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Linear programming (LP, or linear optimization) is a mathematical method for
determining a way to achieve the best outcome (such as maximum profit or lowest cost) in a
given mathematical model for some list of requirements represented as linear relationships.
Linear programming is a specific case of mathematical programming (mathematical
optimization).

More formally, linear programming is a technique for the optimization of a linear objective
function, subject to linear equality and linear inequality constraints. Its feasible region is a
convex polyhedron, which is a set defined as the intersection of finitely many half spaces, each
of which is defined by a linear inequality. Its objective function is a real-valued affine function
defined on this polyhedron. A linear programming algorithm finds a point in the polyhedron
where this function has the smallest (or largest) value if such point exists.

Linear programs are problems that can be expressed in canonical form:

where x represents the vector of variables (to be determined), c and b are vectors of (known)
coefficients and A is a (known) matrix of coefficients. The expression to be maximized or
minimized is called the objective function (cTx in this case). The equations Ax ! b are the
constraints which specify a convex polytope over which the objective function is to be
optimized. (In this context, two vectors are comparable when every entry in one is less-than
or equal-to the corresponding entry in the other. Otherwise, they are incomparable.)

Linear programming can be applied to various fields of study. It is used most extensively in
business and economics, but can also be utilized for some engineering problems. Industries
that use linear programming models include transportation, energy, telecommunications, and
manufacturing. It has proved useful in modeling diverse types of problems in planning,
routing, scheduling, assignment, and design.
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History

The problem of solving a system of linear inequalities dates back at least as far as Fourier,
after whom the method of Fourier-Motzkin elimination is named. Linear programming itself
was first developed by Leonid Kantorovich, a Russian mathematician, in 1939.[1] It was used
during World War II to plan expenditures and returns in order to reduce costs to the army and
increase losses to the enemy. The method was kept secret until 1947 when George B. Dantzig
published the simplex method and John von Neumann developed the theory of duality as a
linear optimization solution, and applied it in the field of game theory. Postwar, many
industries found its use in their daily planning.

The linear-programming problem was first shown to be solvable in polynomial time by Leonid
Khachiyan in 1979, but a larger theoretical and practical breakthrough in the field came in
1984 when Narendra Karmarkar introduced a new interior-point method for solving linear-
programming problems.

Dantzig's original example of finding the best assignment of 70 people to 70 jobs exemplifies
the usefulness of linear programming. The computing power required to test all the
permutations to select the best assignment is vast; the number of possible configurations
exceeds the number of particles in the universe. However, it takes only a moment to find the
optimum solution by posing the problem as a linear program and applying the Simplex
algorithm. The theory behind linear programming drastically reduces the number of possible



optimal solutions that must be checked.

Uses

Linear programming is a considerable field of optimization for several reasons. Many practical
problems in operations research can be expressed as linear programming problems. Certain
special cases of linear programming, such as network flow problems and multicommodity flow
problems are considered important enough to have generated much research on specialized
algorithms for their solution. A number of algorithms for other types of optimization problems
work by solving LP problems as sub-problems. Historically, ideas from linear programming
have inspired many of the central concepts of optimization theory, such as duality,
decomposition, and the importance of convexity and its generalizations. Likewise, linear
programming is heavily used in microeconomics and company management, such as planning,
production, transportation, technology and other issues. Although the modern management
issues are ever-changing, most companies would like to maximize profits or minimize costs
with limited resources. Therefore, many issues can be characterized as linear programming
problems.

Standard form

Standard form is the usual and most intuitive form of describing a linear programming
problem. It consists of the following four parts:

A linear function to be maximized

e.g. 

Problem constraints of the following form

e.g.

Non-negative variables

e.g.

Non-negative right hand side constants

The problem is usually expressed in matrix form, and then becomes:



Other forms, such as minimization problems, problems with constraints on alternative forms,
as well as problems involving negative variables can always be rewritten into an equivalent
problem in standard form.

