

Applications of Network Flow

T. M. Murali

April 7, 9, 2009

Maximum Flow and Minimum Cut

- \blacktriangleright Two rich algorithmic problems.
- Fundamental problems in combinatorial optimization.
- Beautiful mathematical duality between flows and cuts.
- Numerous non-trivial applications:
	- \blacktriangleright Bipartite matching.
	- \triangleright Data mining.
	- \blacktriangleright Project selection.
	- \blacktriangleright Airline scheduling.
	- \blacktriangleright Baseball elimination.
	- \blacktriangleright Image segmentation.
	- \blacktriangleright Network connectivity.
	- \triangleright Open-pit mining.
- \blacktriangleright Network reliability.
- \triangleright Distributed computing.
- \blacktriangleright Egalitarian stable matching.
- \blacktriangleright Security of statistical data.
- \triangleright Network intrusion detection.
- Multi-camera scene reconstruction.
- \blacktriangleright Gene function prediction.

Maximum Flow and Minimum Cut

- \blacktriangleright Two rich algorithmic problems.
- Fundamental problems in combinatorial optimization.
- Beautiful mathematical duality between flows and cuts.
- Numerous non-trivial applications:
	- \blacktriangleright Bipartite matching.
	- \triangleright Data mining.
	- \blacktriangleright Project selection.
	- \blacktriangleright Airline scheduling.
	- \blacktriangleright Baseball elimination.
	- \blacktriangleright Image segmentation.
	- \triangleright Network connectivity.
	- \triangleright Open-pit mining.
- \blacktriangleright Network reliability.
- \triangleright Distributed computing.
- \blacktriangleright Egalitarian stable matching.
- \blacktriangleright Security of statistical data.
- \triangleright Network intrusion detection.
- Multi-camera scene reconstruction.
- \blacktriangleright Gene function prediction.

Maximum Flow and Minimum Cut

- \blacktriangleright Two rich algorithmic problems.
- Fundamental problems in combinatorial optimization.
- Beautiful mathematical duality between flows and cuts.
- Numerous non-trivial applications:
	- \blacktriangleright Bipartite matching.
	- \triangleright Data mining.
	- \blacktriangleright Project selection.
	- \blacktriangleright Airline scheduling.
	- \blacktriangleright Baseball elimination.
	- \blacktriangleright Image segmentation.
	- \triangleright Network connectivity.
- \blacktriangleright Network reliability.
- \triangleright Distributed computing.
- \blacktriangleright Egalitarian stable matching.
- \blacktriangleright Security of statistical data.
- \triangleright Network intrusion detection.
- \blacktriangleright Multi-camera scene reconstruction.
- \blacktriangleright Gene function prediction.

- \triangleright Open-pit mining.
- \triangleright We will only sketch proofs. Read details from the textbook.

[Introduction](#page-1-0) **[Bipartite Matching](#page-4-0)** [Edge-Disjoint Paths](#page-28-0) [Circulation with Demands](#page-46-0) [Survey Design](#page-75-0) [Image Segmentation](#page-85-0)

Matching in Bipartite Graphs

Figure 7.1 A bipartite graph.

- \triangleright Bipartite Graph: a graph $G(V, E)$ where 1. $V = X \cup Y$, X and Y are disjoint and
	- 2. $E \subset X \times Y$.
- ^I Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.

[Introduction](#page-1-0) **[Bipartite Matching](#page-4-0)** [Edge-Disjoint Paths](#page-28-0) [Circulation with Demands](#page-46-0) [Survey Design](#page-75-0) [Image Segmentation](#page-85-0)

Matching in Bipartite Graphs

Figure 7.1 A bipartite graph.

- \triangleright Bipartite Graph: a graph $G(V, E)$ where 1. $V = X \cup Y$, X and Y are disjoint and
	- 2. $E \subset X \times Y$.
- \triangleright Bipartite graphs model situations in which objects are matched with or assigned to other objects: e.g., marriages, residents/hospitals, jobs/machines.
- A matching in a bipartite graph G is a set $M \subseteq E$ of edges such that each node of V is incident on at most edge of M .
- A set of edges M is a *perfect matching* if every node in V is incident on exactly one edge in M.

Bipartite Graph Matching Problem

Bipartite Matching INSTANCE: A Bipartite graph G. **SOLUTION:** The matching of largest size in G.

Algorithm for Bipartite Graph Matching

Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

- Sonvert G to a flow network G' : direct edges from X to Y, add nodes s and t, connect s to each node in X , connect each node in Y to t, set all edge capacities to 1.
- Sompute the maximum flow in G' .
- Claim: the value of the maximum flow is the size of the maximum matching.

▶ Matching \rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G' .

- In Matching \rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G' .
- ▶ Flow \rightarrow matching: if there is an integer-valued flow f' in G' with value k , there is a matching M in G with k edges.

- In Matching \rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G' .
- ▶ Flow \rightarrow matching: if there is an integer-valued flow f' in G' with value k , there is a matching M in G with k edges.
	- **►** There is an integer-valued flow f of value $k \Rightarrow$ flow along any edge is 0 or 1.
	- Exect M be the set of edges not incident on s or t with flow equal to 1.

- In Matching \rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G' .
- ▶ Flow \rightarrow matching: if there is an integer-valued flow f' in G' with value k , there is a matching M in G with k edges.
	- **►** There is an integer-valued flow f of value $k \Rightarrow$ flow along any edge is 0 or 1.
	- Exect M be the set of edges not incident on s or t with flow equal to 1.
	- \triangleright Claim: *M* contains *k* edges.

