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Abstract

We study fully dynamic algorithms for maximum matching. This is a well-studied problem,
known to admit several update-time/approximation trade-offs. For instance, it is known how to
maintain a 1/2-approximate matching in (poly log n) update time or a 2/3-approximate match-
ing in O(

√
n) update time, where n is the number of vertices. It has been a long-standing open

problem to determine whether either of these bounds can be improved.

In this paper, we show that when the goal is to maintain just the size of the matching (and
not its edge-set), then these bounds can indeed be improved. First, we give an algorithm that
takes (poly log n) update-time and maintains a .501-approximation (.585-approximation if the
graph is bipartite). Second, we give an algorithm that maintains a (2/3 + Ω(1))-approximation
in O(

√
n) time for bipartite graphs.

Our results build on new connections to sublinear time algorithms. In particular, a key tool
for both is an algorithm of the author for estimating the size of maximal matchings in Õ(n) time
[Behnezhad; FOCS 2021]. Our second result also builds on the edge-degree constrained subgraph
(EDCS) of Bernstein and Stein [ICALP’15, SODA’16]. In particular, while it has been known
that EDCS may not include a better than 2/3-approximation, we give a new characterization
of such tight instances which allows us to break it. We believe this characterization might be of
independent interest.

∗Khoury College of Computer Sciences, Northeastern University. Webpage: behnezhad.com.
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1 Introduction

We study approximate maximum matchings in fully dynamic graphs. We are given an n-vertex
graph G = (V,E) that is subject to both edge insertions and deletions. The goal is to maintain
(the size of) an approximate maximum matching of G while spending a small time per update. For
exact maximum matchings, there are conditional lower bounds that rule out any O(n1−ε) update-
time algorithm [1, 32, 27] (see also [43, 46] for upper bounds). As such, much of the work in the
literature of dynamic matching has been on approximate solutions; see [39, 8, 9, 37, 30, 23, 16, 17,
22, 21, 44, 25, 2, 18, 13, 14, 47, 19, 20, 42, 35, 29, 12] and their references.

1/2-Approximation: When the goal is to maintain a 1/2-approximation, then extremely fast
(poly log n) update time algorithms have been known since the work of Baswana, Gupta, and Sen
[8] in 2011 (see also [44, 18, 13]). These algorithms maintain a greedy maximal matching, for which
the 1/2-approximation guarantee is tight. In sharp contrast, all known (1

2 + Ω(1))-approximate

algorithms require a polynomial update-time of nΩ(1) [21, 14, 47, 12]. The following question, in
particular, has been a major open problem of the area for more than a decade:

Open Problem 1. Is it possible to maintain a (1
2 +Ω(1))-approximation in poly log n update-time?

To our knowledge, Open Problem 1 was first asked by Onak and Rubinfeld [39] in 2010. Several
subsequent papers have also imposed it as an important open problem. See e.g. [21, Section 4],
[17, Section 7], [25, Section 1], [14, Section 1], [47, Section 5], and [12, Section 5].

The fastest known better-than-1/2 approximation requires O(nε) update time and obtains a
(1

2 + f(ε))-approximation, where ε > 0 can be any constant. This was proved for general graphs
by Behnezhad, Lacki, and Mirrokni [14]. Prior to that, an algorithm with the same trade-off was
proposed by Bhattacharya, Henzinger, and Nanongkai [21] for maintaining the size (but not the
edges) of the matching in bipartite graphs (see also [47, 20, 12]).

Our first main result is a positive resolution of Open Problem 1 for maintaining the size (but
not the edges) of the matching.

Theorem 1. There is a fully dynamic algorithm that maintains a .501-approximation of the size
of maximum matching in (poly log n) worst-case update time. The algorithm is randomized but
works against adaptive adversaries.

As a warm-up to our techniques, we prove an equivalent of Theorem 1 for bipartite graphs in Sec-
tion 4 (see Theorem 3). The approximation ratio turns out to be much better for bipartite graphs:
we get a (2 −

√
2) ≈ .585-approximation against oblivious adversaries, and a .542-approximation

against adaptive adversaries.