Example

Suppose that a farmer has a piece of farm land, say L km2, to be planted with either wheat or
barley or some combination of the two. The farmer has a limited amount of fertilizer, F
kilograms, and insecticide, P kilograms. Every square kilometer of wheat requires F1 kilograms
of fertilizer, and P1 kilograms of insecticide, while every square kilometer of barley requires F2
kilograms of fertilizer, and P2 kilograms of insecticide. Let S1 be the selling price of wheat per
square kilometer, and S2 be the price of barley. If we denote the area of land planted with
wheat and barley by x1 and x2 respectively, then profit can be maximized by choosing optimal
values for x1 and x2. This problem can be expressed with the following linear programming
problem in the standard form:

Maximize: S1x1 + S2x2
(maximize the revenue—revenue is the "objective
function")

Subject
to: 0 ! x1 + x2 ! L (limit on total area)

0 ! F1x1 + F2x2 !
F

(limit on fertilizer)

0 ! P1x1 + P2x2 !
P

(limit on insecticide)

x1 " 0, x2 " 0 (cannot plant a negative area).

Which in matrix form becomes:

maximize 

subject to 

Augmented form (slack form)

Linear programming problems must be converted into augmented form before being solved by
the simplex algorithm. This form introduces non-negative slack variables to replace
inequalities with equalities in the constraints. The problem can then be written in the following
block matrix form:

Maximize Z:



x, xs " 0

where xs are the newly introduced slack variables, and Z is the variable to be maximized.

Example

The example above is converted into the following augmented form:

Maximize: S1x1 + S2x2 (objective function)

Subject to: x1 + x2 + x3 = L (augmented constraint)

F1x1 + F2x2 + x4 = F (augmented constraint)

P1x1 + P2x2 + x5 = P (augmented constraint)

x1, x2, x3, x4, x5 " 0.

where x3, x4, x5 are (non-negative) slack variables, representing in this example the unused
area, the amount of unused fertilizer, and the amount of unused insecticide.

In matrix form this becomes:

Maximize Z:

Duality

See also: Dual linear program

Every linear programming problem, referred to as a primal problem, can be converted into a
dual problem, which provides an upper bound to the optimal value of the primal problem. In
matrix form, we can express the primal problem as:

Maximize cTx subject to Ax ! b, x " 0;

with the corresponding symmetric dual problem,

Minimize bTy subject to ATy " c, y " 0.

An alternative primal formulation is:



Maximize cTx subject to Ax ! b;

with the corresponding asymmetric dual problem,

Minimize bTy subject to ATy = c, y " 0.

There are two ideas fundamental to duality theory. One is the fact that (for the symmetric
dual) the dual of a dual linear program is the original primal linear program. Additionally,
every feasible solution for a linear program gives a bound on the optimal value of the
objective function of its dual. The weak duality theorem states that the objective function
value of the dual at any feasible solution is always greater than or equal to the objective
function value of the primal at any feasible solution. The strong duality theorem states that if
the primal has an optimal solution, x*, then the dual also has an optimal solution, y*, such
that cTx*=bTy*.

A linear program can also be unbounded or infeasible. Duality theory tells us that if the primal
is unbounded then the dual is infeasible by the weak duality theorem. Likewise, if the dual is
unbounded, then the primal must be infeasible. However, it is possible for both the dual and
the primal to be infeasible (See also Farkas' lemma).

Example

Revisit the above example of the farmer who may grow wheat and barley with the set
provision of some L land, F fertilizer and P insecticide. Assume now that unit prices for each of
these means of production (inputs) are set by a planning board. The planning board's job is to
minimize the total cost of procuring the set amounts of inputs while providing the farmer with
a floor on the unit price of each of his crops (outputs), S1 for wheat and S2 for barley. This
corresponds to the following linear programming problem:

Minimize: LyL + FyF + PyP
(minimize the total cost of the means of production as the
"objective function")

Subject
to:

yL + F1yF + P1yP
" S1

(the farmer must receive no less than S1 for his wheat)

yL + F2 yF + P2yP
" S2

(the farmer must receive no less than S2 for his barley)

yL " 0, yF " 0, yP
" 0

(prices cannot be negative).