- In Matching \rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G' .
- ▶ Flow \rightarrow matching: if there is an integer-valued flow f' in G' with value k , there is a matching M in G with k edges.
	- **►** There is an integer-valued flow f of value $k \Rightarrow$ flow along any edge is 0 or 1.
	- Exect M be the set of edges not incident on s or t with flow equal to 1.
	- \triangleright Claim: *M* contains *k* edges.
	- In Claim: Each node in X (respectively, Y) is the tail (respectively, head) of at most one edge in M.

- In Matching \rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G' .
- ▶ Flow \rightarrow matching: if there is an integer-valued flow f' in G' with value k , there is a matching M in G with k edges.
	- **►** There is an integer-valued flow f of value $k \Rightarrow$ flow along any edge is 0 or 1.
	- Exect M be the set of edges not incident on s or t with flow equal to 1.
	- \triangleright Claim: *M* contains *k* edges.
	- In Claim: Each node in X (respectively, Y) is the tail (respectively, head) of at most one edge in M.
- \triangleright Conclusion: size of the maximum matching in G is equal to the value of the maximum flow in G' ; the edges in this matching are those that carry flow from X to Y in G' .

- In Matching \rightarrow flow: if there is a matching with k edges in G, there is an s-t flow of value k in G' .
- ▶ Flow \rightarrow matching: if there is an integer-valued flow f' in G' with value k , there is a matching M in G with k edges.
	- **►** There is an integer-valued flow f of value $k \Rightarrow$ flow along any edge is 0 or 1.
	- Exect M be the set of edges not incident on s or t with flow equal to 1.
	- \triangleright Claim: *M* contains *k* edges.
	- In Claim: Each node in X (respectively, Y) is the tail (respectively, head) of at most one edge in M.
- \triangleright Conclusion: size of the maximum matching in G is equal to the value of the maximum flow in G' ; the edges in this matching are those that carry flow from X to Y in G' .
- \triangleright Read the book on what augmenting paths mean in this context.

Running time of Bipartite Graph Matching Algorithm

Suppose G has m edges and n nodes in X and in Y.

Running time of Bipartite Graph Matching Algorithm

- Suppose G has m edges and n nodes in X and in Y.
- \blacktriangleright $C \leq n$.
- Ford-Fulkerson algorithm runs in $O(mn)$ time.
- \blacktriangleright How long does the scaling algorithm take?

Running time of Bipartite Graph Matching Algorithm

- Suppose G has m edges and n nodes in X and in Y.
- \blacktriangleright $C \leq n$.
- Ford-Fulkerson algorithm runs in $O(mn)$ time.
- How long does the scaling algorithm take? $O(m^2 \log n)$ time.

 \blacktriangleright How do we determine if a bipartite graph G has a perfect matching?

 \triangleright How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.

- \blacktriangleright How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.
- **In Suppose G** has no perfect matching. Can we exhibit a short "certificate" of that fact?
- \triangleright What can such certificates look like?

- \blacktriangleright How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.
- **In Suppose G** has no perfect matching. Can we exhibit a short "certificate" of that fact?
- \triangleright What can such certificates look like?
- G has no perfect matching iff

- \blacktriangleright How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.
- **In Suppose G** has no perfect matching. Can we exhibit a short "certificate" of that fact?
- \triangleright What can such certificates look like?
- \triangleright G has no perfect matching iff the maximum capacity of a cut in G' is less than n . Therefore, the cut is a certificate.

- \blacktriangleright How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.
- **In Suppose G** has no perfect matching. Can we exhibit a short "certificate" of that fact?
- \triangleright What can such certificates look like?
- \triangleright G has no perfect matching iff the maximum capacity of a cut in G' is less than n. Therefore, the cut is a certificate.
- \triangleright But we would like the certificate in terms of G.

- \blacktriangleright How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.
- **In Suppose G** has no perfect matching. Can we exhibit a short "certificate" of that fact?
- \triangleright What can such certificates look like?
- \triangleright G has no perfect matching iff the maximum capacity of a cut in G' is less than n. Therefore, the cut is a certificate.
- \triangleright But we would like the certificate in terms of G.
	- For example, two nodes in X with one incident edge each with the same neighbour in Y .

- \blacktriangleright How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.
- **In Suppose G** has no perfect matching. Can we exhibit a short "certificate" of that fact?
- \triangleright What can such certificates look like?
- \triangleright G has no perfect matching iff the maximum capacity of a cut in G' is less than n. Therefore, the cut is a certificate.
- \triangleright But we would like the certificate in terms of G.
	- For example, two nodes in X with one incident edge each with the same neighbour in Y .
	- ► Generally, a subset $A \subseteq X$ with neighbours $\Gamma(A) \subseteq Y$, such that $|A| > |\Gamma(A)|$.

- \blacktriangleright How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.
- **In Suppose G** has no perfect matching. Can we exhibit a short "certificate" of that fact?
- \triangleright What can such certificates look like?
- \triangleright G has no perfect matching iff the maximum capacity of a cut in G' is less than n . Therefore, the cut is a certificate.
- \triangleright But we would like the certificate in terms of G.
	- For example, two nodes in X with one incident edge each with the same neighbour in Y .
	- ► Generally, a subset $A \subseteq X$ with neighbours $\Gamma(A) \subseteq Y$, such that $|A| > |\Gamma(A)|$.
- ► Hall's Theorem: Let $G(X \cup Y, E)$ be a bipartite graph such that $|X| = |Y|$. Then G either has a perfect matching or there is a subset $A \subseteq X$ such that $|A| > |\Gamma(A)|$. A perfect matching or such a subset can be computed in $O(mn)$ time.

