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Motivation

▪ Find a maximal flow over a directed graph
▪ Source and sink vertices are given
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Some definitions (just a reminder)

▪ A flow network ➔ G = (V,E) a directed graph
▪ Two vertices {s, t} the source and the sink
▪ Each edge (u,v) ∈E has some positive capacity 

c(u,v), if (u,v) ∉E c(u,v) =0.
▪ The flow function f maps a value for each edge 

where:
▫ f(u,v) ≤ c(u,v)
▫ f(v,u) = - f(u,v) ( skew symmetry )

▪ Saturated edge (u,v) ⬄ c(u,v) = f(u,v)
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Some definitions, contd.

▪ r(u, v) = c(u,v) – f(u,v)
▪ Residual graph R(V, E`) where E` is all the edges 

(u,v) where r(u,v) ≥0
▪ Augmenting path p is a path from to the source 

to the sink over the residual graph 
▪ f is a maxflow ⬄ there is no augmenting path 

3/3/2007 4



Just as Dinic but…

▪ We use the residual network
▪ We don’t look for augmenting paths
▪ Instead we saturate all outgoing edges of the 

source and strive to make this “preflow” reach 
the sink

▪ Otherwise we’ll have to flow it back.
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Preflow

▪ Flow constrains:
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▪ Every vertex v may keep some “excess” flow e(v) 
inside the vertex 



Excess handeling

▪ We strive to push this excess toward the sink
▪ If the sink is not reachable on the residual 

network the algorithm pushes the excess 
toward the source

▪ When no vertices with e(v) >0 are left the 
algorithm halts, and the resulting flow (!) is the 
max –flow
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Valid distance labeling

▪ A mapping function d(v) ! N + { ∞ }
▪ d(s) = n, d(t) = 0
▪ r(u,v) > 0 ! d(u) ≤ d(v)+1
▪ d(v) < n ! d(v) is the lower bound on the 

distance from v to the sink (residual graph)
▫ Let p= v, v1 ,v2 , v3…. vk ,t be the s.p v!t
▫ d(v) ≤ d(v1) + 1 ≤ d(v2) + 2 ..... ≤ d(t) + k = k

▪ Same way d(v) ≥ n ! d(v) -n is the lower 
bound on the distance from v to the source
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Active vertex

▪ Active vertex:
▫ v є V-{s,t} is active if
◾d(v) < ∞
◾e(v) > 0
▪ Eventually, I’ll show that d(v) is always finite and 

therefore only the e(v) > 0 part is relevant
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Basic operations

▪ Applied on active vertices only

▪ Push (u,v)
▫ Requires: r(u,v) >0, d(u)=d(v)+1
▫ Action:
◾δ = min( e(v) , r(u,v) )
◾f(u,v) += δ, f(v,u) -= δ
◾e(u) -= δ , e(v) += δ  
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Basic operations , contd. 

▪ Relabel (u)
▫ Requires: ∀(u,v) є V r(u,v) >0 ! d(u) ≤ d(v)
▫ Action:
◾d(u) = min { d(v) +1 | r(u,v) >0 }

▪ One of the basic operations is applicable on a 
active vertex:
▫ PUSH: Any residual edge (u,v) with d(u) = d(v) +1 
▫ Otherwise: d(u) ≤ d(v) for all residual edges, allows 

relabel
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The algorithm

▪ Initialize: d(s) = n, v є V-{s} d(v) =0
▪ Saturate the outgoing edges of s
▪ While there are active vertices apply one of the 

basic actions on the vertex

▪ Simple, isn’t it?
▪ Let’s see an example
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Example
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Example – contd.
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Example – contd.
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Example – contd.
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Correctness

▪ For an active vertex v, there must be a residual 
path v!…!s
▫ Otherwise, no flow enters v, and it is clearly not 

active
▪ So, every active vertex v has an outgoing edge
▫ And this means, that if the distance labels are valid, v 

can be either relabled or pushed

Correctness of d(v)

▪ r(u,v) > 0 ! d(u) ≤ d(v)+1
▪ By induction on the basic operations
▪ We begin with a valid labeling
▪ Relabel keeps the invariant
▫ By definition for the outgoing edges
▫ Only grows, so holds for all the incoming ones

▪ Push
▫ Can only introduce (v,u) – back edge, but since d(u) 

= d(v)+1 the correctness is kept



Correctness of d(v) – contd.

▪ For any active vertex v, d(v) < 2n
▫ Let p= v, v1 ,v2 , v3…. vk ,s be a path v!s
▫ d(v) ≤ d(v1) + 1 ≤ d(v2) + 2 ..... ≤ d(s) + k = n+k
▫ The length of the path is ≤ n-1, so k ≤ n-1
▫ ➔ d(v) ≤ 2n-1 

▪ For a non active, it is kept when the vertex is 
active, or it is 0.