Which in matrix form becomes:

Minimize: 

Subject to: 



The primal problem deals with physical quantities. With all inputs available in limited
quantities, and assuming the unit prices of all outputs is known, what quantities of outputs to
produce so as to maximize total revenue? The dual problem deals with economic values. With
floor guarantees on all output unit prices, and assuming the available quantity of all inputs is
known, what input unit pricing scheme to set so as to minimize total expenditure?

To each variable in the primal space corresponds an inequality to satisfy in the dual space,
both indexed by output type. To each inequality to satisfy in the primal space corresponds a
variable in the dual space, both indexed by input type.

The coefficients that bound the inequalities in the primal space are used to compute the
objective in the dual space, input quantities in this example. The coefficients used to compute
the objective in the primal space bound the inequalities in the dual space, output unit prices in
this example.

Both the primal and the dual problems make use of the same matrix. In the primal space, this
matrix expresses the consumption of physical quantities of inputs necessary to produce set
quantities of outputs. In the dual space, it expresses the creation of the economic values
associated with the outputs from set input unit prices.

Since each inequality can be replaced by an equality and a slack variable, this means each
primal variable corresponds to a dual slack variable, and each dual variable corresponds to a
primal slack variable. This relation allows us to complementary slackness.

Another example

Sometimes, one may find it more intuitive to obtain the dual program without looking at
program matrix. Consider the following linear program:

minimize

subject to ,

,

,

We have m + n conditions and all variables are non-negative. We shall define m + n dual
variables: yj and si. We get:

minimize

subject to ,



Covering-packing dualities
Covering problems Packing problems

Minimum set cover Maximum set packing

Minimum vertex cover Maximum matching

Minimum edge cover Maximum independent set

,

,

,

Since this is a minimization problem, we would like to obtain a dual program that is a lower
bound of the primal. In other words, we would like the sum of all right hand side of the
constraints to be the maximal under the condition that for each primal variable the sum of its
coefficients do not exceed its coefficient in the linear function. For example, x1 appears in
n + 1 constraints. If we sum its constraints' coefficients we get
a1,1y1 + a1,2y2 + ... + a1,nyn + f1s1. This sum must be at most c1. As a result we get:

maximize

subject to ,

,

,

Note that we assume in our calculations steps that the program is in standard form. However,
any linear program may be transformed to standard form and it is therefore not a limiting
factor.

Covering-packing dualities

A covering LP is a linear program of the form:

Minimize: bTy,

Subject to: ATy " c, y " 0,

such that the matrix A and the vectors b and c
are non-negative.

The dual of a covering LP is a packing LP, a linear program of the form:

Maximize: cTx,
Subject to: Ax ! b, x " 0,

such that the matrix A and the vectors b and c are non-negative.



Examples

Covering and packing LPs commonly arise as a linear programming relaxation of a
combinatorial problem and are important in the study of approximation algorithms.[2] For
example, the LP relaxations of the set packing problem, the independent set problem, and the
matching problem are packing LPs. The LP relaxations of the set cover problem, the vertex
cover problem, and the dominating set problem are also covering LPs.

Finding a fractional coloring of a graph is another example of a covering LP. In this case, there
is one constraint for each vertex of the graph and one variable for each independent set of the
graph.

Complementary slackness

It is possible to obtain an optimal solution to the dual when only an optimal solution to the
primal is known using the complementary slackness theorem. The theorem states:

Suppose that x = (x1, x2, ... , xn) is primal feasible and that y = (y1, y2, ... , ym) is dual
feasible. Let (w1, w2, ..., wm) denote the corresponding primal slack variables, and let
(z1, z2, ... , zn) denote the corresponding dual slack variables. Then x and y are optimal for
their respective problems if and only if

xjzj = 0, for j = 1, 2, ... , n, and
wiyi = 0, for i = 1, 2, ... , m.

So if the i-th slack variable of the primal is not zero, then the i-th variable of the dual is equal
zero. Likewise, if the j-th slack variable of the dual is not zero, then the j-th variable of the
primal is equal to zero.