2/3-Approximation: Another notable approximation/update-time trade-off was obtained by
Bernstein and Stein [16, 17] in 2015, who showed that a (2/3−ε)-approximation can be maintained
in O(

√
n · poly(1/ε)) update time for bipartite graphs (see also [17, 29, 35, 12] for generalizations

of this result to non-bipartite graphs). They achieved this by introducing an elegant matching
sparsifier that they called an edge-degree constrained subgraph (EDCS). It is known that the guar-
antee of 2/3-approximation is tight for EDCS. That is, there are inputs on which the algorithm
of Bernstein and Stein [17] does not obtain a better-than-2/3 approximation. Once we go slightly
above 2/3-approximation, then the fastest known algorithms require a much larger nearly-linear-
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in-n update-time [30]. In particular, a recent algorithm of Assadi, Behnezhad, Khanna, and Li [7]
can be used to maintain a (1− o(1))-approximate matching in n/(log∗ n)Θ(1) update-time.

It is worth noting that the 2/3-approximation has been a barrier in several settings. Most
notably, is the two-party one-way communication model. For that model, Assadi and Bernstein
[4] showed that an (almost) 2/3-approximation can be achieved with O(n) communication. On
the flip side, Goel, Kapralov, and Khanna [28] proved that a (2/3 + Ω(1))-approximation requires
a much larger n1+Ω(1/ log logn) � n poly log n communication. See also the paper of Assadi and
Behnezhad [3] on the importance of the 2/3-approximation barrier, and discussions about it in the
random-order streaming model. This motivates the next open question, see e.g. [12, Section 5].

Open Problem 2. Is it possible to maintain a (2
3 + Ω(1))-approximation in O(

√
n) update-time?

Our second main result is a positive resolution of Open Problem 2 for bipartite graphs, also for
the matching size.

Theorem 2. For an absolute constant δ0 > 10−6, there is an algorithm that maintains a (2
3 +δ0)-

approximation of the size of maximum matching in O(min{m1/4,
√

∆} + poly log n) = O(
√
n)

worst-case update time. Here ∆ is a fixed upper bound on the maximum degree and m is the
number of edges. The algorithm is randomized but works against adaptive adversaries.

To achieve Theorem 2, we prove a new characterization of tight instances of EDCS that might
be of independent interest given the versatility of EDCS. We briefly overview this in Section 2. See
Section 5.2 for the formal statement of the characterization and a comparison with prior work.

Concurrent Work: In an independent and concurrent work, and similar to our Theorem 1,
Bhattacharya, Kiss, Saranurak, and Wajc [24] show that a better-than-1/2 approximation of maxi-
mum matching size can be maintained in (poly log n) update time, also answering Open Problem 1
in the affirmative. The high-level approach of both works is the same. In particular, the key
new ingredient in both is to use the sublinear time algorithm of Behnezhad [11] for augmenting
a 1/2-approximate matching. However, the details are different (in particular under adaptive ad-
versaries, [24] obtains a better quantitative improvement over 1/2). We note that Theorem 2 for
beating 2/3-approximations is unique to our paper.

1.1 Perspective: On Maintaining Size vs. Edges

While majority of the algorithms in the literature maintain the edge-set of the matching, dynamic
algorithms for maintaining the matching size have also been studied in several works. For instance,
progress on dynamic algorithms for exact maximum matchings has been merely made on main-
taining its size [43, 46]. These algorithms use algebraic techniques. Maintaining the size has also
been studied for approximate matchings. In particular, Bhattacharya, Henzinger, and Nanongkai
[21] studied dynamic algorithms for (1

2 + Ω(1))-approximating the maximum matching size in bi-
partite graphs. The algorithm of [21] maintains a fractional matching, but not an integral one.
The bound on the size of the maximum integral matching, nonetheless, follows from the fact that
fractional matchings have integrality gap 1 for bipartite graphs. We note that after the work of
[21], algorithms have been developed for “losslessly” rounding fractional matchings into integral
ones dynamically [47, 20]. As such, fractional matchings can no longer be a source of separation
for maintaining the size vs. the edge-set.

