
Algorithms
Introduction

Algorithm Examples

Pseudocode

Order of Growth

Algorithms - what are they

• series of computational steps given an input, to
produce an output

• desirable properties:

- correctness

- efficient (time, space)

- elegant

- easy to implement

Week 1 Objectives

• understand the importance of algorithms

• Example of different solutions for the same
problem

- emphasize running time

• Example of being good at math

• Example of being smart

• Running time analysis, intro

- Order of growth

- Big-O notation

Example 1 : MAX

• given an array A, find maximum value

‣ input A[1:n]

‣ maxi=1

‣ for i=2:n

‣ if A[i]>A[maxi] then maxi=i

‣ endfor

‣ return (maxi, A[maxi])

• number of comparisons: n-1. Running Time o(n)

• observe correctness

• observe pseudocode

Example 2 : Fibonacci

• Fibonacci numbers are defined as

- F(0)=0; F(1) =1;

- F(n) = F(n-1) + F(n-2) for all n>1

• Observe the recursive definition

• Task: given n, calculate F(n)

Fibonacci - recursive solution

‣ Fib(n)

‣ if n<2

‣ return n

‣ endif

‣ val = Fib(n-1) + Fib(n-2)

‣ return val

• correct

• exponential running time (bad)

• see recursion tree

Fibonacci - recursive solution tree

• tree= stack
of function
calls

• n levels on
the left

• n/2 levels
on the
right

• at least n/2
levels full
binary tree

- at least 2(n/2)

calls

F(n)

F(n-1) F(n-2)

F(n-2) F(n-3) F(n-3) F(n-4)

F(n-3) F(n-4) F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)

F(1)

F(1)

Fibonacci - array solution

‣ Fib(n)
‣ array A[0..n] initialized

‣ A[0]=0; A[1]=1;

‣ for i=2:n

‣ A[i]=A[i-1] + A[i-2];

‣ endfor

‣ return A[n];

• one for loop
runs across the
array

• inside the loop
a constant time
operation O(1)

• overall linear
time O(n)

Fibonacci - Matrix Multiplication

• proof by mathematical induction

• so we have to multiply M with itself n times

- how fast can it be done?

- naively : each multiplication of 2x2 matrixes takes constant O(1)
time so linear time O(n) total

M =


1 1
1 0

�
Mk =


Fk+1 Fk

Fk Fk�1

�

Mk+1 = M ⇤Mk =


1 1
1 0

� 
Fk+1 Fk

Fk Fk�1

�

=


Fk+1 + Fk Fk + Fk�1

Fk+1 Fk

�
=


Fk+2 Fk+1

Fk+1 Fk

�

Fibonacci - Matrix Multiplication

• want to compute Mn : multiply M with itself n
times

- each multiplication of 2x2 matrixes takes constant O(1) time

• idea: repeated squaring

- M2=M*M; M4=M2*M2; M8=M4*M4 etc

• then multiply only the powers needed

- for example n=13 gives M13=M8*M4*M

M =


1 1
1 0

�

Fibonacci - Matrix Multiplication

‣ Fib(n)
‣ init

‣ for i=0:log(n)

‣ if(n%2 ==1) A=A*M; endif //add this power of M only if the respective bit in n is 1

‣ M=M*M; // get the next squaring M

‣ n=n/2 // move on to the next bit(right to left) in n - think of n represented in binary

‣ endfor

‣ return A[1,1]

• only log(n) iterations in for loop, each constant time

• logarithmic time O(log n) total

M =


1 1
1 0

�
A =


1 1
1 0

�

Fibonacci - generative function

• use the generative function (requires analytic
solution)

• where

• practically constant time, if scalar expoential is
done with a dedicated math processor

Fn =
�n � �̂n

p
5

� =
1 +

p
5

2
; �̂ =

1�
p
5

2

Conclusions

• Algorithms matter, even if the problem is very
simple

• They matter a lot if the problem is BIG

- think of big data today, or the web search

• Analysis of algorithms: running time, space
requirements, bottlenecks

• Implementation makes a difference too

CheckPoint

• Consider the first Fibonacci solution (recursion) vs
the second (array)

- how is it possible to reduce an exponential number of
computations to a linear number?

- are some of the computations in the first solutions not
necessary?

- can you speed up the recursion for the first solution?

