sec| 0.0010 sec| 0.0032 sec
n | 0.0010 sec| 0.0050 sec| 0.0100 sec| 0.1000 sec
nlg n| 0.0033 sec| 0.0282 sec| 0.0664 sec| 0.9966 sec
n? | 0.0100 secj 0.2500 sec| 1.0000 sec| 100.00 sec
m | 0.1000 sec | 12.500 sec| 100.00 sec| 1.1574 day
m* | 1.0000 sec 10.427 min| 2.7778 hrs| 3.1710 yrs
n® |1.6667 min|18.102 day| 3.1710yrs| 3171.0 cen
2" | 0.1024 sec| 35.702 cen| 4x10' cen| 1x10'°® cen|
n! | 362.88 sec |1x10°! cen|3x10'* cen| 1x10°>>* cen

Tablé 1: Time required to procéss nitems at a speed of
10,000 operations/sec using eight different algorithms.

Note: The units above are seconds (sec), minutes (min), hours (hrs), days (day), years (yrs), and centuries (cen)!

Explosive growth of exponential

n

15 20 25 30 35 40 45

3.28 sec|1.75 min||55.9 min||1.24 days |39.8 days | 3.48 yrs||1.12 cen

Table 2: Time required to process n items at a speed of
10,000 operations/sec using a 2" algorithm.

Even more explosive n!

n

11

12

13

14

15

16

17

1.11 hrs

13.3 hrs

7.20 days

101 days

4.15 yrs

66.3 yrs

11.3 cen

Table 3: Time required to process nitems at a speec

10,000 operations/sec using an n! algorithm.

of

CheckPoint: Order of growth

® who is growing faster ?
- f(n)=n"2 or g(n)=2log(n)
- f(n)=n® or g(n) = [log(n)J*
- f(n) = 22 or g(n)=n!

@ explain equation T(n) = 7T(n/2) + ©(n?)

® MergeSort (size n) : solve 2 problems of size T(n/
2), then combine result in linear time. What is the
recursive equation for the running time T(n) ?

Being Smart: list infersection

® You are given the two head-nodes headA and
headB ot two single-linked lists that are known
fo intersect

— after intersection they are identical due to the linkage nature

® Task: find the infersection node
— cannot modify the lists, or use auxiliary data structures

Being Smart: list infersection

@® naive solution:

» for each a=node of first list (traversal)
> for each b=node of the second list (traversal)

» if a==b return “found intersection node: a”

» end second for

» end first for

@® such solution runs in O(mn) quadratic time, if m
and n are the lengths of the two lists

— the first loop takes up to m steps tfo iterate to the first list

- l’rhe second loop takes n steps; it runs for each step of the first
oop

Being Smart: list infersection

@® smart solution:

» +traverse the first list to count it, obtain m; m=9 in example
» traverse the second list to count it, obtain n; n=7 in example

» 1f m>n traverse first list for exactly m-n nodes; m-n=2 in example

> if n>m traverse second list for exactly n-m elements

» traverse the list simultaneously until the intersection node //in
example this simultaneous traversal starts at third blue and first red

® smart solution runs in O(m+n) linear time

