6. Mixed Integer Linear Programming

Javier Larrosa

Albert Oliveras

Enric Rodríguez-Carbonell

Problem Solving and Constraint Programming (RPAR)

Mixed Integer Linear Programming

A mixed integer linear program (MILP, MIP) is of the form

 $\min c^T x$ Ax = b $x \ge 0$ $x_i \in \mathbb{Z} \quad \forall i \in \mathcal{I}$

- If all variables need to be integer, it is called a (pure) integer linear program (ILP, IP)
- If all variables need to be 0 or 1 (binary, boolean), it is called a 0 − 1 linear program

Applications of MIP

- Used in contexts where, e.g.:
 - it only makes sense to take integral quantities of certain goods or resources, e.g.:
 - men (human resources planning)
 - power stations (facility location)
 - binary decisions need to be taken
 - producing a product (production planning)
 - assigning a task to a worker (assignment problems)
 - assigning a slot to a course (timetabling)
- And many many more...

Computational Complexity: LP vs. IP

- Including integer variables increases enourmously the modeling power, at the expense of more complexity
- LP's can be solved in polynomial time with interior-point methods (ellipsoid method, Karmarkar's algorithm)
- Integer Programming is an NP-complete problem. So:
 - There is no known polynomial-time algorithm
 - There are little chances that one will ever be found
 - Even small problems may be hard to solve
- What follows is one of the many approaches (and one of the most successful) for attacking IP's

LP Relaxation of a MIP

Given a MIP

 $(IP) \quad \begin{aligned} \min \ c^T x \\ Ax &= b \\ x &\geq 0 \\ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I} \end{aligned}$

its linear relaxation consists in the LP obtained by dropping the integrality constraints:

$$(LP) \qquad \min \ c^T x$$
$$(LP) \qquad Ax = b$$
$$x \ge 0$$

Can we solve *IP* by solving *LP*? By rounding?

Branch & Bound (1)

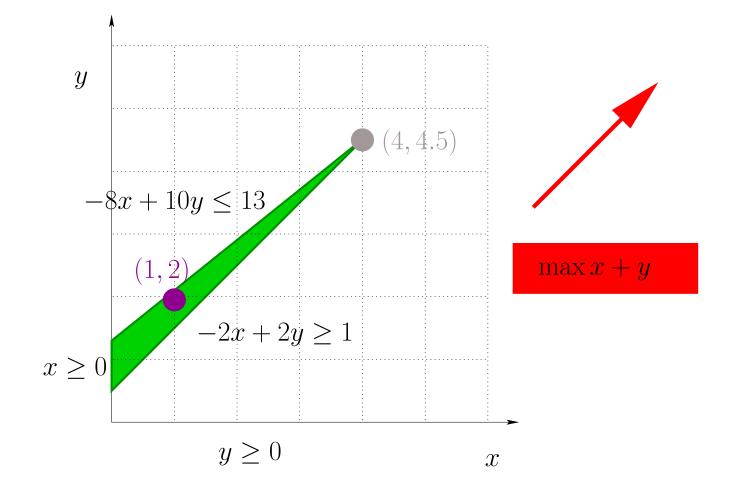
The optimal solution of

 $\max x + y$ $-2x + 2y \ge 1$ $-8x + 10y \le 13$ $x, y \in \mathbb{Z}$

is (x, y) = (1, 2) with objective 3

- The optimal solution of its LP relaxation is (x, y) = (4, 4.5) with objective 9.5
- No direct way of getting from (x, y) = (4, 4.5) to (x, y) = (1, 2) by rounding!
- Something more elaborate is needed: branch & bound

Branch & Bound (2)



Branch & Bound (3)

- Assume integer variables have lower and upper bounds
- Let P_0 initial problem, $LP(P_0)$ LP relaxation of P_0
- If in optimal solution of $LP(P_0)$ all integer variables take integer values then it is also an optimal solution to P_0

Else

- Rounding the solution of $LP(P_0)$ may yield to non-optimal or non-feasible solutions for P_0 !
- Let x_j be integer variable whose value β_j at optimal solution of $LP(P_0)$ satisfies $\beta_j \notin \mathbb{Z}$. Define

 $P_1 := P_0 \land x_j \le \lfloor \beta_j \rfloor$ $P_2 := P_0 \land x_j \ge \lceil \beta_j \rceil$

• Feasible solutions to P_0 = feasible solutions to P_1 or P_2

Branch & Bound (4)

• Let x_j be integer variable whose value β_j at optimal solution of $LP(P_0)$ satisfies $\beta_j \notin \mathbb{Z}$.