This necessary condition for optimality conveys a fairly simple economic principle. In standard
form (when maximizing), if there is slack in a constrained primal resource (i.e., there are
"leftovers"), then additional quantities of that resource must have no value. Likewise, if there
is slack in the dual (shadow) price non-negativity constraint requirement, i.e., the price is not
zero, then there must be scarce supplies (no "leftovers").

Theory

Existence of optimal solutions

Geometrically, the linear constraints define the feasible region, which is a convex polyhedron.
A linear function is a convex function, which implies that every local minimum is a global
minimum; similarly, a linear function is a concave function, which implies that every local
maximum is a global maximum.

Optimal solution need not exist, for two reasons. First, if two constraints are inconsistent, then
no feasible solution exists: For instance, the constraints x " 2 and x ! 1 cannot be satisfied
jointly; in this case, we say that the LP is infeasible. Second, when the polytope is unbounded
in the direction of the gradient of the objective function (where the gradient of the objective
function is the vector of the coefficients of the objective function), then no optimal value is



A series of linear constraints on two
variables produces a region of
possible values for those variables.
Solvable problems will have a
feasible region in the shape of a
simple polygon.

attained.

Optimal vertices (and rays) of polyhedra

Otherwise, if a feasible solution exists and if the (linear) objective function is bounded, then
the optimum value is always attained on the boundary of optimal level-set, by the maximum
principle for convex functions (alternatively, by the minimum principle for concave functions):
Recall that linear functions are both convex and concave. However, some problems have
distinct optimal solutions: For example, the problem of finding a feasible solution to a system
of linear inequalities is a linear programming problem in which the objective function is the
zero function (that is, the constant function taking the value zero everywhere): For this
feasibility problem with the zero-function for its objective-function, if there are two distinct
solutions, then every convex combination of the solutions is a solution.

The vertices of the polytope are also called basic feasible solutions. The reason for this choice
of name is as follows. Let d denote the number of variables. Then the fundamental theorem of
linear inequalities implies (for feasible problems) that for every vertex x* of the LP feasible
region, there exists a set of d (or fewer) inequality constraints from the LP such that, when we
treat those d constraints as equalities, the unique solution is x*. Thereby we can study these
vertices by means of looking at certain subsets of the set of all constraints (a discrete set),
rather than the continuum of LP solutions. This principle underlies the simplex algorithm for
solving linear programs.

Algorithms

Basis exchange algorithms

Simplex algorithm of Dantzig

The simplex algorithm, developed by George Dantzig in
1947, solves LP problems by constructing a feasible
solution at a vertex of the polytope and then walking
along a path on the edges of the polytope to vertices with
non-decreasing values of the objective function until an
optimum is reached. In many practical problems,
"stalling" occurs: Many pivots are made with no increase
in the objective function.[3][4] In rare practical problems,
the usual versions of the simplex algorithm may actually
"cycle".[4] To avoid cycles, researchers developed new
pivoting rules .[5][6][3][4][7][8]

In practice, the simplex algorithm is quite efficient and
can be guaranteed to find the global optimum if certain
precautions against cycling are taken. The simplex
algorithm has been proved to solve "random" problems
efficiently, i.e. in a cubic number of steps,[9] which is
similar to its behavior on practical problems.[3][10]

However, the simplex algorithm has poor worst-case behavior: Klee and Minty constructed a



family of linear programming problems for which the simplex method takes a number of steps
exponential in the problem size.[3][6][7] In fact, for some time it was not known whether the
linear programming problem was solvable in polynomial time (complexity class P).

