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29.3 The simplex algorithm

The simplex algorithm is the classical method for solving linear programs. In contrast to most of the other algorithms in this
book, its running time is not polynomial in the worst case. It does yield insight into linear programs, however, and is often
remarkably fast in practice.

In addition to having a geometric interpretation, described earlier in this chapter, the simplex algorithm bears some similarity to
Gaussian elimination, discussed in Section 28.3. Gaussian elimination begins with a system of linear equalities whose solution
is unknown. In each iteration, we rewrite this system in a equivalent form that has some additional structure. After some
number of iterations, we have rewritten the system so that the solution is simple to obtain. The simplex algorithm proceeds in a
similar manner, and we can view it as Gaussian elimination for inequalities.

We now describe the main idea behind an iteration of the simplex algorithm. Associated with each iteration will be a "basic
solution" that is easily obtained from the slack form of the linear program: set each nonbasic variable to 0, and compute the
values of the basic variables from the equality constraints. A basic solution will always correspond to a vertex of the simplex.
Algebraically, an iteration converts one slack form into an equivalent slack form. The objective value of the associated basic
feasible solution will be no less than that at the previous iteration (and usually greater). To achieve this increase in the objective
value, we choose a nonbasic variable such that if we were to increase that variable's value from 0, then the objective value
would increase too. The amount by which we can increase the variable is limited by the other constraints. In particular, we raise
it until some basic variable becomes 0. We then rewrite the slack form, exchanging the roles of that basic variable and the
chosen nonbasic variable. Although we have used a particular setting of the variables to guide the algorithm, and we shall use
it in our proofs, the algorithm does not explicitly maintain this solution. It simply rewrites the linear program until the optimal
solution becomes "obvious."

An example of the simplex algorithm

We begin with an extended example. Consider the following linear program in standard form:

(29.56) 

subject to

(29.57) 

(29.58) 

(29.59) 

(29.60) 

In order to use the simplex algorithm, we must convert the linear program into slack form; we saw how to do so in Section 29.1.
In addition to being an algebraic manipulation, slack is a useful algorithmic concept. Recalling from Section 29.1 that each
variable has a corresponding nonnegativity constraint, we say that an equality constraint is tight for a particular setting of its
nonbasic variables if they cause the constraint's basic variable to become 0. Similarly, a setting of the nonbasic variables that
would make a basic variable become negative violates that constraint. Thus, the slack variables explicitly maintain how far
each constraint is from being tight, and so they help to determine how much we can increase values of nonbasic values without
violating any constraints.

Associating the slack variables x4, x5, and x6 with inequalities (29.57)-(29.59), respectively, and putting the linear program into
slack form, we obtain

(29.61) 

(29.62) 

(29.63) 

(29.64) 

The system of constraints (29.62)-(29.64) has 3 equations and 6 variables. Any setting of the variables x1, x2, and x3 defines
values for x4, x5, and x6; there are therefore an infinite number of solutions to this system of equations. A solution is feasible if
all of x1, x2, ..., x6 are nonnegative, and there can be an infinite number of feasible solutions as well. The infinite number of
possible solutions to a system such as this one will be useful in later proofs. We will focus on the basic solution: set all the



(nonbasic) variables on the right-hand side to 0 and then compute the values of the (basic) variables on the left-hand side. In
this example, the basic solution is  and it has objective value z = (3 ! 0) + (1 ! 0) + (2 ! 0) = 0.
Observe that this basic solution sets  for each i " B. An iteration of the simplex algorithm will rewrite the set of equations
and the objective function so as to put a different set of variables on the right-hand side. Thus, there will be a different basic
solution associated with the rewritten problem. We emphasize that the rewrite does not in any way change the underlying
linear-programming problem; the problem at one iteration has the identical set of feasible solutions as the problem at the
previous iteration. The problem does, however, have a different basic solution than that of the previous iteration.

If a basic solution is also feasible, we call it a basic feasible solution. During the running of the simplex algorithm, the basic
solution will almost always be a basic feasible solution. We shall see in Section 29.5, however, that for the first few iterations of
the simplex algorithm, the basic solution may not be feasible.