Matrix multiplication

• multiply nxn matrices

• running time Θ(n3)

- Θ(n3) means actual number of multiplications T(n) is about n3

- C1*n3 ≤ T(n) ≤ C2*n3, for fixed constants C1 and C2

- count the number of multiplications

C = AB

cij =
nX

k=1

aikbkj

Strassen's Algorithm

• n=2: Multiplay 2x2 matrix using 7 multiplications
instead of 8

• Strassen's equations


r s
t u

�
=


a b
c d

�
⇥


e g
f h

�

P1 = a(g � h)
P2 = (a+ b)h
P3 = (c+ d)e
P4 = d(f � e)
P5 = (a+ d)(e+ h)
P6 = (b� d)(f + h)
P7 = (a� c)(e+ g)

r = P5 + P4� P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1� P3� P7

Strassen's Algorithm

• divide : partition A, B each in four n/2 x n/2
matrices

• conquer: perform 7 multiplications

- each multiplication of 2 matrices of size n/2 , done recursively

with divide-conquer mechanism for n= n/2

• combine: find C=AxB using Strassen's equations

• T(n) = time to multiply nxn matrices

- recursively: T(n) = 7T(n/2) + Θ(n2)

- how to solve this recursion?

Running time

• Solve equation T(n) = 7T(n/2) + Θ(n2) as order of
growth

- no interest in T(1), T(2) etc, but the general growth of the
function

• solution next module: T(n) is like nlog(7)

- approx n2.81, better than n3 the running time of multiplication

• that means C1*nlog(7)< T(n) < C2*nlog(7), for some
constants C1 and C2, for n≥n0 some starting value

checkpoint: matrix multiplication

• verify that Strassen's equation produce indeed
the correct matrix multiplication

Asymptotic Notation : Θ
• f(n) = Θ(g(n)) if C1g(n)≤f(n)≤C2g(n)

- for some positive constants C1 and C2, and starting at n≥n0

- T(n) for Strassen's multiplication is Θ(nlog(7))

- we cannot compute T(n) exactly, but we know its growing like

constant* nlog(7)

- example: f(n)=1/2*n2-2n is Θ(n2)

• a simple loop through data = linear algorithm

- Θ(n) or growing like constant*n

- for example the MAX algorithm earlier

Asymptotic Notation : "big" O
• f(n) = O(g(n)) if f(n)≤C2g(n)

- for some positive constant C2, and starting at n≥n0

- only bounding T(n) up, not down

- "worst case" = longest running time

- worst case not worse than g(n) growth

- if T(n) is Θ(g(n)), then T(n) is also O(g(n)), but not the converse!

• expression f(n) = n2 +O(n), or n2 plus "linear"

- means f(n)≤n2+C2n, for some constant C2, and initial n0

Asymptotic Notation : Ω

• lower bound: f(n) = Ω(g(n)) if f(n)>C1g(n)

- for some positive constant C1, and starting at n≥n0

- example: f(n)=n2 is Ω(nlog(n))

Asymptotic Notation : summary

Ten orders of growth

Explosive growth of exponential

Even more explosive n!

CheckPoint: Order of growth

• who is growing faster ?

- f(n)=n1/2 or g(n)=2log(n)

- f(n)=n1/3 or g(n) = [log(n)]3

- f(n) = 2(2^n) or g(n)=n!

• explain equation T(n) = 7T(n/2) + Θ(n2)

• MergeSort (size n) : solve 2 problems of size T(n/
2), then combine result in linear time. What is the
recursive equation for the running time T(n) ?

Being Smart: list intersection

• You are given the two head-nodes headA and
headB of two single-linked lists that are known
to intersect

- after intersection they are identical due to the linkage nature

• Task: find the intersection node

- cannot modify the lists, or use auxiliary data structures

head A

head B

Being Smart: list intersection

• naive solution:

‣ for each a=node of first list (traversal)

‣ for each b=node of the second list (traversal)

‣ if a==b return “found intersection node: a”

‣ end second for

‣ end first for

• such solution runs in O(mn) quadratic time, if m
and n are the lengths of the two lists

- the first loop takes up to m steps to iterate to the first list

- the second loop takes n steps; it runs for each step of the first

loop

head A

head B

Being Smart: list intersection

• smart solution:

‣ traverse the first list to count it, obtain m; m=9 in example

‣ traverse the second list to count it, obtain n; n=7 in example

‣ if m>n traverse first list for exactly m-n nodes; m-n=2 in example

‣ if n>m traverse second list for exactly n-m elements

‣ traverse the list simultaneously until the intersection node // in
example this simultaneous traversal starts at third blue and first red

• smart solution runs in O(m+n) linear time

head A

head B