The fact that our algorithms in Theorems 1 and 2 estimate the size of the maximum matching
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as opposed to its edge-set is due to a very different reason than those mentioned above. One of
the main building blocks of both algorithms is a recent sublinear time algorithm of the author
[11] that 1/2-approximates the maximum matching size in Õ(n) time.1 Had the algorithm in
[11] worked for finding a 1/2-approximate matching instead of just its size, then our algorithms
could have also maintained the edges of the matching. But this is known to be impossible: Ω(n2)
queries are information theoretically needed to find any O(1)-approximate maximum matching in
the adjacency matrix model, even when the graph is promised to have a perfect matching [11]. 2

In light of the new connection to sublinear time algorithms discovered in this work and the
existing separation for approximating the size vs. finding the edge-set of the matching for sublinear
time algorithms, it remains a tantalizing future direction to explore whether such separations
exist in the dynamic model. Conversely, resolving either of Open Problems 1 and 2 positively for
maintaining the edge-set of the matching would be an excellent result.

2 Technical Overview

Here we give an overview of our algorithms for Theorems 1 and 2. To convey the main intuitions
in this section, let us make the simplifying assumption that the maximum matching size µ(G) of
the graph G remains Ω(n) at all times. We note that this assumption can easily be lifted with just
a (poly log n) overhead in the update-time using a randomized “vertex sparsification” idea of the
literature [5] (which can be made work against adaptive adversaries too [35]).

A Reduction to Sublinear Algorithms: Suppose that we have an algorithm A that in T
time α-approximates the maximum matching size of a static n-vertex graph. This can be turned
into a dynamic algorithm with the “lazy” approach: run A, keep the solution unchanged for Θ(εn)
updates, then repeat. Since the maximum matching size changes by at most one in each update and
µ(G) = Ω(n), then we have an (α − ε)-approximation at all times. The (amortized) update-time
of the algorithm, on the other hand, is only O(T/εn). How is this useful? There is a rich body
of work on sublinear time algorithms for maximum matching. Building on a long and beautiful
line of work [41, 48, 38, 40, 26, 34, 11], the author showed that a (1/2 − ε)-approximation can
be obtained only in Õ(n/ε2) time [11], which is much smaller than the number of edges in the
graph that can be as large as Ω(n2). Plugged into the framework above, this gives an (almost)
1/2-approximation in (poly log n) update-time. Up until very recently, no o(n2) time algorithm
was known for beating 1/2-approximation. This long-standing barrier was very recently broken
by Behnezhad, Roghani, Rubinstein, and Saberi [15], who gave an O(n1+ε) time algorithm that
obtains a (1

2 + Ωε(1))-approximation. Thus, the same approximation can be maintained in Õ(nε)
update-time using the framework above. Unfortunately, however, this is slower than our desired
(poly log n) time, and somewhat curiously, matches the guarantee of the previous algorithms for
maintaining the edges of the matching [21, 14].

Beyond Sublinear Algorithms: For traditional sublinear time algorithms, the only input pro-
vided is the graph itself. That is, the algorithm is only given query access to the graph (either to its
adjacency list or its adjacency matrix). This, however, does not need to be the case for our target
application in the framework above. Let us explain this with an example. As discussed, there
are algorithms that take poly log n worst-case update-time, and maintain the edges of a maximal