Our goal, in each iteration, is to reformulate the linear program so that the basic solution has a greater objective value. We
select a nonbasic variable xe whose coefficient in the objective function is positive, and we increase the value of xe as much as
possible without violating any of the constraints. The variable xe becomes basic, and some other variable xl becomes
nonbasic. The values of other basic variables and of the objective function may also change.

To continue the example, let's think about increasing the value of x1. As we increase x1, the values of x4, x5, and x6 all
decrease. Because we have a nonnegativity constraint for each variable, we cannot allow any of them to become negative. If
x1 increases above 30, then x4 becomes negative, while x5 and x6 become negative when x1 increases above 12 and 9
respectively. The third constraint (29.64) is the tightest constraint, and it limits how much we can increase x1. We will,
therefore, switch the roles of x1 and x6. We solve equation (29.64) for x1 and obtain

(29.65) 

To rewrite the other equations with x6 on the right-hand side, we substitute for x1 using equation (29.65). Doing so for equation
(29.62), we obtain

(29.66) 

Similarly, we can combine equation (29.65) with constraint (29.63) and with objective function (29.61) to rewrite our linear
program in the following form:

(29.67) 

(29.68) 

(29.69) 

(29.70) 

We call this operation a pivot. As demonstrated above, a pivot chooses a nonbasic variable xe, called the entering variable,
and a basic variable xl, called the leaving variable, and exchanges their roles.

The linear program described in (29.67)-(29.70) is equivalent to the linear program described in equations (29.61)-(29.64).
The operations we perform in the simplex algorithm are rewriting equations so that variables move between the left-hand side
and the right-hand side, and substituting one equation into another. The first operation trivially creates an equivalent problem,
and the second, by elementary linear algebra, also creates an equivalent problem.

To demonstrate this equivalence, observe that our original basic solution (0, 0, 0, 30, 24, 36) satisfies the new equations
(29.68)-(29.70) and has objective value 27 + (1/4) ! 0 + (1/2) ! 0 - (3/4) ! 36 = 0. The basic solution associated with the new
linear program sets the nonbasic values to 0 and is (9, 0, 0, 21, 6, 0), with objective value z = 27. Simple arithmetic verifies that
this solution also satisfies equations (29.62)-(29.64) and, when plugged into objective function (29.61), has objective value (3 !



9) + (1 ! 0) + (2 ! 0) = 27.

Continuing the example, we wish to find a new variable whose value we wish to increase. We do not want to increase x6, since
as its value increases, the objective value decreases. We can attempt to increase either x2 or x3; we will choose x3. How far
can we increase x3 without violating any of the constraints? Constraint (29.68) limits it to 18, constraint (29.69) limits it to 42/5,
and constraint (29.70) limits it to 3/2. The third constraint is again the tightest one, and we will therefore rewrite the third
constraint so that x3 is on the left-hand side and x5 is on the right-hand side. We then substitute this new equation into
equations (29.67)-(29.69) and obtain the new, but equivalent, system

(29.71) 

(29.72) 

(29.73) 

(29.74) 

This system has the associated basic solution (33/4, 0, 3/2, 69/4, 0, 0), with objective value 111/4. Now the only way to
increase the objective value is to increase x2. The three constraints give upper bounds of 132, 4, and #, respectively. (The
upper bound of # from constraint (29.74) is because as we increase x2, the value of the basic variable x4 increases also. This
constraint, therefore, places no restriction on how much x2 can be increased.) We increase x2 to 4, and it becomes nonbasic.
Then we solve equation (29.73) for x2 and substitute in the other equations to obtain

(29.75) 

(29.76) 

(29.77) 

(29.78) 

