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Algorithms - what are they

• series of computational steps given an input, to 
produce an output



• desirable properties:


- correctness


- efficient (time, space)


- elegant


- easy to implement



Week 1 Objectives

• understand the importance of algorithms



• Example of different solutions for the same 
problem



- emphasize running time



• Example of being good at math



• Example of being smart



• Running time analysis, intro


- Order of growth


- Big-O notation



Example 1 : MAX

• given an array A, find maximum value


‣ input A[1:n]

‣ maxi=1

‣ for i=2:n

‣ if A[i]>A[maxi] then maxi=i

‣ endfor

‣ return (maxi, A[maxi])

• number of comparisons: n-1. Running Time o(n)



• observe correctness



• observe pseudocode



Example 2 : Fibonacci

• Fibonacci numbers are defined as


- F(0)=0; F(1) =1;


- F(n) = F(n-1) + F(n-2)  for all n>1



• Observe the recursive definition



• Task: given n, calculate F(n) 



Fibonacci - recursive solution 

‣ Fib(n)

‣ if n<2 

‣ return n

‣ endif

‣ val = Fib(n-1) + Fib(n-2)

‣ return val

• correct



• exponential running time (bad)


• see recursion tree



Fibonacci - recursive solution tree

• tree= stack 
of function 
calls



• n levels on 
the left



• n/2 levels 
on the 
right



• at least n/2 
levels full 
binary tree



- at least 2(n/2) 

calls 



F(n)

F(n-1) F(n-2)

F(n-2) F(n-3) F(n-3) F(n-4)

F(n-3) F(n-4) F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)

F(1)

F(1)



Fibonacci - array solution

‣ Fib(n)
‣ array A[0..n] initialized

‣ A[0]=0; A[1]=1;

‣ for i=2:n

‣ A[i]=A[i-1] + A[i-2];

‣ endfor

‣ return A[n];

• one for loop 
runs across the 
array 



• inside the loop 
a constant time 
operation O(1)



• overall linear 
time O(n)



Fibonacci - Matrix Multiplication

• proof by mathematical induction



• so we have to multiply M with itself n times


- how fast can it be done?



- naively : each multiplication of 2x2 matrixes takes constant O(1) 
time so linear time O(n) total
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Fibonacci - Matrix Multiplication

• want to compute Mn : multiply M with itself n 
times



- each multiplication of 2x2 matrixes takes constant O(1) time



• idea: repeated squaring 


- M2=M*M; M4=M2*M2; M8=M4*M4 etc



• then multiply only the powers needed


- for example n=13 gives M13=M8*M4*M 

M =


1 1
1 0

�



Fibonacci - Matrix Multiplication

‣ Fib(n)
‣ init

‣ for i=0:log(n)

‣ if(n%2 ==1) A=A*M; endif //add this power of M only if the respective bit in n is 1

‣ M=M*M; // get the next squaring M

‣ n=n/2 // move on to the next bit(right to left) in n - think of n represented in binary

‣ endfor

‣ return A[1,1]

• only log(n) iterations in for loop, each constant time


• logarithmic time O(log n) total
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Fibonacci - generative function

• use the generative function (requires analytic 
solution)



• where



• practically constant time, if scalar expoential is 
done with a dedicated math processor
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Conclusions

• Algorithms matter, even if the problem is very 
simple



• They matter a lot if the problem is BIG 


- think of big data today, or the web search



• Analysis of algorithms: running time, space 
requirements, bottlenecks



• Implementation makes a difference too



CheckPoint

• Consider the first Fibonacci solution (recursion) vs 
the second (array)



- how is it possible to reduce an exponential number of 
computations to a linear number?



- are some of the computations in the first solutions not 
necessary?



- can you speed up the recursion for the first solution?