1Here and throughout the paper, Õ(f) = f · poly logn.
2The lower bound is simple. Suppose that the graph is a perfect matching with its vertex IDs being randomly

permuted. Finding this matching requires Ω(n2) queries to the adjacency matrix.
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matching of a fully dynamic graph [9, 44, 18, 13]. One thing we can do, is to run such dynamic
algorithms in the background. This way, when the time comes to call the static sublinear time
algorithm to estimate the maximum matching size, in addition to providing query access to the
graph, we can also feed this maximal matching into the sublinear time algorithm for free. This is,
in fact, exactly what we do to prove Theorem 1. In essence, we show that provided adjacency ma-
trix access and given the edge-set of a maximal matching, there is a sublinear time algorithm that
(1

2 + Ω(1))-approximates the maximum matching size in Õ(n) time. Plugged into the framework
above, this leads to a (1

2 +Ω(1))-approximate fully dynamic algorithm with poly log n update-time.
For bipartite graphs, this sublinear time algorithm turns out to be very simple and clean, and
achieves a much better approximation than half. We prove this as a warm-up in Section 4.

Beating 2/3: For our Theorem 2 which beats 2/3-approximation, we follow the same framework
discussed above. However, instead of feeding a maximal matching into the sublinear algorithm,
we maintain an edge-degree constrained subgraph (EDCS) and feed that into the sublinear algo-
rithm. The EDCS, introduced by Bernstein and Stein [16], is a sparse subgraph that, for the right
parameters, includes a 2/3-approximate maximum matching of its base graph. It is known that
this bound is tight — that there are graphs for which an EDCS does not include a better than
2/3-approximation. To beat 2/3-approximation, one natural idea is to find the 2/3-approximate
matching inside the EDCS, and then try to augment it. In general, a 2/3-approximate matching
may not leave any augmenting path of length shorter than 5. It seems challenging to find (or even
estimate the number of) length-5 augmenting paths efficiently in our model. To get around this,
we prove a new characterization of the tight instances of EDCS. We show that when an EDCS
H does not include a strictly larger than 2/3-approximate matching of its base graph G, then it
must include a 2/3-approximate matching M that is far from being maximal. In fact, we show that
there is a 1/3-approximate matching in G whose edges can be directly added to M . We believe
this property might be of independent interest given the versatility of EDCS. See Section 5.2 for
more about this and a comparison to a previous characterization by Assadi and the author [3].

3 Preliminaries

Given a graph G = (V,E) and a subset U ⊆ V , we use G[U ] to denote the induced subgraph of G
on U . Given two disjoint subsets A, B of V , we use G[A,B] to denote the bipartite subgraph of G
including any of its edges between A and B. Given a vertex v, we use NG(v) to denote the set of
neighbors of v in G. We may drop the subscript when the graph G is clear from the context.

A matching M for G is a subset of its edges such that no two of them share an endpoint. A
maximum matching in G is a matching of the largest possible size. We use µ(G) to denote the
size of the maximum matching in G. We say a number µ̃(G) is an α-approximation of µ(G) for
α ∈ (0, 1] if αµ(G) ≤ µ̃(G) ≤ µ(G).

Given a matching M , we use V (M) to denote the set of vertices in M . For simplicity, given a
vertex v we may write v ∈M instead of v ∈ V (M). Given two matchings M,M?, we use M ⊕M?

to denote the symmetric difference of the two matchings, i.e., the edges that belong to exactly one
of M and M?. Given a permutation π over the edge-set E of a graph G, we use GMM(G, π) to
denote the matching obtained by greedily processing the edges of G in the order of E and adding
each edge possible to the matching.

Throghout the paper w.h.p. abbreviates with high probability by which we mean probability at
least 1− 1/nc for any desirably large constant c ≥ 1.
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4 Warm-Up: Beating Half for Bipartite Graphs

In this section, we prove the following theorem for bipartite graphs.3

Theorem 3. For bipartite graphs, there is a randomized fully dynamic algorithm that maintains a
(1− ε)(2−

√
2) ≈ .585-approximation of the size of maximum matching in (poly log n) worst-case

update-time against oblivious adversaries. If the adversary is adaptive, then there is an algorithm
that maintains a .542 approximation in (poly log n) worst-case update-time.