At this point, all coefficients in the objective function are negative. As we shall see later in this chapter, this situation occurs only
when we have rewritten the linear program so that the basic solution is an optimal solution. Thus, for this problem, the solution
(8, 4, 0, 18, 0, 0), with objective value 28, is optimal. We can now return to our original linear program given in (29.56)-(29.60).
The only variables in the original linear program are x1, x2, and x3, and so our solution is x1 = 8, x2 = 4, and x3 = 0, with
objective value (3 ! 8) + (1 ! 4) + (2 ! 0) = 28. Note that the values of the slack variables in the final solution measure how
much slack is in each inequality. Slack variable x4 is 18, and in inequality (29.57), the left-hand side, with value 8 + 4 + 0 = 12,
is 18 less than the right-hand side of 30. Slack variables x5 and x6 are 0 and indeed, in inequalities (29.58) and (29.59), the
left-hand and right-hand sides are equal. Observe also that even though the coefficients in the original slack form are integral,
the coefficients in the other linear programs are not necessarily integral, and the intermediate solutions are not necessarily
integral. Furthermore, the final solution to a linear program need not be integral; it is purely coincidental that this example has
an integral solution.

Pivoting

We now formalize the procedure for pivoting. The procedure PIVOT takes as input a slack form, given by the tuple (N, B, A, b,

c, v), the index l of the leaving variable xl, and the index e of the entering variable xe. It returns the tuple 

describing the new slack form. (Recall again that the entries of the matrices A and  are actually the negative of the
coefficients that appear in the slack form.)
PIVOT(N, B, A, b, c, v, l, e)
 1 $ Compute the coefficients of the equation for new basic variable xe.



 2 
 3 for each j " N - {e}

 4     do 

 5 
 6 $ Compute the coefficients of the remaining constraints.
 7 for each i " B - {l}

 8     do 
 9        for each j " N - {e}

10           do 
11        
12 $ Compute the objective function.

13 
14 for each j " N - {e}

15     do 

16 
17 $ Compute new sets of basic and nonbasic variables.
18 
19 

20 return 

PIVOT works as follows. Lines 2-5 compute the coefficients in the new equation for xe by rewriting the equation that has xl on
the left-hand side to instead have xe on the left-hand side. Lines 7-11 update the remaining equations by substituting the right-
hand side of this new equation for each occurrence of xe. Lines 13-16 do the same substitution for the objective function, and
lines 18 and 19 update the sets of nonbasic and basic variables. Line 20 returns the new slack form. As given, if ale = 0, PIVOT
would cause an error by dividing by 0, but as we shall see in the proofs of Lemmas 29.2 and 29.12, PIVOT is called only when
ale % 0.

We now summarize the effect that PIVOT has on the values of the variables in the basic solution.

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which ale % 0. Let the values returned from the call be , and
let  denote the basic solution after the call. Then

1.  for each .

2. .

3.  for each .

Proof The first statement is true because the basic solution always sets all nonbasic variables to 0. When we set each
nonbasic variable to 0 in a constraint

we have that  for each . Since , by line 2 of PIVOT, we have

which proves the second statement. Similarly, using line 8 for each , we have

which proves the third statement.

The formal simplex algorithm



The formal simplex algorithm

We are now ready to formalize the simplex algorithm, which we demonstrated by example. That example was a particularly
nice one, and we could have had several other issues to address:

How do we determine if a linear program is feasible?

What do we do if the linear program is feasible, but the initial basic solution is not feasible?

How do we determine if a linear program is unbounded?

How do we choose the entering and leaving variables?

In Section 29.5, we shall show how to determine if a problem is feasible, and if so, how to find a slack form in which the initial
basic solution is feasible. We therefore assume that we have a procedure INITIALIZE-SIMPLEX(A, b, c) that takes as input a
linear program in standard form, that is, an m & n matrix A = (aij), an m-dimensional vector b = (bi), and an n-dimensional
vector c = (cj). If the problem is infeasible, it returns a message that the program is infeasible and then terminates. Otherwise, it
returns a slack form for which the initial basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just described. It returns an n-vector  that
is an optimal solution to the linear program described in (29.19)-(29.21).