 $P_1 := P_0 \land x_j \le \lfloor \beta_j \rfloor \qquad P_2 := P_0 \land x_j \ge \lceil \beta_j \rceil$

 P_i can be solved recursively

- We can build a binary tree of subproblems whose leaves correspond to pending problems still to be solved
- Terminates as integer vars have finite bounds and, at each split, range of one var becomes strictly smaller
- If $LP(P_i)$ has optimal solution where integer variables take integer values then solution is stored
- If $LP(P_i)$ is infeasible then P_i can be discarded (pruned, fathomed)

Example (1)

No.	Column name	St	Activity	Lower bound	Upper bound
1	х	В	4	0	
2	У	В	4.5	0	

Example (2)

Example (3)

```
Max obj: x + y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y <= 13
Bounds
y <= 4
End
Status: OPTIMAL
Objective: obj = 7.5 (MAXimum)
  No. Column name St Activity Lower bound Upper bound
          _____
                     3.5
    1 x
              В
                                          0
                           4
    2 y
              NU
                                                    4
                                          0
```

Example (4)

Example (5)

No.	Column name	St	Activity	Lower bound	Upper bound
1	x	NU	3	0	3
2	У	В	3.7	0	4

Example (6)

Example (7)

No.	Column name	St	Activity	Lower bound	Upper bound
1	x	В	2.5	0	3
2	У	NU	3	0	3

Example (8)

```
Max obj: x + y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y <= 13
Bounds
x = 3
y <= 3
End
GLPSOL: GLPK LP/MIP Solver 4.38
...
PROBLEM HAS NO PRIMAL FEASIBLE SOLUTION</pre>
```

Example (9)

No.	Column name	St	Activity	Lower bound	Upper bound
1	x	NU	2	0	2
2	У	В	2.9	0	3

Example (10)

PROBLEM HAS NO PRIMAL FEASIBLE SOLUTION

Example (11)

No.	Column name	St	Activity	Lower bound	Upper bound
1	х	В	1.5	0	2
2	У	NU	2	0	2

Example (12)

PROBLEM HAS NO PRIMAL FEASIBLE SOLUTION

Example (13)

No.	Column name	St	Activity	Lower bound	Upper bound
1	x	NU	1	0	1
2	У	NU	2	0	2

Pruning in Branch & Bound

- We have already seen that if relaxation is infeasible, the problem can be pruned
- Now assume an (integral) solution has been found
- If solution has cost Z then any pending problem P_j whose relaxation has optimal value > Z can be ignored

 $\operatorname{cost}(P_j) \ge \operatorname{cost}(\operatorname{LP}(P_j)) > Z$

The optimum will not be in any descendant of P_j !

 This pruning of the search tree has a huge impact on the efficiency of Branch & Bound

Unboundedness in Branch & Bound

- We assumed integer variables are bounded
- In mixed problems, we allow non-integer variables to be unbounded
- Assume $LP(P_i)$ is unbounded. Then:
 - If in basic solution integer variables take integer values then the problem is unbounded (assuming that problem data are rational numbers)
 - Else we proceed recursively as if an optimal solution to LP(P_i) had been found.
 What's different wrt LP(P_i) having optimal solution?

Unboundedness in Branch & Bound

- We assumed integer variables are bounded
- In mixed problems, we allow non-integer variables to be unbounded
- Assume $LP(P_i)$ is unbounded. Then:
 - If in basic solution integer variables take integer values then the problem is unbounded (assuming that problem data are rational numbers)
 - Else we proceed recursively as if an optimal solution to LP(P_i) had been found.
 What's different wrt LP(P_i) having optimal solution? If LP(P_i) is unbounded then P_i cannot be pruned: no need to check this!

Branch & Bound: Algorithmic Description

 $S := \{P_0\}$ /* set of pending problems */ $Z := +\infty$ /* best cost found so far */ while $S \neq \emptyset$ do remove *P* from *S*; solve LP(P)if LP(P) is feasible then Let β be basic solution obtained after solving LP(P) if β satisfies integrality constraints then if β is optimal for LP(P) then if $cost(\beta) < Z$ then store β ; update Z else return UNBOUNDED else if β is optimal for $LP(P) \wedge P$ can be pruned then continue Let x_i be integer variable such that $\beta_i \notin \mathbb{Z}$ $S := S \quad \cup \quad \{P \land x_i \leq |\beta_i|, \quad P \land x_i \geq [\beta_i]\}$ return ZSession 6 - p.25/40

Heuristics in Branch & Bound

- Possible choices in Branch & Bound
 - Choosing a pending problem
 - Depth-first search
 - Breadth-first search
 - Best-first search (select node with best cost value)
 - Choosing a branching variable
 - That closest to halfway two integer values
 - That with least cost coefficient
 - That which is important in the model (0-1 variable)
 - That which is biggest in a variable ordering
- No known strategy is best for all problems!