Criss-cross algorithm

Like the simplex algorithm of Dantzig, the criss-cross algorithm is a basis-exchange algorithm
that pivots between bases. However, the criss-cross algorithm need not maintain feasibility,
but can pivot rather from a feasible basis to an infeasible basis. The criss-cross algorithm does
not have polynomial time-complexity for linear programming. Both algorithms visit
all 2D corners of a (perturbed) cube in dimension D, the Klee–Minty cube (after Victor Klee and
George J. Minty), in the worst case.[8][11]

Interior point

Ellipsoid algorithm, following Khachiyan

This is the first worst-case polynomial-time algorithm for linear programming. To solve a
problem which has n variables and can be encoded in L input bits, this algorithm uses O(n4L)
pseudo-arithmetic operations on numbers with O(L) digits. Khachiyan's algorithm and his long
standing issue was resolved by Leonid Khachiyan in 1979 with the introduction of the ellipsoid
method. The convergence analysis have (real-number) predecessors, notably the iterative
methods developed by Naum Z. Shor and the approximation algorithms by Arkadi Nemirovski
and D. Yudin.

Projective algorithm of Karmarkar

Khachiyan's algorithm was of landmark importance for establishing the polynomial-time
solvability of linear programs. The algorithm was not a computational break-through, as the
simplex method is more efficient for all but specially constructed families of linear programs.

However, Khachiyan's algorithm inspired new lines of research in linear programming. In
1984, N. Karmarkar proposed a projective method for linear programming. Karmarkar's
algorithm improved on Khachiyan's worst-case polynomial bound (giving O(n3.5L)). Karmarkar
claimed that his algorithm was much faster in practical LP than the simplex method, a claim
that created great interest in interior-point methods. Its projective geometry is interesting.[12]

Path-following algorithms

In contrast to the simplex algorithm, which finds an optimal solution by traversing the edges
between vertices on a polyhedral set, interior-point methods move through the interior of the
feasible region. Since then, many interior-point methods have been proposed and analyzed.
Early successful implementations were based on affine scaling variants of the method. For
both theoretical and practical purposes, barrier function or path-following methods have been
the most popular since the 1990s.[13]

Comparison of interior-point methods versus simplex algorithms

The current opinion is that the efficiency of good implementations of simplex-based methods



Unsolved problems in
computer science

Does linear
programming admit
a strongly
polynomial-time
algorithm?

and interior point methods are similar for routine applications of linear programming.[13]

However, for specific types of LP problems, it may be that one type of solver is better than
another (sometimes much better).

LP solvers are in widespread use for optimization of various problems in industry, such as
optimization of flow in transportation networks.[14]

Open problems and recent work

There are several open problems in the theory of linear
programming, the solution of which would represent
fundamental breakthroughs in mathematics and potentially
major advances in our ability to solve large-scale linear
programs.

Does LP admit a strongly polynomial-time algorithm?
Does LP admit a strongly polynomial algorithm to find
a strictly complementary solution?
Does LP admit a polynomial algorithm in the real number (unit cost) model of
computation?

This closely related set of problems has been cited by Stephen Smale as among the 18
greatest unsolved problems of the 21st century. In Smale's words, the third version of the
problem "is the main unsolved problem of linear programming theory." While algorithms exist
to solve linear programming in weakly polynomial time, such as the ellipsoid methods and
interior-point techniques, no algorithms have yet been found that allow strongly polynomial-
time performance in the number of constraints and the number of variables. The development
of such algorithms would be of great theoretical interest, and perhaps allow practical gains in
solving large LPs as well.

Although the Hirsch conjecture was recently disproved for higher dimensions, it still leaves the
following questions open.

Are there pivot rules which lead to polynomial-time Simplex variants?
Do all polytopal graphs have polynomially-bounded diameter?

These questions relate to the performance analysis and development of Simplex-like methods.
The immense efficiency of the Simplex algorithm in practice despite its exponential-time
theoretical performance hints that there may be variations of Simplex that run in polynomial
or even strongly polynomial time. It would be of great practical and theoretical significance to
know whether any such variants exist, particularly as an approach to deciding if LP can be
solved in strongly polynomial time.