SIMPLEX(A, b, c)
 1  (N, B, A, b, c, v) ' INITIALIZE-SIMPLEX(A, b, c)
 2  while some index j " N has cj > 0
 3      do choose an index e " N for which ce > 0
 4         for each index i " B
 5             do if aie > 0
 6                   then (i ' bi/aie
 7                   else (i ' #
 8         choose an index l " B that minimizes (i
 9         if (l = #
10            then return "unbounded"
11            else (N, B, A, b, c, v) ' PIVOT(N, B, A, b, c, v, l, e)
12  for i ' 1 to n
13       do if i " B
14             then 
15             else 
16  return 

The SIMPLEX procedure works as follows. In line 1, it calls the procedure INITIALIZE-SIMPLEX(A, b, c), described above,
which either determines that the linear program is infeasible or returns a slack form for which the basic solution is feasible. The
main part of the algorithm is given in the while loop in lines 2-11. If all the coefficients in the objective function are negative,
then the while loop terminates. Otherwise, in line 3, we select a variable xe whose coefficient in the objective function is
positive to be the entering variable. While we have the freedom to choose any such variable as the entering variable, we
assume that we use some prespecified deterministic rule. Next, in lines 4-8, we check each constraint, and we pick the one
that most severely limits the amount by which we can increase xe without violating any of the nonnegativity constraints; the
basic variable associated with this constraint is xl. Again, we may have the freedom to choose one of several variables as the
leaving variable, but we assume that we use some prespecified deterministic rule. If none of the constraints limits the amount
by which the entering variable can increase, the algorithm returns "unbounded" in line 10. Otherwise, line 11 exchanges the
roles of the entering and leaving variables by calling the subroutine PIVOT(N, B, A, b, c, v, l, e), described above. Lines 12-15
compute a solution for the original linear-programming variables  by setting all the nonbasic variables to 0 and each
basic variable  to bi. In Theorem 29.10, we shall see that this solution is an optimal solution to the linear program. Finally, line
16 returns the computed values of these original linear-programming variables.

To show that SIMPLEX is correct, we first show that if SIMPLEX has an initial feasible solution and eventually terminates, then
it either returns a feasible solution or determines that the linear program is unbounded. Then, we show that SIMPLEX
terminates. Finally, in Section 29.4, we show that the solution returned is optimal.

Lemma 29.2

Given a linear program (A, b, c), suppose that the call to INITIALIZE-SIMPLEX in line 1 of SIMPLEX returns a slack form for



which the basic solution is feasible. Then if SIMPLEX returns a solution in line 16, that solution is a feasible solution to the
linear program. If SIMPLEX returns "unbounded" in line 10, the linear program is unbounded.

Proof We use the following three-part loop invariant:

At the start of each iteration of the while loop of lines 2-11,

1. the slack form is equivalent to the slack form returned by the call of INITIALIZE-SIMPLEX,

2. for each i " B, we have bi ) 0, and

3. the basic solution associated with the slack form is feasible.
Initialization: The equivalence of the slack forms is trivial for the first iteration. We assume, in the statement of the
lemma, that the call to INITIALIZE-SIMPLEX in line 1 of SIMPLEX returns a slack form for which the basic solution
is feasible. Thus, the third part of the invariant is true. Furthermore, since each basic variable xi is set to bi in the
basic solution, and the feasibility of the basic solution implies that each basic variable xi is nonnegative, we have
that bi ) 0. Thus, the second part of the invariant holds.

Maintenance: We shall show that the loop invariant is maintained, assuming that the return statement in line 10 is
not executed. We shall handle the case that line 10 executes when we discuss termination.

An iteration of the while loop exchanges the role of a basic and a nonbasic variable. The only operations
performed involve solving equations and substituting one equation into another, and therefore the slack form is
equivalent to the one from the previous iteration which, by the loop invariant, is equivalent to the initial slack form.

We now demonstrate the second part of the loop invariant. We assume that at the start of each iteration of the
while loop, bi ) 0 for each i " B, and we shall show that that these inequalities remain true after the call to PIVOT
in line 11. Since the only changes to the variables bi and the set B of basic variables occur in this assignment, it
suffices to show that line 11 maintains this part of the invariant. We let bi, aij, and B refer to values before the call

of PIVOT, and  refer to values returned from PIVOT.

First, we observe that  because bl ) 0 by the loop invariant, ale > 0 by line 5 of SIMPLEX, and  by
line 2 of PIVOT.