Matrix multiplication

• multiply nxn matrices



• running time Θ(n3)


- Θ(n3) means actual number of multiplications T(n) is about n3 


- C1*n3 ≤ T(n) ≤ C2*n3, for fixed constants C1 and C2 


- count the number of multiplications

C = AB

cij =
nX

k=1

aikbkj



Strassen's Algorithm

• n=2: Multiplay 2x2 matrix using 7 multiplications 
instead of 8



• Strassen's equations
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Strassen's Algorithm

• divide : partition A, B each in four n/2 x n/2 
matrices



• conquer: perform 7 multiplications


- each multiplication of 2 matrices of size n/2 , done recursively 

with divide-conquer mechanism for n= n/2



• combine: find C=AxB using Strassen's equations



• T(n) = time to multiply nxn matrices


- recursively: T(n) = 7T(n/2) +  Θ(n2)


- how to solve this recursion?



Running time

• Solve equation T(n) = 7T(n/2) +  Θ(n2) as order of 
growth



- no interest in T(1), T(2) etc, but the general growth of the 
function



• solution next module: T(n) is like nlog(7) 


- approx n2.81, better than n3 the running time of multiplication



• that means C1*nlog(7)< T(n) < C2*nlog(7), for some 
constants C1 and C2, for n≥n0 some starting value



checkpoint: matrix multiplication

• verify that Strassen's equation produce indeed 
the correct matrix multiplication



Asymptotic Notation :  Θ
• f(n) = Θ(g(n)) if C1g(n)≤f(n)≤C2g(n) 


- for some positive constants C1 and C2, and starting at n≥n0



- T(n) for Strassen's multiplication is Θ(nlog(7))


- we cannot compute T(n) exactly, but we know its growing like 

constant* nlog(7)



- example: f(n)=1/2*n2-2n  is  Θ(n2)



• a simple loop through data = linear algorithm 


- Θ(n) or growing like constant*n


- for example the MAX algorithm earlier



Asymptotic Notation : "big" O
• f(n) = O(g(n)) if f(n)≤C2g(n) 


- for some positive constant C2, and starting at n≥n0



- only bounding T(n) up, not down


- "worst case" = longest running time


- worst case not worse than g(n) growth



- if T(n) is Θ(g(n)), then T(n) is also O(g(n)), but not the converse!



• expression f(n) = n2 +O(n), or n2 plus "linear"


- means f(n)≤n2+C2n, for some constant C2, and initial n0



Asymptotic Notation :  Ω

• lower bound: f(n) = Ω(g(n)) if f(n)>C1g(n) 


- for some positive constant C1, and starting at n≥n0



- example: f(n)=n2 is Ω(nlog(n))



Asymptotic Notation : summary



Ten orders of growth



Explosive growth of exponential



Even more explosive n!



CheckPoint: Order of growth

• who is growing faster ?


- f(n)=n1/2  or g(n)=2log(n)


- f(n)=n1/3  or g(n) = [log(n)]3


- f(n) = 2(2^n) or g(n)=n!



• explain equation T(n) = 7T(n/2) +  Θ(n2)



• MergeSort (size n) : solve 2 problems of size T(n/
2), then combine result in linear time. What is the 
recursive equation for the running time T(n) ?



Being Smart: list intersection

• You are given the two head-nodes headA and 
headB of two single-linked lists that are known 
to intersect 



- after intersection they are identical due to the linkage nature



• Task: find the intersection node


- cannot modify the lists, or use auxiliary data structures 

head A

head B



Being Smart: list intersection

• naive solution:


‣ for each a=node of first list (traversal)

‣ for each b=node of the second list (traversal)

‣ if a==b return “found intersection node: a”

‣ end second for

‣ end first for

• such solution runs in O(mn) quadratic time, if m 
and n are the lengths of the two lists



- the first loop takes up to m steps to iterate to the first list


- the second loop takes n steps; it runs for each step of the first 

loop

head A

head B



Being Smart: list intersection

• smart solution:


‣ traverse the first list to count it, obtain m; m=9 in example

‣ traverse the second list to count it, obtain n; n=7 in example

‣ if m>n traverse first list for exactly m-n nodes; m-n=2 in example

‣ if n>m traverse second list for exactly n-m elements

‣ traverse the list simultaneously until the intersection node // in 
example this simultaneous traversal starts at third blue and first red 

• smart solution runs in O(m+n) linear time

head A

head B