▪ ➔ d(v) is finite for any v during the run of the 
algorithm

Correctness contd.

▪ At the end, for all the vertices besides {s,t} no 
excess is left in the vertices
▫ ➔ Our preflow is a flow

▪ The sink is not reachable from the source on 
the augmenting graph
▫ Let p= s, v1 ,v2 , v3…. vk ,t be a path s!t
▫ Notice k ≤ n-2
▫ n = d(s) ≤ d(v1) + 1 ≤ d(v2) + 2 ... ≤ d(t) + k+1 = 

k+1
▫ Implies that n ≤ k+1 in contradiction to above



Complexity analysis
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▪ d(v) ≤ 2n-1, and can only grow during the 
execution, and only by relabel operation

▪ n-2 vertices are relabeled 
▫ ! At most (n-2)(2n-1) < 2n2 = O(n2) relabels.

Complexity analysis –  
Saturating push

▪ First saturating push 1 ≤ d(u) + d(v)
▪ Last saturating push d(u) + d(v) ≤ 4n -3
▪ Must grow by 2 between 2 adjutant pushes
▪ ! 2n-1 saturating pushes on (u,v) [or (v,u)].
▪ !m(2n-1) = O(nm) saturating pushes at all



Complexity analysis – 
Non Saturating push

▪ Φ = ∑d(v) | v is active
▫ Φ is 0 in the beginning and in the end

▪ A saturating push increases Φ by ≤  2n-1
▫ All saturating pushes worth O(mn2)

▪ All relabelings increase Φ by  ≤ (2n-1)(n-2)
▪ Each non saturating push decreases Φ by at 

least 1
▪ There are up to O(mn2) non saturating pushes

Complexity analysis

▪ Any reasonable sequential implementation will 
provide us a polynomial algorithm
▫ How much a relabel operation cost?
▫ How much a push operation cost?
▫ How much cost to hold the active vertices?

▪ How will we improve this?



Implementation

▪ For an edge in {e = (u,v) | (u,v) єE or (v,u) єE } 
hold a struct of 3 values:
▫ c(u,v) & c(v,u)
▫ f(u,v)

▪ For a vertex v єV we hold a list of all incident 
edges in some fixed order
▫ Each edge appears in two lists.

▪ We also hold an “current edge” pointer for each 
vertex
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Implementation – contd.

▪ Push/relabel operation:
▫ If the current edge is admissible perform push on the 

current edge and return
▫ If the current edge is the last one, relabel the node 

and set the current edge to the first one in the list
▫ Otherwise, just advance the current edge to the next 

one in line
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u

Current edge

Admissible arc in the 
residual graph

d(u) = d(v) + 1 



Is this correct?

▪ When we relabel a node we’ll have no 
admissible edges:
▫ Any of the other edges (u,v) wasn’t admissible before 

and d(v) can only grow
▫ If it had r(u,v) =0 before and now it is positive we 

had d(u) = d(v) + 1, and so d(v) < d(u)
▪ Hold a list of all active nodes – O(1) extra cost 

per push/relabel operation
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And it costs

▪ Number of relabelings – 2n-1 per vertex
▪ Each relabeling causes a pass over all the edges 

of the vertex – m for all the vertices
▪ Besides that we have o(1) per push performed 

(recall O(mn2) non saturating pushes).

▪ Total – O(mn + mn2) = O(n2m) 
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Use FIFO ordering

▪ discharge(v) = perform push/relabel(v) until e(v) 
= 0 or the vertex is relabled

▪ Hold two queues – one is the active, the other 
is for the next iteration

▪ Iteration:
▫ While the active queue is not empty
◾Discharge the vertex in the front

▫ Any vertex that becomes active is inserted to the 
other queue
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Use FIFO ordering - complexity

▪ Φ = max d(v) | v is active
▫ Φ is 0 in the beginning and in the end

▪ A relabel during an iteration can increase Φ 
by the delta of the relabel or keep Φ.

▪ No relabel during an iteration will cause Φ to 
decrease by at least 1.

▪ There are up to 2n2 relabels during the run - 
2n2 iteration of the first kind.
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Use FIFO ordering - complexity

▪ As each node can add up to 2n-1 to Φ, Φ grows by 
up to (2n-1)(n-2) during the entire run

▪ O(2n2) iteration of the second kind as well
▪ 2n2 + 2n2   iterations ! O(n2) iterations
▪ Each iteration will have up to 1 non saturating 

push per vertex
▪ O(n3) non saturating pushes at all
▪ ➔O(n3) total run time
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Dynamic tree operations 

▪ FindRoot(v)
▪ FindSize(v)
▪ FindValue(v)
▪ FindMin(v)
▪ ChangeValue(v, delta)
▪ Link(v,w) – v becomes the child of w, must be a 

root before that.
▪ Cut(v) – cuts the link between v and its’ parent
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The algorithm using dynamic trees

▪ All that said before holds, but we also add 
dynamic trees

▪ Initially every vertex is a one node dynamic 
tree.