The Simplex algorithm and its variants fall in the family of edge-following algorithms, so
named because they solve linear programming problems by moving from vertex to vertex
along edges of a polytope. This means that their theoretical performance is limited by the
maximum number of edges between any two vertices on the LP polytope. As a result, we are
interested in knowing the maximum graph-theoretical diameter of polytopal graphs. It has
been proved that all polytopes have subexponential diameter. The recent disprove of the
Hirsch conjecture is the first step to prove whether any polytope has superpolynomial
diameter. If any such polytopes exist, then no edge-following variant can run in polynomial



time. Questions about polytope diameter are of independent mathematical interest.

Simplex pivot methods preserve primal (or dual) feasibility. On the other hand, criss-cross
pivot methods do not preserve (primal or dual) feasibility—they may visit primal feasible, dual
feasible or primal-and-dual infeasible bases in any order. Pivot methods of this type have been
studied since the 1970s. Essentially, these methods attempt to find the shortest pivot path on
the arrangement polytope under the linear programming problem. In contrast to polytopal
graphs, graphs of arrangement polytopes are known to have small diameter, allowing the
possibility of strongly polynomial-time criss-cross pivot algorithm without resolving questions
about the diameter of general polytopes.[8]

Integer unknowns

If the unknown variables are all required to be integers, then the problem is called an integer
programming (IP) or integer linear programming (ILP) problem. In contrast to linear
programming, which can be solved efficiently in the worst case, integer programming
problems are in many practical situations (those with bounded variables) NP-hard. 0-1
integer programming or binary integer programming (BIP) is the special case of integer
programming where variables are required to be 0 or 1 (rather than arbitrary integers). This
problem is also classified as NP-hard, and in fact the decision version was one of Karp's 21 NP-
complete problems.

If only some of the unknown variables are required to be integers, then the problem is called a
mixed integer programming (MIP) problem. These are generally also NP-hard.

There are however some important subclasses of IP and MIP problems that are efficiently
solvable, most notably problems where the constraint matrix is totally unimodular and the
right-hand sides of the constraints are integers.

Advanced algorithms for solving integer linear programs include:

cutting-plane method
branch and bound
branch and cut
branch and price
if the problem has some extra structure, it may be possible to apply delayed column
generation.

Such integer-programming algorithms are discussed by Padberg and in Beasley.

Integral linear programs

A linear program in real variables is said to be integral if it has at least one optimal solution
which is integral. Likewise, a polyhedron  is said to be integral if for all
bounded feasible objective functions c, the linear program  has an optimum

x * with integer coordinates. As observed by Edmonds and Giles in 1977, one can equivalently
say that a polyhedron is integral if for every bounded feasible integral objective function c, the
optimal value of the linear progam  is an integer.

Integral linear programs are of central importance in the polyhedral aspect of combinatorial



optimization since they provide an alternate characterization of a problem. Specifically, for any
problem, the convex hull of the solutions is an integral polyhedron; if this polyhedron has a
nice/compact description, then we can efficiently find the optimal feasible solution under any
linear objective. Conversely, if we can prove that a linear programming relaxation is integral,
then it is the desired description of the convex hull of feasible (integral) solutions.

Note that terminology is not consistent throughout the literature, so one should be careful to
distinguish the following two concepts,

in an integer linear program, described in the previous section, variables are forcibly
constrained to be integers, and this problem is NP-hard in general,
in an integral linear program, described in this section, variables are not constrained
to be integers but rather one has proven somehow that the continuous problem
always has an integral optimal value (assuming c is integral), and this optimal value
may be found efficiently since all polynomial-size linear programs can be solved in
polynomial time.

One common way of proving that a polyhedron is integral is to show that it is totally
unimodular. There are other general methods including the integer decomposition property
and total dual integrality. Other specific well-known integral LPs include the matching
polytope, lattice polyhedra, submodular flow polyhedra, and the intersection of 2 generalized
polymatroids/g-polymatroids --- e.g. see Schrijver 2003.

A bounded integral polyhedron is sometimes called a convex lattice polytope, particularly in
two dimensions.