Remarks on Branch & Bound

If integer variables not bounded, B&B may not terminate

 $\min 0$ $1 \le 3x - 3y \le 2$ $x, y \in \mathbb{Z}$

is infeasible but B&B loops forever looking for solutions!

- New problems need not be solved from scratch but starting from optimal solution of parent problem
- Dual Simplex Method can be used: dual feasibility preserved if change bounds of basic vars
- Often Dual Simplex needs few iterations to obtain an optimal solution to new problem (reoptimization)

Lower Bounding Procedures

- Pruning at a node is achieved here by solving the LP relaxation with dual simplex
- But there exist other procedures for giving lower bounds on best objective value: Lagrangian relaxation

$$(MIP) \begin{array}{l} \min \ c^T x & \min \ c^T x + \mu(Ax - b) \\ Ax \leq b & \Rightarrow (LG) \ \ell \leq x \leq u & \text{with } \mu \geq 0 \\ \ell \leq x \leq u & x_i \in \mathbb{Z} \ \forall i \in \mathcal{I} & x_i \in \mathbb{Z} \ \forall i \in \mathcal{I} \end{array}$$

- *LG* is a relaxation: gives lower bound on *MIP*
- *LG* can be trivially solved
- For good μ , *LG* is as good as *LP* relax. but cheaper
- Concrete problems have ad-hoc lower bounding procs

Cutting Planes (1)

Let us consider a MIP of the form

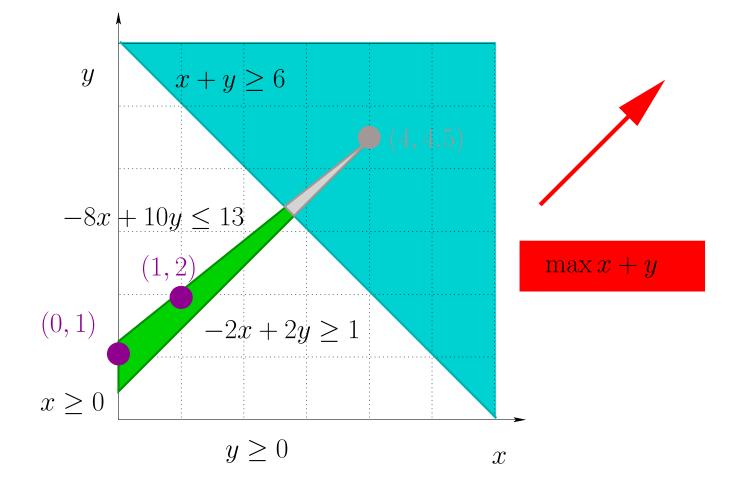
$$\min_{x \in S} c^T x$$
 where $S = \left\{ \begin{array}{c} x \in \mathbb{R}^n \\ x \in \mathbb{R}^n \end{array} \middle| \begin{array}{c} Ax = b \\ \ell \leq x \leq u \\ x_i \in \mathbb{Z} \quad \forall i \in \mathcal{I} \end{array} \right\}$

and its linear relaxation

$$\min_{x \in P} c^T x$$
 where $P = \left\{ x \in \mathbb{R}^n \mid Ax = b \\ \ell \le x \le u \right\}$

• Let β be such that $\beta \in P$ but $\beta \notin S$. A cut for β is a linear inequality $\hat{a}^T x \leq \hat{b}$ such that $\hat{a}^T \beta > \hat{b}$ and $\gamma \in S$ implies $\hat{a}^T \gamma \leq \hat{b}$

Cutting Planes (2)



Using Cuts for Solving MIP

• Let $\hat{a}^T x \leq \hat{b}$ be a cut. Then the MIP

$$\min_{x \in S'} c^T x$$
where $S' = \begin{cases} x \in \mathbb{R}^n \\ i \leq x \leq u \\ x_i \in \mathbb{Z} \quad \forall i \in \mathcal{I} \end{cases}$

$$Ax = b$$

$$\hat{a}^T x \leq \hat{b}$$

$$\ell \leq x \leq u$$

$$x_i \in \mathbb{Z} \quad \forall i \in \mathcal{I}$$

has the same set of feasible solutions *S* but its LP relaxation is strictly more constrained