▪ The edges (u,v) that are eligible to be in the 
trees are those that hold
▫ d(u) = d(v)+1 (admissible)
▫ r(u,v) > 0
▫ (u,v) is the “current edge” of the vertex u
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The algorithm using dynamic trees

▪ Yet, not all eligible edges are tree edges
▪ If an edge (u,v) is in the tree v= p(u) and 

value(v) = r(u,v)
▪ For the roots of the trees value(v) = ∞
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The Send operation

▫ Requires: u is active
▫ Action:
◾while FindRoot(u) != u && e(u) > 0
◾δ = min( e(u) , FindValue(FindMin(u)) ) 
◾ChangeValue(u, -δ)
◾while FindValue(FindMin(u)) == 0
◾v = FindMin(u)
◾Cut(v)
◾ChangeValue(v, ∞)
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Add the maximal  
possible flow on  
the path to the path 
to the root

Remove all the  
edges saturated 
by the addition

The Send operation – contd.

▪ The send operation will either cause e(v) 
become 0, or it will make it the root

▪ This implies v will not be active unless it is a 
root of a tree
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And the algorithm is…

▪ As before – two queues etc.
▪ Discharge the vertex in the front 
▫ Use tree-Push/ Relabel instead of Push/ Relabel

▪ We’ll set some constant – k – to be the upper 
limit of the size of a tree during the algorithm  
execution
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Tree-Push/Relabel operation

▪ Applied on an active vertex u
▪ If the current edge (u,v) is addmissible
▫ If (FindSize(u) + FindSize(v) ≤ k)
◾Link (u,v), Send (u)

▫ Else
◾Push (u,v), Send (v)

▪ Else
▫ Advance the current edge
▫ If (u,v) was the last one cut all the children of u & 

Relabel(u)
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Tree-Push/Relabel operation – contd.

▪ The operation insures that all vertices with 
positive excess are the roots of some tree
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u

v

Why is this correct?

▪ Since inside the tree the d values strictly 
growing no linking inside the tree can occur

▪ A vertex v will not have positive excess unless it 
is a root of a tree
▫ Link operation is valid if required

▪ The rest is just as before

3/3/2007 62



Complexity Tree-Push/Relabel

▪ Each dynamic tree operation is O(log(k))
▪ Each Tree-Push/Relabel operation takes
▫ O(1) opearions
▫ O(1) tree opearions
▫ Relabeling time
▫ O(1) tree operations per cut performed
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Complexity – contd.

▪ The total relabeling time is O(mn)
▪ Total number of cut operations O(mn):
▫ Due to relabeling – O(mn)
▫ Due to saturating push – O(mn)

▪ Total number of link operations < Number of 
cut operations  + n ! O(mn)

▪ So we reach O(mn) tree operations + O(1) 
tree operations per vertex entering Q.
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How many times will a vertex become active?

▪ Due to increase of d(v) – O(n2)
▪ Due to Send operation, e(v) grows from 0
▫ Any cut performed – total (mn)
▫ One more per send operation
◾Link case – O(mn)
◾Push case - Need to split to saturating and not

◾There can be up to O(mn) such saturating pushes
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Non saturating push analysis

▪ For a non saturating push (u,v) either Tu or Tv 
must be large - contain more than k/2 vertices

▪ For a single iteration, only 1 such push is 
possible per vertex

▪ Charge it to the link or cut creating the large 
tree if it did not exist at the beginning of the 
phase – O(mn)

▪ Otherwise charge it to the tree itself
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Non saturating push analysis – contd.

▪ There are up to 2n/k large trees at the 
beginning of the iteration

▪ Total of O(n3/k) for all O(n2) iterations

▪ ➔ A vertex enters the Queue O(mn + n3/k) 
times due to a non saturating push 
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Total complexity

▪ Total of O(mn + n3/k) tree operations with tree 
size of k.

▪ We reach total of O(log(k) (mn + n3/k)) 
runtime complexity

▪ Choose k = n2/m

▪ We reach O(log(n2/m) (mn)) runtime 
complexity
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Conclusion

▪ We’ve seen an algorithm that finds a max flow 
over a network with O(log(n2/m) (mn)) runtime 
complexity

▪ The algorithm uses a different approach – a 
preflow instead of flow

▪ While providing same asymptotical result as 
Dinic, has better coefficients and therefore often 
used in time demanding applications  
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Questions?

▪ Thank you for listening
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