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29.2 Formulating problems as linear programs

Although we shall focus on the simplex algorithm in this chapter, it is also important to be able to recognize when a problem
can be formulated as a linear program. Once a problem is formulated as a polynomial-sized linear program, it can be solved in
polynomial time by the ellipsoid or interior-point algorithms. Several linear-programming software packages can solve problems
efficiently, so that once the problem has been expressed as a linear program, it can be solved in practice by such a package.

We shall look at several concrete examples of linear-programming problems. We start with two problems that we have already
studied: the single-source shortest-paths problem (see Chapter 24) and the maximum-flow problem (see Chapter 26). We then
describe the minimum-cost-flow problem. There is a polynomial-time algorithm that is not based on linear programming for the
minimum-cost-flow problem, but we shall not examine it. Finally, we describe the multicommodity-flow problem, for which the
only known polynomial-time algorithm is based on linear programming.

Shortest paths

The single-source shortest-paths problem, described in Chapter 24, can be formulated as a linear program. In this section, we
shall focus on the formulation of the single-pair shortest-path problem, leaving the extension to the more general single-source
shortest-paths problem as Exercise 29.2-3.

In the single-pair shortest-path problem, we are given a weighted, directed graph G = (V, E), with weight function w: E — R

mapping edges to real-valued weights, a source vertex s, and a destination vertex t. We wish to compute the value d[f], which
is the weight of a shortest path from s to f. To express this problem as a linear program, we need to determine a set of
variables and constraints that define when we have a shortest path from s to t. Fortunately, the Bellman-Ford algorithm does
exactly this. When the Bellman-Ford algorithm terminates, it has computed, for each vertex v, a value d[v] such that for each

edge (u, v) € E, we have d[v] < d[u] + w(u, v). The source vertex initially receives a value d[s] = 0, which is never changed.
Thus we obtain the following linear program to compute the shortest-path weight from s to t:

(29.44) minimize  d[t]
subject to
(29.45) d[v] = d|u]+ w(u,v) foreachedge (u,v) € E,
(29.46) d[s] = 0.
In this linear program, there are |V | variables d[v], one for each vertex v € V. There are |E| + 1 constraints, one for each edge
plus the additional constraint that the source vertex always has the value 0.
Maximum flow

The maximum-flow problem can also be expressed as a linear program. Recall that we are given a directed graph G = (V, E) in
which each edge (u, v) € E has a nonnegative capacity c(u, v) = 0, and two distinguished vertices, a sink s and a source t. As

defined in Section 26.1, a flow is a real-valued function f: V X V — R that satisfies three properties: capacity constraints, skew

symmetry, and flow conservation. A maximum flow is a flow that satisfies these constraints and maximizes the flow value,
which is the total flow coming out of the source. A flow, therefore, satisfies linear constraints, and the value of a flow is a linear

function. Recalling also that we assume that c(u, v) = 0 if (u, v) & E, we can express the maximum-flow problem as a linear
program:

(29.47) maximize Z f(s,v)

veV
subject to
(29.48) f(u,v) < c(u,v) foreachu,veV,

(29.49) f(u,v) = —f(v,u) foreachu,veV,

(29.50) Zf(u. v) = 0 foreachu eV — {s,t} .

veV

This linear program has |\/|2 variables, corresponding to the flow between each pair of vertices, and it has 2|\/|2 +|V]-2
constraints.



It is usually more efficient to solve a smaller-sized linear program. The linear program in (29.47)-(29.50) has, for ease of

notation, a flow and capacity of 0 for each pair of vertices u, v with (u, v) & E. It would be more efficient to rewrite the linear
program so that it has O(V + E) constraints. Exercise 29.2-5 asks you to do so.

Minimum-cost flow

In this section, we have used linear programming to solve problems for which we already knew efficient algorithms. In fact, an
efficient algorithm designed specifically for a problem, such as Dijkstra's algorithm for the single-source shortest-paths problem,
or the push-relabel method for maximum flow, will often be more efficient than linear programming, both in theory and in
practice.

The real power of linear programming comes from the ability to solve new problems. Recall the problem faced by the politician
in the beginning of this chapter. The problem of obtaining a sufficient number of votes, while not spending too much money, is
not solved by any of the algorithms that we have studied in this book, yet it is solved by linear programming. Books abound with
such real-world problems that linear programming can solve. Linear programming is also particularly useful for solving variants
of problems for which we may not already know of an efficient algorithm.

Consider, for example, the following generalization of the maximum-flow problem. Suppose that each edge (u, v) has, in
addition to a capacity c(u, v), a real-valued cost a(u, v). If we send f (u, v) units of flow over edge (u, v), we incur a cost of a(u,
v) f(u, v). We are also given a flow target d. We wish to send d units of flow from s to ¢ in such a way that the total cost incurred

by the flow, Z(u’ v)eE a(u, v)f(u v), is minimized. This problem is known as the minimum-cost-flow problem.