- Rather than splitting into subproblems as in Branch & Bound, one can add the cut and solve the relaxation
- Used together with Branch & Bound: Branch & Cut If after adding cuts no solution is found, then branch

Gomory Cuts (1)

- There are several techniques for deriving cuts
- Some are problem-specific (e.g, travelling salesman)
- Here we will see a generic technique: Gomory cuts
- Let us consider a tableau with a row of the form

$$x_i = \omega_i + \sum_{j \in \mathcal{R}} a_{ij} x_j \qquad (i \in \mathcal{B})$$

Let β be an associated basic solution such that

- 1. $i \in \mathcal{I}$
- **2.** $\beta(x_i) \notin \mathbb{Z}$
- 3. For all $j \in \mathcal{R}$ we have $\beta(x_j) = \ell_j$ or $\beta(x_j) = u_j$
- Can think that it is the optimal tableau of the relaxation

Gomory Cuts (2)

- Let $\delta = \beta(x_i) \lfloor \beta(x_i) \rfloor$. Then $0 < \delta < 1$ (assumption 2)
- By assumption 3, no non-basic variable is free
- Let $\mathcal{R}' = \mathcal{R} \cap \{j \mid \ell_j < u_j\}$ set of non-basic non-fixed vars
- Let $\mathcal{L} = \{ j \in \mathcal{I} \cap \mathcal{R}' \mid \beta(x_j) = \ell_j \}$
- Let $\mathcal{U} = \{ j \in \mathcal{I} \cap \mathcal{R}' \mid \beta(x_j) = u_j \}$
- Let $x \in S$. Then $x_i \in \mathbb{Z}$ and

$$x_i = \omega_i + \sum_{j \in \mathcal{R}} a_{ij} x_j$$

• Since β is basic solution

$$\beta(x_i) = \omega_i + \sum_{j \in \mathcal{R}} a_{ij} \beta(x_j)$$

Gomory Cuts (3)

$$x_{i} = \omega_{i} + \sum_{j \in \mathcal{R}} a_{ij} x_{j}$$
$$\beta(x_{i}) = \omega_{i} + \sum_{j \in \mathcal{R}} a_{ij} \beta(x_{j})$$

Subtracting

$$x_{i} - \beta(x_{i}) = \sum_{j \in \mathcal{R}} a_{ij}(x_{j} - \beta(x_{j}))$$

=
$$\sum_{j \in \mathcal{L}} a_{ij}(x_{j} - \ell_{j}) - \sum_{j \in \mathcal{U}} a_{ij}(u_{j} - x_{j})$$

Finally

$$x_i - \lfloor \beta(x_i) \rfloor = \delta + \sum_{j \in \mathcal{L}} a_{ij} (x_j - \ell_j) - \sum_{j \in \mathcal{U}} a_{ij} (u_j - x_j)$$

Let us define

 $\mathcal{L}^{+} = \{ j \in \mathcal{L} \mid a_{ij} \ge 0 \} \qquad \mathcal{L}^{-} = \{ j \in \mathcal{L} \mid a_{ij} < 0 \}$ $\mathcal{U}^{+} = \{ j \in \mathcal{U} \mid a_{ij} \ge 0 \} \qquad \mathcal{U}^{-} = \{ j \in \mathcal{L} \mid a_{ij} < 0 \}$

Gomory Cuts (4)

$$x_i - \lfloor \beta(x_i) \rfloor = \delta + \sum_{j \in \mathcal{L}} a_{ij} (x_j - \ell_j) - \sum_{j \in \mathcal{U}} a_{ij} (u_j - x_j)$$

• Assume $\sum_{j \in \mathcal{L}} a_{ij}(x_j - \ell_j) - \sum_{j \in \mathcal{U}} a_{ij}(u_j - x_j) \ge 0$. Then

$$\delta + \sum_{j \in \mathcal{L}} a_{ij}(x_j - \ell_j) - \sum_{j \in \mathcal{U}} a_{ij}(u_j - x_j) \ge 1$$

$$\sum_{j \in \mathcal{L}^+} a_{ij}(x_j - \ell_j) - \sum_{j \in \mathcal{U}^-} a_{ij}(u_j - x_j) \ge 1 - \delta$$

$$\sum_{j \in \mathcal{L}^+} \frac{a_{ij}}{1 - \delta} (x_j - \ell_j) + \sum_{j \in \mathcal{U}^-} \left(\frac{-a_{ij}}{1 - \delta}\right) (u_j - x_j) \ge 1$$