- \blacktriangleright How do we determine if a bipartite graph G has a perfect matching? Find the maximum matching and check if it is perfect.
- **In Suppose G** has no perfect matching. Can we exhibit a short "certificate" of that fact?
- \triangleright What can such certificates look like?
- \triangleright G has no perfect matching iff the maximum capacity of a cut in G' is less than n . Therefore, the cut is a certificate.
- \triangleright But we would like the certificate in terms of G.
	- For example, two nodes in X with one incident edge each with the same neighbour in Y .
	- ► Generally, a subset $A \subseteq X$ with neighbours $\Gamma(A) \subseteq Y$, such that $|A| > |\Gamma(A)|$.
- ► Hall's Theorem: Let $G(X \cup Y, E)$ be a bipartite graph such that $|X| = |Y|$. Then G either has a perfect matching or there is a subset $A \subseteq X$ such that $|A| > |\Gamma(A)|$. A perfect matching or such a subset can be computed in $O(mn)$ time. Read proof in the textbook.

Edge-Disjoint Paths

A set of paths in a graph G is edge disjoint if each edge in G appears in at most one path.

Edge-Disjoint Paths

A set of paths in a graph G is edge disjoint if each edge in G appears in at most one path.

Directed Edge-Disjoint Paths

INSTANCE: Directed graph $G(V, E)$ with two distinguished nodes s and t.

SOLUTION: The maximum number of edge-disjoint paths between s and t.

▶ Convert G into a flow network: s is the source, t is the sink, each edge has capacity 1.

- **In** Convert G into a flow network: s is the source, t is the sink, each edge has capacity 1.
- \triangleright Paths \rightarrow flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k .
- ► Flow \rightarrow paths: Suppose there is an integer-valued flow of value k. Are there k edge-disjoint paths? If so, what are they?

- **In** Convert G into a flow network: s is the source, t is the sink, each edge has capacity 1.
- \triangleright Paths \rightarrow flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k .
- ► Flow \rightarrow paths: Suppose there is an integer-valued flow of value k. Are there k edge-disjoint paths? If so, what are they?
- ► Construct k edge-disjoint paths from a flow of value $> k$.
	- \triangleright There is an integral flow. Therefore, flow on each edge is 0 or 1.

- **In** Convert G into a flow network: s is the source, t is the sink, each edge has capacity 1.
- \triangleright Paths \rightarrow flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k .
- ► Flow \rightarrow paths: Suppose there is an integer-valued flow of value k. Are there k edge-disjoint paths? If so, what are they?
- ► Construct k edge-disjoint paths from a flow of value $> k$.
	- \triangleright There is an integral flow. Therefore, flow on each edge is 0 or 1.
	- ► Claim: if f is a 0-1 valued flow of value ν , then the set of edges with flow $f(e) = 1$ contains a set of ν edge-disjoint paths.

- **In** Convert G into a flow network: s is the source, t is the sink, each edge has capacity 1.
- \triangleright Paths \rightarrow flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k .
- ► Flow \rightarrow paths: Suppose there is an integer-valued flow of value k. Are there k edge-disjoint paths? If so, what are they?
- ► Construct k edge-disjoint paths from a flow of value $> k$.
	- \triangleright There is an integral flow. Therefore, flow on each edge is 0 or 1.
	- ► Claim: if f is a 0-1 valued flow of value ν , then the set of edges with flow $f(e) = 1$ contains a set of ν edge-disjoint paths.
	- Prove by induction on the number of edges in f that carry flow.

- **In** Convert G into a flow network: s is the source, t is the sink, each edge has capacity 1.
- \triangleright Paths \rightarrow flow: if there are k edge-disjoint paths from s to t, send one unit of flow along each to yield a flow with value k .
- ▶ Flow \rightarrow paths: Suppose there is an integer-valued flow of value k. Are there k edge-disjoint paths? If so, what are they?
- ► Construct k edge-disjoint paths from a flow of value $> k$.
	- \triangleright There is an integral flow. Therefore, flow on each edge is 0 or 1.
	- ► Claim: if f is a 0-1 valued flow of value ν , then the set of edges with flow $f(e) = 1$ contains a set of ν edge-disjoint paths.
	- Prove by induction on the number of edges in f that carry flow.
- \triangleright We just proved: there are k edge-disjoint paths from s to t in a directed graph G iff the maximum value of an s-t flow in G is $> k$.
Running Time of the Edge-Disjoint Paths Algorithm

Given a flow of value k, how quickly can we determine the k edge-disjoint paths?

Running Time of the Edge-Disjoint Paths Algorithm

- Given a flow of value k, how quickly can we determine the k edge-disjoint paths? $O(mn)$ time.
- \triangleright Corollary: The Ford-Fulkerson algorithm can be used to find a maximum set of edge-disjoint $s-t$ paths in a directed graph G in

Running Time of the Edge-Disjoint Paths Algorithm

- Given a flow of value k, how quickly can we determine the k edge-disjoint paths? $O(mn)$ time.
- \triangleright Corollary: The Ford-Fulkerson algorithm can be used to find a maximum set of edge-disjoint s-t paths in a directed graph G in $O(mn)$ time.