First, we start with the algorithm for oblivious adversaries. Then show how to lift the oblivious
adversary assumption.

Let us first state a general lemma that we use in all of our results. The lemma guarantees that
given a “semi-dynamic” algorithm A (which only upon being queried produces an estimate of the
matching size), one can turn it into a dynamic algorithm B for maintaining the maximum matching
size at all times.

Lemma 4.1 (From Semi-Dynamic Algorithms to Fully-Dynamic Algorithms). Let G be
an n-vertex fully dynamic graph and let ε > 0 be a parameter. Suppose that there is a (randomized)
data structure A (this is the semi-dynamic algorithm) that takes U(n) worst-case time per update
to G and, upon being queried, A produces in Q(n, ε) time a number µ̃, such that αµ(G) − εn ≤
E[µ̃] ≤ µ(G). Then there is a randomized data structure B (this is the fully-dynamic algorithm) that
maintains a number µ̃′ such that at any point during the updates, w.h.p., (α− ε)µ(G) ≤ µ̃′ ≤ µ(G).

Algorithm B takes O
((
U(n) + Q(n,ε2)

n

)
poly(log n, 1/ε)

)
worst-case update-time. Moreover, if A

works against adaptive adversaries, so does B.

We emphasize that we do not claim any novelty for Lemma 4.1; its proof, which we present
in Appendix B, stitches together known ideas from the literature. Our main novelty for all of our
results, is to provide the semi-dynamic algorithm that we plug into Lemma 4.1. As a warm-up in
this section, we describe this semi-dynamic algorithm for beating half-approximation in bipartite
graphs. In particular, we prove the following lemma.

Lemma 4.2. For any ε > 0 and any n-vertex fully dynamic graph G, there is a (randomized) data
structure A that takes (poly log n) worst-case update-time against an oblivious adversary, and upon
being queried takes Õ(n/ε3) time to produce a number µ̃ such that (2−

√
2)·µ(G)−εn ≤ E[µ̃] ≤ µ(G).

Lemma 4.1 and Lemma 4.2 together prove Theorem 3 against oblivious adversaries.

Proof of Theorem 1 against oblivious adversaries. Follows by plugging the semi-dynamic algorithm
given by Lemma 4.2 into Lemma 4.1.

4.1 The Semi-Dynamic Algorithm (Proof of Lemma 4.2)

We start by describing the data structures that our semi-dynamic algorithm maintains.

3We note that in the first version of the paper, we obtained a .534-approximation for bipartite graphs. We thank
an anonymous SODA’23 reviewer who suggested a tweak in the analysis, leading to the improved bound of Theorem 3.
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Data Structures: We maintain the adjacency matrix of the graph G.4 Additionally, we maintain
a maximal matching M of G which can be done in (poly log n) worst-case update-time against
oblivious adversaries [18, 13] (this is the only part of the algorithm that requires the oblivious
adversary assumption, we show how this can be lifted at the end of this section). Therefore,
overall, the dynamic algorithm requires (poly log n) worst-case update-time.

It remains to show how to produce the number µ̃ in Õ(n/ε3) time using these data structures,
which is what we focus on in the rest of this section.

The Query Algorithm: Our starting point is the following Algorithm 1, which is inspired by a
random-order streaming algorithm of Konrad, Magniez, and Mathieu [36].

Algorithm 1:

1. Let M be the maximal matching of G that we maintain.

2. Let M ′ ⊆M include each edge of M independently with probability p =
√

2− 1.

3. Let V ′ := V (M ′) be the set of vertices matched by M ′, and let U := V \V (M) be the vertices
left unmatched by maximal matching M .

4. Let H := G[V ′, U ] be the induced bipartite subgraph of G between V ′ and U . (We will not
construct this graph H explicitly.)