Moreover $\sum_{j \in \mathcal{L}^-} \left(\frac{-a_{ij}}{\delta}\right) (x_j - \ell_j) + \sum_{j \in \mathcal{U}^+} \frac{a_{ij}}{\delta} (u_j - x_j) \ge 0$

Gomory Cuts (5)

$$x_i - \lfloor \beta(x_i) \rfloor = \delta + \sum_{j \in \mathcal{L}} a_{ij} (x_j - \ell_j) - \sum_{j \in \mathcal{U}} a_{ij} (u_j - x_j)$$

• Assume $\sum_{j \in \mathcal{L}} a_{ij}(x_j - \ell_j) - \sum_{j \in \mathcal{U}} a_{ij}(u_j - x_j) < 0$. Then

$$\delta + \sum_{j \in \mathcal{L}} a_{ij}(x_j - \ell_j) - \sum_{j \in \mathcal{U}} a_{ij}(u_j - x_j) \le 0$$

$$-\sum_{j\in\mathcal{L}^-}a_{ij}(x_j-\ell_j)+\sum_{j\in\mathcal{U}^+}a_{ij}(u_j-x_j)\geq\delta$$

$$\sum_{j \in \mathcal{L}^-} \left(\frac{-a_{ij}}{\delta}\right) (x_j - \ell_j) + \sum_{j \in \mathcal{U}^+} \frac{a_{ij}}{\delta} (u_j - x_j) \ge 1$$

Moreover $\sum_{j \in \mathcal{L}^+} \frac{a_{ij}}{1-\delta} (x_j - \ell_j) + \sum_{j \in \mathcal{U}^-} \left(\frac{-a_{ij}}{1-\delta} \right) (u_j - x_j) \ge 0$

Gomory Cuts (6)

In any case

$$\sum_{j \in \mathcal{L}^{-}} \left(\frac{-a_{ij}}{\delta} \right) (x_j - \ell_j) + \sum_{j \in \mathcal{U}^{+}} \frac{a_{ij}}{\delta} (u_j - x_j) + \sum_{j \in \mathcal{L}^{+}} \frac{a_{ij}}{1 - \delta} (x_j - \ell_j) + \sum_{j \in \mathcal{U}^{-}} \left(\frac{-a_{ij}}{1 - \delta} \right) (u_j - x_j) \ge 1$$

for any $x \in S$. However, β does not satisfy this inequality (set $x_j = \ell_j$ for $j \in \mathcal{L}$, and $x_j = u_j$ $j \in \mathcal{U}$)

Ensuring All Vertices Are Integer (1)

- Let us assume A, b have coefficients in \mathbb{Z}
- Sometimes it is possible to ensure for an IP that all vertices of the relaxation are integer
- For instance, when the matrix A is totally unimodular: the determinant of every square submatrix is 0 or ± 1
- Sufficient condition: property K
 - Each element of A is 0 or ± 1
 - No more than two non-zeros appear in each columm
 - Rows can be partitioned in two subsets R_1 and R_2 s.t.
 - If a column contains two non-zeros of the same sign, one element is in each of the subsets
 - If a column contains two non-zeros of different signs, both elements belong to the same subset

Assignment Problem

- m = # of workers = # of tasks
- Each worker must be assigned to exactly one task
- Each task is to be performed by exactly one worker
- $c_{ij} = \text{cost}$ when worker *i* performs task *j*

Assignment Problem

- m = # of workers = # of tasks
- Each worker must be assigned to exactly one task
- Each task is to be performed by exactly one worker
- $c_{ij} = \text{cost}$ when worker *i* performs task *j*

 $x_{ij} = \begin{cases} 1 & \text{if worker } i \text{ performs task } j \\ 0 & \text{otherwise} \end{cases}$

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad \forall j \in \{1, \dots, m\}$$

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad \forall i \in \{1, \dots, m\}$$

$$x_{ij} \in \{0, 1\} \qquad \forall i, j \in \{1, \dots, m\}$$

• This problem satisfies property K

Ensuring All Vertices Are Integer (2)

- Several kinds of IP's satisfy property *K*:
 - Assignment
 - Transportation
 - Maximum flow
 - Shortest path
 - **.**...
- Usually specialized network algorithms are more efficient for these problems than simplex techniques
- But simplex techniques are general and can be used if no implementation of network algorithms is available