Certificate for Edge-Disjoint Paths Algorithm

► A set $F \subseteq E$ of edge separates s and t if the graph $(V, E - F)$ contains no s-t paths.

Certificate for Edge-Disjoint Paths Algorithm

- ► A set $F \subseteq E$ of edge separates s and t if the graph $(V, E F)$ contains no s-t paths.
- \triangleright Menger's Theorem: In every directed graph with nodes s and t, the maximum number of edge-disjoint s-t paths is equal to the minimum number of edges whose removal disconnects s from t.

 \blacktriangleright Can extend the theorem to *undirected* graphs.

- \triangleright Can extend the theorem to *undirected* graphs.
- ^I Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.

- \blacktriangleright Can extend the theorem to *undirected* graphs.
- ^I Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.
- **Problem:** Both counterparts of an undirected edge (u, v) may be used by different edge-disjoint paths in the directed graph.

- \triangleright Can extend the theorem to *undirected* graphs.
- \triangleright Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.
- Problem: Both counterparts of an undirected edge (u, v) may be used by different edge-disjoint paths in the directed graph.
- \triangleright Can obtain an integral flow where only one of the directed counterparts of (u, v) has non-zero flow.

- \triangleright Can extend the theorem to *undirected* graphs.
- \triangleright Replace each edge with two directed edges of capacity 1 and apply the algorithm for directed graphs.
- **Problem:** Both counterparts of an undirected edge (u, v) may be used by different edge-disjoint paths in the directed graph.
- \triangleright Can obtain an integral flow where only one of the directed counterparts of (u, v) has non-zero flow.
- \triangleright We can find the maximum number of edge-disjoint paths in $O(mn)$ time.
- \triangleright We can prove a version of Menger's theorem for undirected graphs: in every undirected graph with nodes s and t , the maximum number of edge-disjoint $s-t$ paths is equal to the minimum number of edges whose removal separates s from t.

Extension of Max-Flow Problem

- **In Suppose we have a set S of multiple sources and a set T of multiple sinks.**
- \blacktriangleright Each source can send flow to any sink.
- \blacktriangleright Let us not maximise flow here but formulate the problem in terms of demands and supplies.

▶ We are given a graph $G(V,E)$ with capacity function $c:E\to \mathbb{Z}^+$ and a demand function $d: V \rightarrow \mathbb{Z}$:

- ▶ We are given a graph $G(V,E)$ with capacity function $c:E\to \mathbb{Z}^+$ and a demand function $d: V \rightarrow \mathbb{Z}$:
	- $d_v > 0$: node is a sink, it has a "demand" for d_v units of flow.
	- ► $d_v < 0$: node is a source, it has a "supply" of $-d_v$ units of flow.
	- $d_v = 0$: node simply receives and transmits flow.

- ▶ We are given a graph $G(V,E)$ with capacity function $c:E\to \mathbb{Z}^+$ and a demand function $d: V \rightarrow \mathbb{Z}$:
	- $d_v > 0$: node is a sink, it has a "demand" for d_v units of flow.
	- \blacktriangleright d_v < 0: node is a source, it has a "supply" of $-d_v$ units of flow.
	- $d_v = 0$: node simply receives and transmits flow.
	- \triangleright S is the set of nodes with negative demand and T is the set of nodes with positive demand.

- ▶ We are given a graph $G(V,E)$ with capacity function $c:E\to \mathbb{Z}^+$ and a demand function $d: V \rightarrow \mathbb{Z}$:
	- $d_v > 0$: node is a sink, it has a "demand" for d_v units of flow.
	- \blacktriangleright d_v < 0: node is a source, it has a "supply" of $-d_v$ units of flow.
	- $d_v = 0$: node simply receives and transmits flow.
	- \triangleright S is the set of nodes with negative demand and T is the set of nodes with positive demand.

A circulation with demands is a function $f : E \to \mathbb{R}^+$ that satisfies

- ▶ We are given a graph $G(V,E)$ with capacity function $c:E\to \mathbb{Z}^+$ and a demand function $d: V \rightarrow \mathbb{Z}$:
	- $d_v > 0$: node is a sink, it has a "demand" for d_v units of flow.
	- \blacktriangleright d_v < 0: node is a source, it has a "supply" of $-d_v$ units of flow.
	- $d_v = 0$: node simply receives and transmits flow.
	- \triangleright S is the set of nodes with negative demand and T is the set of nodes with positive demand.

A circulation with demands is a function $f : E \to \mathbb{R}^+$ that satisfies

- (i) (Capacity conditions) For each $e \in E$, $0 \le f(e) \le c(e)$.
- (ii) (Demand conditions) For each node v, $f^{\text{in}}(v) f^{\text{out}}(v) = d_v$.

- ▶ We are given a graph $G(V,E)$ with capacity function $c:E\to \mathbb{Z}^+$ and a demand function $d: V \rightarrow \mathbb{Z}$:
	- $d_v > 0$: node is a sink, it has a "demand" for d_v units of flow.
	- \blacktriangleright d_v < 0: node is a source, it has a "supply" of $-d_v$ units of flow.
	- $d_v = 0$: node simply receives and transmits flow.
	- \triangleright S is the set of nodes with negative demand and T is the set of nodes with positive demand.
- A circulation with demands is a function $f : E \to \mathbb{R}^+$ that satisfies
	- (i) (Capacity conditions) For each $e \in E$, $0 \le f(e) \le c(e)$.
	- (ii) (Demand conditions) For each node v, $f^{\text{in}}(v) f^{\text{out}}(v) = d_v$.