5. Let g := Eπ[|GMM(H,π)| |M ′].
6. Return µ̃′ := |M |+ max{0, g − |M ′|}.

Implementing Algorithm 1, as stated, requires Ω(n2) time which is much higher than our desired
time in Lemma 4.2. However, we show that one can estimate its output up to an additive εn error
(which note can be tolerated by Lemma 4.2) much faster in Õ(n/ε3) time (Lemma 4.3). This quick
implementation of Algorithm 1 is what we use when the semi-dynamic algorithm is queried.

Lemma 4.3. For any ε > 0, there is an algorithm that w.h.p. takes Õ(n/ε3) time and returns a
number µ̃′′ such that µ̃′ − εn ≤ µ̃′′ ≤ µ̃′. Here µ̃′ is the output of Algorithm 1.

To prove Lemma 4.3, we use the following sublinear-time greedy matching estimator of the
author [11]. See Appendix A for more details about Proposition 4.4.

Proposition 4.4 ([11]). Let G = (V,E) be an n-vertex graph to which we have adjacency matrix
query access. For any ε > 0, there is a randomized algorithm that w.h.p. takes Õ(n/ε3) time and
returns a number g̃ where Eπ[|GMM(G, π)|]− εn ≤ g̃ ≤ Eπ[|GMM(G, π)|].

Proof of Lemma 4.3. The construction of M ′, V ′, U in Algorithm 1 takes O(n) time since the edges
of M are given. But we cannot afford to explicitly construct H as it may have Ω(n2) edges. We get
around this by using Proposition 4.4 to estimate g without constructing H. To do this, it suffices
to show that we can provide adjacency matrix access to H. Observe that an edge e = (u, v) belongs
to H iff one of its endpoints is in V ′, the other is in U , and additionally (u, v) ∈ E. This can be
checked for any (u, v) in O(1) time since we explicitly store V ′, U and have adjacency matrix access
to G. Thus, we can apply Proposition 4.4 on graph H in Õ(n/ε3) time and obtain g− εn ≤ g̃ ≤ g.
Using g̃ instead of g in the output of Algorithm 1 proves the lemma.

4Storing the adjacency matrix naively requires O(n2) space. While space-complexity is often not a concern for

dynamic algorithms, we note that the space can also be reduced to Õ(m) by simply storing the non-zero entries of
the adjacency matrix in a binary search tree. This only blows up the time-complexity by a O(logn) factor.
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Next, we turn to prove the approximation guarantee of Algorithm 1. To do this, we start with
the following useful proposition, proved by Konrad, Magniez, and Mathieu [36] in the context of
streaming algorithms. It shows that a randomized greedy maximal matching obtains a much better
than 1/2-approximation if it is run on a vertex-sampled subgraph of a bipartite graph.

Proposition 4.5 ([36, Theorem 3]). Let 0 < p ≤ 1, let G = (A,B,E) be a bipartite graph, let
A′ ⊆ A include each vertex of A independently with probability p, and let H be the induced subgraph
of G on vertex-set A′ ∪B. Then for any permutation π over the edge-set of H,

EA′ [|GMM(H,π)|] ≥ p

1 + p
· µ(G).

We are now ready to analyze the approximation ratio. The following lemma gives a lower bound
on the expected value of the estimate µ̃′.

Lemma 4.6. For Algorithm 1, it holds that E[µ̃′] ≥ (2−
√

2)µ(G).

Proof. Let L, R be the two vertex parts in G. Define the following bipartite induced subgraphs of
G:

FL := G[V (M) ∩ L,U ∩R], FR := G[V (M) ∩R,U ∩ L],

HL := G[V (M ′) ∩ L,U ∩R], HR := G[V (M ′) ∩R,U ∩ L].