Solvers and scripting (programming) languages

Free open-source permissive licenses:

Name License Brief info

OpenOpt BSD

Universal cross-platform numerical
optimization framework,
see its LP (http://openopt.org/LP) page and
other problems
(http://openopt.org/Problems) involved

pulp-or (http://pulp-
or.googlecode.com) BSD Python module for modeling and solving

linear programming problems

Pyomo
(https://software.sandia.gov/pyomo) BSD

Python module for formulating linear
programming problems with abstract
models

Free open-source copyleft (reciprocal) licenses:

Name License Brief info

LP_Solve (http://lpsolve.sourceforge.net/5.5/) LGPL

User-friendly linear and
integer programming
solver. Also provides DLL
for program integration.



Cassowary constraint solver LGPL

an incremental constraint
solving toolkit that
efficiently solves systems
of linear equalities and
inequalities.

CVXOPT (http://abel.ee.ucla.edu/cvxopt/) GPL

general purpose convex
optimization solver written
in Python, with a C API,
and calls external routines
(e.g. BLAS, LAPACK,
FFTW) for numerical
computations. Has its own
solvers, but can also call
glpk or MOSEK[15] if
installed

glpk GPL

GNU Linear Programming
Kit, a free LP/MILP solver.
Uses GNU MathProg
modelling language.

Qoca GPL

a library for incrementally
solving systems of linear
equations with various
goal functions

CBC (http://www.coin-or.org/projects/Cbc.xml) CPL a MIP solver from COIN-
OR

CLP CPL an LP solver from COIN-
OR

R-Project GPL

a programming language
and software environment
for statistical computing
and graphics

CVX (http://cvxr.com/cvx) GPL

MATLAB based modeling
system for convex
optimization, including
linear programs; calls
either SDPT3 or SeDuMi as
a solver

CVXMOD (http://cvxmod.net/) GPL

Python based modeling
system, similar to CVX. It
calls CVXOPT as its solver.
It is still in alpha release,
as of 2009

SDPT3
(http://www.math.nus.edu.sg/~mattohkc/sdpt3.html) GPL MATLAB based convex

optimization solver

SeDuMi (http://sedumi.ie.lehigh.edu/) GPL MATLAB based convex
optimization solver



MINTO (Mixed Integer Optimizer, an integer programming solver which uses branch and
bound algorithm) has publicly available source code[16] but not open source.

Proprietary:

Name Brief info

APMonitor

AIMMS

AMPL

A popular modeling language for large-scale
linear, mixed integer and nonlinear
optimisation with a free student version
available.

Analytica
(http://www.lumina.com/products/analytica-
optimizer/)

Optimization modeling software that
incorporates state-of-the-art algorithms for
linear and nonlinear optimization. Supports
LP, NLP, QP, continuous and integer
optimization.

CPLEX

Popular solver with an API for several
programming languages, and also has a
modelling language and works with AIMMS,
AMPL, GAMS, MPL, OpenOpt, OPL
Development Studio, and TOMLAB

EXCEL Solver Function

FortMP

GAMS

GIPALS

Gurobi

Solver with parallel algorithms for large-scale
linear programs, quadratic programs and
mixed-integer programs. Free for academic
use.

IMSL Numerical Libraries

Collections of math and statistical algorithms
available in C/C++, Fortran, Java and
C#/.NET. Optimization routines in the IMSL
Libraries include unconstrained, linearly and
nonlinearly constrained minimizations, and
linear programming algorithms.

Lingo

LPL

LiPS
(http://sourceforge.net/projects/lipside/)
(freeware)

Linear Program Solver (LiPS) is intended for
solving linear programming problems. Main
features: easy to use graphical interface,
sensitivity analysis, goal and mixed integer
programming solver. LiPS supports MPS and
simple LP format (like lpsolve).

A general-purpose and matrix-oriented



MATLAB

programming-language for numerical
computing. Linear programming in MATLAB
requires the Optimization Toolbox in addition
to the base MATLAB product; available
routines include BINTPROG and LINPROG

Mathematica
A general-purpose programming-language for
mathematics, including symbolic and
numerical capabilities.