Circulation with Demands

INSTANCE: A directed graph $G(V, E)$, $c : E \rightarrow \mathbb{Z}^+$, and $d : V \rightarrow \mathbb{Z}$.

SOLUTION: Does there exist a circulation that is *feasible*, i.e., it meets the capacity and demand conditions?

Properties of Feasible Circulations

 \blacktriangleright Claim: if there exists a feasible circulation with demands, then $\sum_{v} d_v = 0$.

Properties of Feasible Circulations

- \blacktriangleright Claim: if there exists a feasible circulation with demands, then $\sum_{v} d_v = 0$.
- ► Corollary: $\sum_{v,d_v > 0} d_v = \sum_{v,d_v < 0} -d_v$. Let D denote this common value.

Mapping Circulation to Maximum Flow

- \blacktriangleright Create a new graph $G' = G$ and
	- 1. create two new nodes in G' : a source s^* and a sink t^* ;
	- 2. connect s^* to each node v in S using an edge with capacity $-d_v$;
	- 3. connect each node v in T to t^* using an edge with capacity d_v .

Figure 7.13 (a) An instance of the Circulation Problem together with a solution: Numbers inside the nodes are demands; numbers labeling the edges are capacities and flow values, with the flow values inside boxes. (b) The result of reducing this instance to an equivalent instance of the Maximum-Flow Problem.

Figure 7.14 Reducing the Circulation Problem to the Maximum-Flow Problem.

 \blacktriangleright We will look for a maximum s-t flow f in G' ; $\nu(f)$

Figure 7.14 Reducing the Circulation Problem to the Maximum-Flow Problem.

 \blacktriangleright We will look for a maximum s-t flow f in G' ; $\nu(f) \leq D$.

Figure 7.14 Reducing the Circulation Problem to the Maximum-Flow Problem.

- \blacktriangleright We will look for a maximum s-t flow f in G' ; $\nu(f) \leq D$.
- Circulation \rightarrow flow.

Figure 7.14 Reducing the Circulation Problem to the Maximum-Flow Problem.

- \blacktriangleright We will look for a maximum s-t flow f in G' ; $\nu(f) \leq D$.
- \triangleright Circulation \rightarrow flow. If there is a feasible circulation, we send $-d_{\nu}$ units of flow along each edge (s^*, v) and d_v units of flow along each edge (v, t^*) . The value of this flow is D.

Figure 7.14 Reducing the Circulation Problem to the Maximum-Flow Problem.

- \blacktriangleright We will look for a maximum s-t flow f in G' ; $\nu(f) \leq D$.
- \triangleright Circulation \rightarrow flow. If there is a feasible circulation, we send $-d_{\nu}$ units of flow along each edge (s^*, v) and d_v units of flow along each edge (v, t^*) . The value of this flow is D.
- Flow \rightarrow circulation. If there is an s-t flow of value D in G',

Figure 7.14 Reducing the Circulation Problem to the Maximum-Flow Problem.

- \blacktriangleright We will look for a maximum s-t flow f in G' ; $\nu(f) \leq D$.
- \triangleright Circulation \rightarrow flow. If there is a feasible circulation, we send $-d_{\nu}$ units of flow along each edge (s^*, v) and d_v units of flow along each edge (v, t^*) . The value of this flow is D.
- ▶ Flow \rightarrow circulation. If there is an s-t flow of value D in G', edges incident on s^* and on t^* must be saturated with flow. Deleting these edges from G' yields a feasible circulation in G.

Figure 7.14 Reducing the Circulation Problem to the Maximum-Flow Problem.

- \blacktriangleright We will look for a maximum s-t flow f in G' ; $\nu(f) \leq D$.
- \triangleright Circulation \rightarrow flow. If there is a feasible circulation, we send $-d_{\nu}$ units of flow along each edge (s^*, v) and d_v units of flow along each edge (v, t^*) . The value of this flow is D.
- ▶ Flow \rightarrow circulation. If there is an s-t flow of value D in G', edges incident on s^* and on t^* must be saturated with flow. Deleting these edges from G' yields a feasible circulation in G.
- \triangleright We have just proved that there is a feasible circulation with demands in G iff the maximum s -t flow in G' has value D .

 \triangleright We want to force the flow to use certain edges.

- \triangleright We want to force the flow to use certain edges.
- \triangleright We are given a graph $G(V, E)$ with a capacity $c(e)$ and a lower bound $0 \leq l(e) \leq c(e)$ on each edge and a demand d_v on each vertex.

- \triangleright We want to force the flow to use certain edges.
- \triangleright We are given a graph $G(V, E)$ with a capacity $c(e)$ and a lower bound $0 \leq l(e) \leq c(e)$ on each edge and a demand d_v on each vertex.
- A circulation with demands is a function $f : E \to \mathbb{R}^+$ that satisfies

- \triangleright We want to force the flow to use certain edges.
- \triangleright We are given a graph $G(V, E)$ with a capacity $c(e)$ and a lower bound $0 \leq l(e) \leq c(e)$ on each edge and a demand d_v on each vertex.
- A circulation with demands is a function $f : E \to \mathbb{R}^+$ that satisfies
	- (i) (Capacity conditions) For each $e \in E$, $I(e) \leq f(e) \leq c(e)$.
	- (ii) (Demand conditions) For each node v, $f^{in}(v) f^{out}(v) = d_v$.