For the remaining indices i " B - l, we have that

(29.79) 

We have two cases to consider, depending on whether aie > 0 or aie * 0. If aie > 0, then since we chose l such
that

(29.80) 

we have

= bi - aie(bl/ale) (by equation (29.79))
 ) bi - aie(bi/aie) (by inequality (29.80))

 = bi - bi  

 = 0,  

and thus . If aie = 0, then because ale, bi, and bl are all nonnegative, equation (29.79) implies that  must
be nonnegative, too.

We now argue that the basic solution is feasible, i.e., that all variables have nonnegative values. The nonbasic
variables are set to 0 and thus are nonnegative. Each basic variable xi is defined by the equation

The basic solution sets . Using the second part of the loop invariant, we conclude that each basic variable 



is nonnegative.

Termination: The while loop can terminate in one of two ways. If it terminates because of the condition in line 2,
then the current basic solution is feasible and this solution is returned in line 16. The other way to terminate is to
return "unbounded" in line 10. In this case, for each iteration of the for loop in lines 4-7, when line 5 is executed,
we find that aie * 0. Let x be the basic solution associated with the slack form at the beginning of the iteration that
returned "unbounded." Consider the solution  defined as

We now show that this solution is feasible, i.e., that all variables are nonnegative. The nonbasic variables other
than  are 0, and  is positive; thus all nonbasic variables are nonnegative. For each basic variable , we have

The loop invariant implies that bi ) 0, and we have aie * 0 and . Thus, .

Now we show that the objective value for the solution  is unbounded. The objective value is

Since ce > 0 (by line 3) and , the objective value is #, and thus the linear program is unbounded.

At each iteration, SIMPLEX maintains A, b, c, and v in addition to the sets N and B. Although explicitly maintaining A, b, c, and
v is essential for the efficient implementation of the simplex algorithm, it is not strictly necessary. In other words, the slack form
is uniquely determined by the sets of basic and nonbasic variables. Before proving this fact, we prove a useful algebraic
lemma.

Lemma 29.3

Let I be a set of indices. For each i " I, let +i and ,i be real numbers, and let xi be a real-valued variable. Let - be any real
number. Suppose that for any settings of the xi, we have

(29.81) 

Then +i = ,i for each i " I, and - = 0.

Proof Since equation (29.81) holds for any values of the xi, we can use particular values to draw conclusions about +, ,, and
-. If we let xi = 0 for each i " I, we conclude that - = 0. Now pick an arbitrary index i " I, and set xi = 1 and xk = 0 for all k % i.
Then we must have +i = ,i. Since we picked i as any index in i, we conclude that +i = ,i for each i " I.

We now show that the slack form of a linear program is uniquely determined by the set of basic variables.

Lemma 29.4

Let (A, b, c) be a linear program in standard form. Given a set B of basic variables, the associated slack form is uniquely
determined.

Proof Assume for purpose of contradiction that there are two different slack forms with the same set B of basic variables. The
slack forms must also have identical sets N = {1, 2, ..., n + m} - B of nonbasic variables. We write the first slack form as

(29.82) 



(29.83) 

and the second as

(29.84) 

(29.85) 

Consider the system of equations formed by subtracting each equation in line (29.85) from the corresponding equation in line
(29.83). The resulting system is

or, equivalently,

Now, for each i " B, apply Lemma 29.3 with +i = aij, , and . Since +i = ,i, we have that  for each j " N,
and since - = 0, we have that . Thus, for the two slack forms, A and b are identical to A. and b.. Using a similar
argument, Exercise 29.3-1 shows that it must also be the case that c = c. and v = v., and hence that the slack forms must be
identical.

It remains to show that SIMPLEX terminates, and when it does terminate, the solution returned is optimal. Section 29.4 will
address optimality. We now discuss termination.

Termination

In the example given in the beginning of this section, each iteration of the simplex algorithm increased the objective value
associated with the basic solution. As Exercise 29.3-2 asks you to show, no iteration of SIMPLEX can decrease the objective
value associated with the basic solution. Unfortunately, it is possible that an iteration leaves the objective value unchanged.
This phenomenon is called degeneracy and we now study it in greater detail.