Let us fix an arbitrary maximum matching M? of G. Since M? is a maximum matching of G,
we have exactly |M?| − |M | = µ(G) − |M | augmenting paths for M in M? ⊕M . Let L1 be the
number of length one augmenting paths in M? ⊕M for M , noting that L1 = 0 here since M is
maximal.5 Note that every augmenting path of length at least three in M? ⊕M has one of its
endpoint edges in FL and the other in FR. Moreover, these endpoint edges form a matching as
they all belong to M?. Hence,

µ(FL) ≥ µ(G)− |M | − L1, µ(FR) ≥ µ(G)− |M | − L1. (1)

Moreover, note that since M ′ is a random subsample of M , then each vertex in V (M) ∩ L
belongs to V (M ′) ∩ L independently from the vertices in L (but not R) with probability p. As a
result, HL is an induced subgraph of FL which includes all the vertices in one part, and p fraction
of the vertices in the other part independently. Applying Proposition 4.5, we thus get that

EM ′ [|GMM(HL, π)|] ≥ p

1 + p
· µ(FL)

(1)

≥ p

1 + p
· (µ(G)− |M | − L1).

With essentially the same proof, we get the same lower bound for EM ′ [|GMM(HR, π)|]. Since G is
bipartite, HL and HR are vertex disjoint. Combined with H = HL ∪HR this implies that

EM ′ [|GMM(H,π)|] = EM ′ [|GMM(HL, π)|] + EM ′ [|GMM(HR, π)|] ≥ 2p

1 + p
(µ(G)− |M | − L1).

This in turn implies that

EM ′ [g] = EM ′,π[|GMM(H,π)|] ≥ 2p

1 + p
(µ(G)− |M | − L1). (2)

5The reason that we define L1 is that later when we switch to adaptive adversaries, M will not be maximal.
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Taking expectation over M ′ in the output µ̃′ of Algorithm 1, we get

EM ′ [µ̃′] = EM ′ [|M |+ max{0, g − |M ′|}] = |M |+ max{0,EM ′ [g]− p|M |}

≥ (1− p)|M |+ 2p

1 + p
(µ(G)− |M | − L1) (By (2).)

=

(
1− p− 2p

1 + p

)
|M |+ 2p

1 + p
µ(G)− 2p

1 + p
L1. (3)

Since p =
√

2− 1, we get 1− p− 2p
1+p = 0 and 2p

1+p = 2−
√

2. Combined with L1 = 0, this implies

EM ′ [µ̃′] ≥ (2−
√

2)µ(G).

Next, we show that µ̃′ does not over-estimate µ(G).

Lemma 4.7. For Algorithm 1, it holds with probability 1 that µ̃′ ≤ µ(G).

Proof. Take an arbitrary matching S in graph H of Algorithm 1. Let M ′′ be the subset of edges in
M ′ whose both endpoints are matched by S. By definition of H, every edge in S has one endpoint
in V ′ = V (M ′) and one endpoint in U = V \V (M). This means that M ⊕S includes at least |M ′′|
length three augmenting paths for M , and so

µ(G) ≥ |M |+ |M ′′|. (4)

The fact that any edge in S has exactly one vertex in V (M ′) implies that the number of vertices
in V (M ′) unmatched by S is at most |V (M ′)| − |S| = 2|M ′| − |S|. As such, there are at least
|M ′| − (2|M ′| − |S|) = |S| − |M ′| edges in M ′ whose both endpoints are matched by S. Hence,
|M ′′| ≥ |S| − |M ′|. Plugging this into (4), we get that

µ(G) ≥ |M |+ |S| − |M ′|. (5)

Now instead of an arbitrary matching, take S to be a maximum matching of H. Note, in particular,
that |S| ≥ Eπ[|GMM(H,π)| | M ′] = g. Plugging this into (5), and noting also that µ(G) ≥ |M |
since M is a matching in G, we get that

µ(G) ≥ max{|M |, |M |+ g − |M ′|} = |M |+ max{0, g − |M ′|} = µ̃′.

We are now ready to complete the proof of Lemma 4.2, which as discussed also proves Theorem 1
for bipartite graphs.