- \triangleright We want to force the flow to use certain edges.
- \triangleright We are given a graph $G(V, E)$ with a capacity $c(e)$ and a lower bound $0 \leq l(e) \leq c(e)$ on each edge and a demand d_v on each vertex.
- A circulation with demands is a function $f : E \to \mathbb{R}^+$ that satisfies
	- (i) (Capacity conditions) For each $e \in E$, $I(e) \leq f(e) \leq c(e)$.
	- (ii) (Demand conditions) For each node v, $f^{in}(v) f^{out}(v) = d_v$.
- \blacktriangleright Is there a feasible circulation?

In Strategy is to reduce the problem to one with no lower bounds on edges.

- In Strategy is to reduce the problem to one with no lower bounds on edges.
- **In Suppose we define a circulation** f_0 **that satisfies lower bounds on all edges,** i.e., set $f_0(e) = l(e)$ for all $e \in E$. What can go wrong?

- In Strategy is to reduce the problem to one with no lower bounds on edges.
- **In Suppose we define a circulation** f_0 **that satisfies lower bounds on all edges,** i.e., set $f_0(e) = l(e)$ for all $e \in E$. What can go wrong?
- \triangleright Demand conditions may be violated. Let $L_v = f_0^{\text{in}}(v) - f_0^{\text{out}}(v) = \sum_{e \text{ into } v} l(e) - \sum_{e \text{ out of } v} l(e).$

- In Strategy is to reduce the problem to one with no lower bounds on edges.
- Suppose we define a circulation f_0 that satisfies lower bounds on all edges, i.e., set $f_0(e) = l(e)$ for all $e \in E$. What can go wrong?
- \triangleright Demand conditions may be violated. Let $L_v = f_0^{\text{in}}(v) - f_0^{\text{out}}(v) = \sum_{e \text{ into } v} l(e) - \sum_{e \text{ out of } v} l(e).$
- If $L_v \neq d_v$, we can superimpose a circulation f_1 on top of f_0 such that $f_1^{\text{in}}(v) - f_1^{\text{out}}(v) = d_v - L_v.$
[Introduction](#page-1-0) [Bipartite Matching](#page-4-0) [Edge-Disjoint Paths](#page-28-0) [Circulation with Demands](#page-46-0) [Survey Design](#page-75-0) [Image Segmentation](#page-85-0)

Algorithm for Circulation with Lower Bounds

- In Strategy is to reduce the problem to one with no lower bounds on edges.
- **In Suppose we define a circulation** f_0 **that satisfies lower bounds on all edges,** i.e., set $f_0(e) = l(e)$ for all $e \in E$. What can go wrong?
- \triangleright Demand conditions may be violated. Let $L_v = f_0^{\text{in}}(v) - f_0^{\text{out}}(v) = \sum_{e \text{ into } v} l(e) - \sum_{e \text{ out of } v} l(e).$
- If $L_v \neq d_v$, we can superimpose a circulation f_1 on top of f_0 such that $f_1^{\text{in}}(v) - f_1^{\text{out}}(v) = d_v - L_v.$
- \blacktriangleright How much capacity do we have left on each edge?

Algorithm for Circulation with Lower Bounds

- In Strategy is to reduce the problem to one with no lower bounds on edges.
- **In Suppose we define a circulation** f_0 **that satisfies lower bounds on all edges,** i.e., set $f_0(e) = l(e)$ for all $e \in E$. What can go wrong?
- \triangleright Demand conditions may be violated. Let $L_v = f_0^{\text{in}}(v) - f_0^{\text{out}}(v) = \sum_{e \text{ into } v} l(e) - \sum_{e \text{ out of } v} l(e).$
- If $L_v \neq d_v$, we can superimpose a circulation f_1 on top of f_0 such that $f_1^{\text{in}}(v) - f_1^{\text{out}}(v) = d_v - L_v.$
- \triangleright How much capacity do we have left on each edge? $c(e) l(e)$.

Algorithm for Circulation with Lower Bounds

[Introduction](#page-1-0) [Bipartite Matching](#page-4-0) [Edge-Disjoint Paths](#page-28-0) [Circulation with Demands](#page-46-0) [Survey Design](#page-75-0) [Image Segmentation](#page-85-0)

- In Strategy is to reduce the problem to one with no lower bounds on edges.
- **In Suppose we define a circulation** f_0 **that satisfies lower bounds on all edges,** i.e., set $f_0(e) = l(e)$ for all $e \in E$. What can go wrong?
- \triangleright Demand conditions may be violated. Let $L_v = f_0^{\text{in}}(v) - f_0^{\text{out}}(v) = \sum_{e \text{ into } v} l(e) - \sum_{e \text{ out of } v} l(e).$
- If $L_v \neq d_v$, we can superimpose a circulation f_1 on top of f_0 such that $f_1^{\text{in}}(v) - f_1^{\text{out}}(v) = d_v - L_v.$
- \triangleright How much capacity do we have left on each edge? $c(e) l(e)$.
- Approach: define a new graph G' with the same nodes and edges: lower bound on each edge is 0, capacity of edge e is $c(e) - l(e)$, and demand of node v is $d_v - L_v$.
- \triangleright Claim: there is a feasible circulation in G iff there is a feasible circulation in G' .