MOPS

MOSEK
A solver for large scale optimization with API
for several languages (C++,java,.net, Matlab
and python).

NMath Stats
A general-purpose .NET statistical library
containing a simplex solver.[17]

OptimJ
A Java-based modeling language for
optimization with a free version
available.[18][19]

SAS

SCIP

A general-purpose constraint integer
programming solver with an emphasis on
MIP. Free for academic use and available in
source code.

Solver Foundation A .NET platform for modeling, scheduling,
and optimization.

SoPlex (http://soplex.zib.de/)
The Sequential object-oriented simPlex: a
general-purpose LP solver. Free for academic
use and available in source code.

SuanShu
A Java-based math library that supports
linear programming and other kinds of
numerical optimization.[20]

TOMLAB

VisSim A visual block diagram language for
simulation of dynamical systems.

Xpress

See also

Mathematical programming
Nonlinear programming
Convex programming
Dynamic programming
Simplex algorithm, used to solve LP problems
Quadratic programming, a superset of linear programming
Shadow price



MPS file format
nl file format
MIP example, job shop problem
Linear-fractional programming (LFP)
Oriented matroid

Notes
1. ^ See his 1940 paper listed below
2. ^ Vazirani (2001, p. 112)
3. ^ a b c d Dantzig & Thapa (2003)
4. ^ a b c Padberg (1999)
5. ^ Bland (1977)
6. ^ a b Murty (1983)
7. ^ a b Papadimitriou (Steiglitz)
8. ^ a b c Fukuda & Terlaky (1997): Fukuda, Komei; Terlaky, Tamás (1997). "Criss-cross

methods: A fresh view on pivot algorithms"
(http://www.cas.mcmaster.ca/~terlaky/files/crisscross.ps) . Mathematical Programming:
Series B (Amsterdam: North-Holland Publishing Co.) 79 (Papers from the 16th International
Symposium on Mathematical Programming held in Lausanne, 1997): pp. 369–395.
doi:10.1016/S0025-5610(97)00062-2 (http://dx.doi.org/10.1016%2FS0025-
5610%2897%2900062-2) . MR1464775 (http://www.ams.org/mathscinet-getitem?
mr=1464775) . http://www.cas.mcmaster.ca/~terlaky/files/crisscross.ps.

9. ^ Borgwardt (1987)
10. ^ Todd (2002)
11. ^ Roos (1990): Roos, C. (1990). "An exponential example for Terlaky's pivoting rule for the

criss-cross simplex method". Mathematical Programming. Series A 46 (1): 79.
doi:10.1007/BF01585729 (http://dx.doi.org/10.1007%2FBF01585729) . MR1045573
(http://www.ams.org/mathscinet-getitem?mr=1045573) .

12. ^ Strang, Gilbert (1 June 1987). "Karmarkar's algorithm and its place in applied mathematics".
The Mathematical Intelligencer (New York: Springer) 9 (2): 4–10. doi:10.1007/BF03025891
(http://dx.doi.org/10.1007%2FBF03025891) . ISSN 0343-6993
(http://www.worldcat.org/issn/0343-6993) . MR883185 '''883185'''
(http://www.ams.org/mathscinet-getitem?mr=) .

13. ^ a b Gondzio & Terlaky (1996)
14. ^ For solving network-flow problems in transportation networks, specialized implementations of

the simplex algorithm can dramatically improve its efficiency. Dantzig & Thapa (2003)
15. ^ http://www.mosek.com/
16. ^ http://coral.ie.lehigh.edu/~minto/download.html
17. ^ Linear programming page at CenterSpace Software

(http://www.centerspace.net/landing.php?id=lp)
18. ^ http://www.in-ter-trans.eu/resources/Zesch_Hellingrath_2010_Integrated+Production-

Distribution+Planning.pdf OptimJ used in an optimization model for mixed-model assembly
lines, University of Münster

19. ^ http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1769/2076 OptimJ used in
an Approximate Subgame-Perfect Equilibrium Computation Technique for Repeated Games

20. ^ http://www.numericalmethod.com
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