Figure 29.3(a) shows an example of the minimum-cost-flow problem. We wish to send 4 units of flow from s to {, while incurring
the minimum total cost. Any particular legal flow, that is, a function f satisfying constraints (29.48)-(29.50), incurs a total cost of

Z(u’ v)eE a(u, v) f (u, v). We wish to find the particular 4-unit flow that minimizes this cost. An optimal solution is given in Figure

29.3(b), and it has total cost Z(u, v)eE a(u, v)f(u, v)=(2-2)+(5-2)+3-1)+(7-1)+(1-3) =

W f X =5

(a) (b)

Figure 29.3: (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and the costs by a. Vertex s
is the source and vertex t is the sink, and we wish to send 4 units of flow from s to {. (b) A solution to the minimum-cost
flow problem in which 4 units of flow are sent from s to . For each edge, the flow and capacity are written as
flow/capacity.
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There are polynomial-time algorithms specifically designed for the minimum-cost-flow problem, but they are beyond the scope
of this book. We can, however, express the minimum-cost-flow problem as a linear program. The linear program looks similar
to the one for the maximum-flow problem with the additional constraint that the value of the flow be exactly d units, and with the
new objective function of minimizing the cost:

(29.51) minimize Z a(u,v) f(u,v)
(u,v)eE

subject to
(29.52) f(u,v) =< c(u,v) foreachu,veV,

(2953) f(u,v) = —f(v,u) foreachu,veV,

(29.54) Zf("’ v)

veV

(29.55) %" f(s,v) = d.

veV

0 foreachu € V — {s,t} ,

Multicommodity flow

As a final example, we consider another flow problem. Suppose that the Lucky Puck company from Section 26.1 decides to
diversify its product line and ship not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of equipment



is manufactured in its own factory, has its own warehouse, and must be shipped, each day, from factory to warehouse. The
sticks are manufactured in Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in Edmonton and
must be shipped to Regina. The capacity of the shipping network does not change, however, and the different items, or
commodities, must share the same network.

This example is an instance of a multicommodity-flow problem. In this problem, we are again given a directed graph G = (V,
E) in which each edge (u, v) € E has a nonnegative capacity c(u, v) = 0. As in the maximum-flow problem, we implicitly
assume that c(u, v) = 0 for (u, v) € E. In addition, we are given k different commodities, K1, K2, ..., Kk, where commodity i is
specified by the triple Kj = (s}, tj, dj). Here, s;jis the source of commaodity j, tj is the sink of commodity /i, and dj is the demand,
which is the desired flow value for commodity i/ from s; to t;. We define a flow for commodity i, denoted by fj, (so that fi(u, v) is

the flow of commodity i from vertex u to vertex v) to be a real-valued function that satisfies the flow-conservation, skew-
symmetry, and capacity constraints. We now define f (u, v), the aggregate flow, to be sum of the various commodity flows, so

k
that flu,v) = Zi:l filu, v). The aggregate flow on edge (u, v) must be no more than the capacity of edge (u, v). This
constraint subsumes the capacity constraints for the individual commodities. The way this problem is described, there is
nothing to minimize; we need only determine whether it is possible to find such a flow. Thus, we write a linear program with a
"null" objective function:

minimize 0
subject to
k
Zﬁ(u. v) < c(u,v) foreachu,veV,
im|
fiu,v) = —fi(v,u) foreachi=1,2,..., k and
foreachu,veV,
Zf,»(u'v) = 0 foreachi = 1,2,...,k and
veV foreachu € V — {s;,1;} ,
Zf,—(s. v) = d; foreachi =1,2,..., K

veV

The only known polynomial-time algorithm for this problem is to express it as a linear program and then solve with a
polynomial-time linear-programming algorithm.

Exercises 29.2-1

Put the single-pair shortest-path linear program from (29.44)-(29.46) into standard form.

Exercises 29.2-2

Write out explicitly the linear program corresponding to finding the shortest path from node s to node y in Figure 24.2(a).

Exercises 29.2-3

In the single-source shortest-paths problem, we want to find the shortest-path weights from a source vertex s to all vertices v €
V. Given a graph G, write a linear program for which the solution has the property that d[v] is the shortest-path weight from s to
v for each vertex v € V.

Exercises 29.2-4

Write out explicitly the linear program corresponding to finding the maximum flow in Figure 26.1(a).

Exercises 29.2-5

Rewrite the linear program for maximum flow (29.47)-(29.50) so that it uses only O(V + E) constraints.

Exercises 29.2-6



Write a linear program that, given a bipartite graph G = (V, E), solves the maximum-bipartite-matching problem.

Exercises 29.2-7

In the minimum-cost multicommodity-flow problem, we are given directed graph G = (V, E) in which each edge (u, v) € E
has a nonnegative capacity c(u, v) > = 0 and a cost a(u, v). As in the multicommodity-flow problem, we are given k different
commodities, K1, Ko, ..., Kk, where commodity i is specified by the triple Kj = (sj, t;, d;). We define the flow f; for commodity i
and the aggregate flow f (u, v) on edge (u, v) as in the multicommodity-flow problem. A feasible flow is one in which the
aggregate flow on each edge (u, v) is no more than the capacity of edge (u, v). The cost of a flow is 2, <V a(u, v) f(u, v), and

the goal is to find the feasible flow of minimum cost. Express this problem as a linear program.
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