Data Mining

- Algorithmic study of unexpected patterns in large quantities of data.
- \triangleright Study customer preferences is an important topic.
	- \triangleright Customers who buy diapers also buy beer:
		- \blacktriangleright http://www.dssresources.com/newsletters/66.php
		- \blacktriangleright http://www.forbes.com/forbes/1998/0406/6107128s1.html
	- ▶ People who bought "Harry Potter and the Deathly Hallows" also bought "Making Money (Discworld)".
- \triangleright Store cards allow companies to keep track of your history of shopping.

Survey Design

- \blacktriangleright Company sells k products.
- \triangleright Company has a database of purchase histories of many customers.
- \triangleright Company wants to send a customised survey to each of its *n* customers to further understand their preferences.

Survey Design

- Company sells k products.
- Company has a database of purchase histories of many customers.
- Company wants to send a customised survey to each of its n customers to further understand their preferences.
- \blacktriangleright Survey must satisfy certain constraints:
	- 1. Each customer receives questions about a subset of products.
	- 2. A customer receives questions only about products he/she has bought.
	- 3. The questionnaire must be informative but not too long: each customer i should be asked about a number of products between c_i and $c_i^\prime.$
	- 4. Each product must have enough data collected: between ρ_j and ρ'_j customers should be asked about product i .

Survey Design

- Company sells k products.
- Company has a database of purchase histories of many customers.
- Company wants to send a customised survey to each of its n customers to further understand their preferences.
- \blacktriangleright Survey must satisfy certain constraints:
	- 1. Each customer receives questions about a subset of products.
	- 2. A customer receives questions only about products he/she has bought.
	- 3. The questionnaire must be informative but not too long: each customer i should be asked about a number of products between c_i and $c_i^\prime.$
	- 4. Each product must have enough data collected: between ρ_j and ρ'_j customers should be asked about product i .
- If It possible to design a survey that satisfies this constraints?

Formalising the Survey Design Problem

- Input is a bipartite graph G :
	- \triangleright Nodes are *n* customers and *k* products.
	- \triangleright There is an edge between customer *i* and product *j* iff the customer has purchased the product at some time.
	- ► For each customer $1 \leq i \leq n$, limits $c_i \leq c'_i$ on the number of products he or she can be asked about.
	- ► For each product $1 \leq j \leq k$, limits $p_j \leq p'_j$ on the number of distinct customers asked about the product.

Reduce the problem to a circulation problem on a flow network G' with demands and lower bounds (lbs).

- Reduce the problem to a circulation problem on a flow network G' with demands and lower bounds (lbs).
- \triangleright Orient edges in G from customers to products: capacity 1, lb 0.
- Add node s, edges (s, i) to each customer: capacity c'_i , lb c_i .
- Add node t , edges (j, t) from each product: capacity p'_i , lb p_i .
- \blacktriangleright Set node demands to

Figure 7.16 The Survey Design Problem can be reduced to the problem of finding a feasible circulation: Flow passes from customers (with capacity bounds indicating how many questions they can be asked) to products (with capacity bounds indicating how many questions should be asked about each product).

- Reduce the problem to a circulation problem on a flow network G' with demands and lower bounds (lbs).
- \triangleright Orient edges in G from customers to products: capacity 1, lb 0.
- Add node s, edges (s, i) to each customer: capacity c'_i , lb c_i .
- Add node t , edges (j, t) from each product: capacity p'_i , lb p_i .
- \triangleright Set node demands to 0.

Figure 7.16 The Survey Design Problem can be reduced to the problem of finding a feasible circulation: Flow passes from customers (with capacity bounds indicating how many questions they can be asked) to products (with capacity bounds indicating how many questions should be asked about each product).

- Reduce the problem to a circulation problem on a flow network G' with demands and lower bounds (lbs).
- \triangleright Orient edges in G from customers to products: capacity 1, lb 0.
- Add node s, edges (s, i) to each customer: capacity c'_i , lb c_i .
- Add node t, edges (j, t) from each product: capacity p'_i , lb p_i .
- \triangleright Set node demands to 0.
- \blacktriangleright Add edge from t to s: capacity $\sum_i c'_i$, lb $\sum_i c_i$.

Figure 7.16 The Survey Design Problem can be reduced to the problem of finding a feasible circulation: Flow passes from customers (with capacity bounds indicating how many questions they can be asked) to products (with capacity bounds indicating how many questions should be asked about each product).

- Reduce the problem to a circulation problem on a flow network G' with demands and lower bounds (lbs).
- \triangleright Orient edges in G from customers to products: capacity 1, lb 0.
- Add node s, edges (s, i) to each customer: capacity c'_i , lb c_i .
- Add node t, edges (j, t) from each product: capacity p'_i , lb p_i .
- \triangleright Set node demands to 0.
- \blacktriangleright Add edge from t to s: capacity $\sum_i c'_i$, lb $\sum_i c_i$.
- \blacktriangleright Claim: G' has a feasible circulation iff there is a feasible survey.

Figure 7.16 The Survey Design Problem can be reduced to the problem of finding a feasible circulation: Flow passes from customers (with capacity bounds indicating how many questions they can be asked) to products (with capacity bounds indicating how many questions should be asked about each product).

Image Segmentation

- \triangleright A fundamental problem in computer vision is that of segmenting an image into coherent regions.
- A basic segmentation problem is that of partitioning an image into a foreground and a background: label each pixel in the image as belonging to the foreground or the background.

- \blacktriangleright Let V be the set of pixels in an image.
- In Let E be the set of pairs of neighbouring pixels.
- \triangleright V and E yield an undirected graph $G(V, E)$.