The objective value is changed by the assignment  in line 13 of PIVOT. Since SIMPLEX calls PIVOT only when ce
> 0, the only way for the objective value to remain unchanged (i.e., ) is for  to be 0. This value is assigned as 
in line 2 of PIVOT. Since we always call PIVOT with ale % 0, we see that for  to equal 0, and hence the objective value to be
unchanged, we must have bl = 0.

Indeed, this situation can occur. Consider the linear program

z =   x1 + x2 + x3

x4 = 8 - x1 - x2   

x5 =     x2 - x3.

Suppose that we choose x1 as the entering variable and x4 as the leaving variable. After pivoting, we obtain

z = 8   + x3 - x4

x1 = 8 - x2   - x4

x5 =   x2 - x3 .  

At this point, our only choice is to pivot with x3 entering and x5 leaving. Since b5 = 0, the objective value of 8 remains
unchanged after pivoting:



z = 8 + x2 - x4 - x5

x1 = 8 - x2 - x4   

x3 =   x2   - x5.

The objective value has not changed, but our representation has. Fortunately, if we pivot again, with x2 entering and x1
leaving, the objective value will increase, and the simplex algorithm can continue.

We now show that degeneracy is the only thing that could possibly keep the simplex algorithm from terminating. Recall our
assumption that SIMPLEX chooses indices e and l, in lines 3 and 8 respectively, according to some deterministic rule. We say
that SIMPLEX cycles if the slack forms at two different iterations are identical, in which case, since SIMPLEX is a deterministic
algorithm, it will cycle through the same series of slack forms forever.

Lemma 29.5

If SIMPLEX fails to terminate in at most  iterations, then it cycles.

Proof By Lemma 29.4, the set B of basic variables uniquely determines a slack form. There are n + m variables and |B| = m,
and therefore there are  ways to choose B. Thus, there are only  unique slack forms. Therefore, if SIMPLEX runs for
more than  iterations, it must cycle.

Cycling is theoretically possible, but extremely rare. It is avoidable by choosing the entering and leaving variables somewhat
more carefully. One option is to perturb the input slightly so that it is impossible to have two solutions with the same objective
value. A second is to break ties lexicographically, and a third is to break ties by always choosing the variable with the smallest
index. This last strategy is known as Bland's rule. We omit the proof that these strategies avoid cycling.

Lemma 29.6

If in lines 3 and 8 of SIMPLEX, ties are always broken by choosing the variable with the smallest index, then SIMPLEX must
terminate.

We conclude this section with the following lemma.

Lemma 29.7

Assuming that INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that a
linear program is unbounded, or it terminates with a feasible solution in at most  iterations.

Proof Lemmas 29.2 and 29.6 show that if INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible,
SIMPLEX either reports that a linear program is unbounded, or it terminates with a feasible solution. By the contra-positive of
Lemma 29.5, if SIMPLEX terminates with a feasible solution, then it terminates in at most  iterations.

Exercises 29.3-1

Complete the proof of Lemma 29.4 by showing that it must be the case that c = c. and v = v..

Exercises 29.3-2

Show that the call to PIVOT in line 11 of SIMPLEX will never decrease the value of v.

Exercises 29.3-3

Suppose we convert a linear program (A, b, c) in standard form to slack form. Show that the basic solution is feasible if and
only if bi ) 0 for i = 1, 2, ..., m.

Exercises 29.3-4



Solve the following linear program using SIMPLEX:

maximize 18x1 + 12.5x2   

subject to      

 x1 + x2 * 20

 x1   * 12

   x2 * 16

 x1, x2  ) 0.

Exercises 29.3-5

Solve the following linear program using SIMPLEX:

maximize -5x1 - 3x2   

subject to      

 x1 - x2 * 1

 2x1 + x2 * 2

 x1, x2  ) 0.

Exercises 29.3-6

Solve the following linear program using SIMPLEX:

minimize x1 + x2 + x3   

subject to        

 2x1 + 7.5x2 + 3x3 ) 10000

 20x1 + 5x2 + 10x3 ) 30000

 x1, x2, x3   ) 0.
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