- \blacktriangleright Let V be the set of pixels in an image.
- In Let E be the set of pairs of neighbouring pixels.
- V and E yield an undirected graph $G(V, E)$.
- Each pixel *i* has a likelihood $a_i > 0$ that it belongs to the foreground and a likelihood $b_i > 0$ that it belongs to the background.
- \triangleright These likelihoods are specified in the input to the problem.

- \blacktriangleright Let V be the set of pixels in an image.
- In Let E be the set of pairs of neighbouring pixels.
- V and E yield an undirected graph $G(V, E)$.
- Each pixel *i* has a likelihood $a_i > 0$ that it belongs to the foreground and a likelihood $b_i > 0$ that it belongs to the background.
- \triangleright These likelihoods are specified in the input to the problem.
- We want the foreground/background boundary to be smooth:

- \blacktriangleright Let V be the set of pixels in an image.
- In Let E be the set of pairs of neighbouring pixels.
- \triangleright V and E yield an undirected graph $G(V, E)$.
- Each pixel *i* has a likelihood $a_i > 0$ that it belongs to the foreground and a likelihood $b_i > 0$ that it belongs to the background.
- \triangleright These likelihoods are specified in the input to the problem.
- \triangleright We want the foreground/background boundary to be smooth: For each pair (i, j) of pixels, assign separation penalty $p_{ii} \geq 0$ for placing one of them in the foreground and the other in the background.

The Image Segmentation Problem

IMAGE SEGMENTATION

INSTANCE: Pixel graphs $G(V, E)$, likelihood functions $a, b: V \to \mathbb{R}^+$, penalty function $\rho: E \to \mathbb{R}^+$

SOLUTION: Optimum labelling: partition of the pixels into two sets A and B that maximises

$$
q(A, B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}.
$$

Developing an Algorithm for Image Segmentation

- \blacktriangleright There is a similarity between cuts and labellings.
- But there are differences:
	- \triangleright We are maximising an objective function rather than minimising it.
	- \blacktriangleright There is no source or sink in the segmentation problem.
	- \triangleright We have values on the nodes.
	- \blacktriangleright The graph is undirected.

Maximization to Minimization

let $Q = \sum_i (a_i + b_i)$.

Maximization to Minimization

- let $Q = \sum_i (a_i + b_i)$.
- ▶ Notice that $\sum_{i\in A}a_i + \sum_{j\in B}b_j = Q \sum_{i\in A}b_i + \sum_{j\in B}a_j.$
- \blacktriangleright Therefore, maximising

$$
q(A, B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ |A \cup \{i,j\}| = 1}} p_{ij}
$$

$$
= Q - \sum_{i \in A} b_i - \sum_{j \in B} a_j - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}
$$

is identical to minimising

$$
q'(A, B) = \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}
$$

Solving the Other Issues

 \triangleright Solve the issues like we did earlier.

Solving the Other Issues

- \triangleright Solve the issues like we did earlier.
- \blacktriangleright Add a new "super-source" s to represent the foreground.
- \blacktriangleright Add a new "super-sink" t to represent the background.

Solving the Other Issues

- ▶ Solve the issues like we did earlier.
- ▶ Add a new "super-source" s to represent the foreground.
- \blacktriangleright Add a new "super-sink" t to represent the background.
- \triangleright Connect s and t to every pixel and assign capacity a_i to edge (s, i) and capacity b_i to edge (i, t) .
- \triangleright Direct edges away from s and into t.
- Replace each edge in E with two directed edges of capacity 1.

- \blacktriangleright Let G' be this flow network and (A, B) an s-t cut.
- \triangleright What does the capacity of the cut represent?

- \blacktriangleright Let G' be this flow network and (A, B) an s-t cut.
- \triangleright What does the capacity of the cut represent?
- \blacktriangleright Edges crossing the cut are of three types:

Figure 7.19 An s-t cut on a graph constructed from four pixels. Note how the three types of terms in the expression for $q'(A, B)$ are captured by the cut.

- \blacktriangleright Let G' be this flow network and (A, B) an s-t cut.
- \triangleright What does the capacity of the cut represent?
- \blacktriangleright Edges crossing the cut are of three types:
	- ► (s, w) , $w \in B$ contributes a_w .
	- ► (u, t) , $u \in A$ contributes b_u .
	- \triangleright (u, w), $u \in A$, $w \in B$ contributes $p_{\mu\nu}$.

Figure 7.19 An s-t cut on a graph constructed from four pixels. Note how the three types of terms in the expression for $q'(A, B)$ are captured by the cut.

- \blacktriangleright Let G' be this flow network and (A, B) an s-t cut.
- \triangleright What does the capacity of the cut represent?
- \blacktriangleright Edges crossing the cut are of three types:
	- ► (s, w) , $w \in B$ contributes a_w .
	- ► (u, t) , $u \in A$ contributes b_u .
	- \triangleright (u, w), $u \in A$, $w \in B$ contributes $p_{\mu\nu}$.

Figure 7.19 An s-t cut on a graph constructed from four pixels. Note how the three types of terms in the expression for $q'(A, B)$ are captured by the cut.

$$
c(A, B) = \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij} = q'(A, B).
$$

Solving the Image Segmentation Problem

- The capacity of a s-t cut $c(A, B)$ exactly measures the quantity $q'(A, B)$.
- \triangleright To maximise $q(A, B)$, we simply compute the s-t cut (A, B) of minimum capacity.
- Deleting s and t from the cut yields the desired segmentation of the image.