Proof of Lemma 4.2. The data structures that we store, as discussed, take only (poly log n) worst-
case time to maintain. When the algorithm is queried, we return the output µ̃′′ of Lemma 4.3. It
takes Õ(n/ε3) time to produce this by Lemma 4.3, which is the desired query time of Lemma 4.2.
Moreover, for the approximation ratio, we have

(2−
√

2)µ(G)− εn
Lemma 4.6
≤ E[µ̃′]− εn

Lemma 4.3
≤ E[µ̃′′]

Lemma 4.3
≤ E[µ̃′]

Lemma 4.7
≤ µ(G).

This completes the proof of Lemma 4.2.
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Adaptive Adversaries: The only part of the algorithm discussed above that requires the obliv-
ious adversary assumption is the maintanence of maximal matching M . While it is not known
whether a maximal matching can be maintained in (poly log n) time against adaptive adversaries,
there are algorithms for maintaining a (non-maximal) (1/2−ε)-approximate matching against adap-
tive adversaries in poly log n time for any fixed ε > 0 [47]. Let M be one such matching maintained.
Observe that in our analysis, we assumed that L1 = 0 which no longer holds for non-maximal M .
But note that L1 being large is not actually that bad as we can simply run the sublinear algorithm
of [11] on G[V \ V (M)] to get a half-approximation of L1, obtaining a matching of size at least
|M | + |L1|/2. Returning the larger of this estimate and the output of Algorithm 1, from (3), we
get an estimator of size at least

(1− ε) max

{
1

2
µ(G) +

1

2
|L1|,

(
1− p− 2p

1 + p

)
|M |+ 2p

1 + p
µ(G)− 2p

1 + p
L1

}
.

Setting p = .3, this is minimized for L1 = .084µ(G), and the end result is a .542-approximation.

Remark 4.8. We note that the algorithm we employed in this section uses the graph’s bipartiteness
in a crucial way. In particular, our definitions of graphs FL and FR, and the fact that they are
vertex disjoint, crucially depends on the graph being bipartite. We later show in Section 6 how one
can also beat 1/2-approximation for general graphs, albeit with a smaller improvement. Before that,
we continue to focus on bipartite graphs, and prove Theorem 2 for them.

5 Beating Two-Thirds for Bipartite Graphs

In this section, we prove Theorem 2. Our plan, similar to Section 4, is to turn a semi-dynamic
algorithm into a fully-dynamic one. However, instead of Lemma 4.1, which blows up the update-
time by a poly log n factor, we use a more refined variant of it that doesn’t lose the poly log n
factor. We can do this in this section because our semi-dynamic algorithm will actually guarantee
a multiplicative approximation instead of a multiplicative-additive one.

Let us now state the guarantee of our semi-dynamic algorithm in this section.

Lemma 5.1. For any n-vertex fully dynamic bipartite graph G of maximum degree at most ∆,
there is a (randomized) data structure A that takes O(

√
∆) worst-case update-time, and upon being

queried takes O(n
√

∆) + Õ(n) time to produce a number µ̃ such that for some absolute constant
δ0 > 1.8× 10−6, it holds w.h.p. that (2

3 + δ0) · µ(G) ≤ µ̃ ≤ µ(G).

Lemma 5.1 suffices to prove Theorem 2:

Proof of Theorem 2. Let ε be small enough that δ0 − ε > 10−6, where δ0 > 1.8 × 10−6 is as in
Lemma 5.1. We run the semi-dynamic data structure A of Lemma 5.1 in the background, which
takes O(

√
∆) worst-case update-time against adaptive adversaries. Suppose that we call the oracle

of algorithm A once to produce the estimate µ̃. Observe that within the next εµ̃ updates, the
maximum matching size of G changes by at most εµ̃, even against adaptive adversaries. Hence, we
can use this oracle in a lazy way: we call it once, return (1− ε)µ̃ as the output, do not change the
output for εµ̃ updates, then repeat. This way, the amortized time spent on the oracle is indeed(
O(n
√

∆) + Õ(n)
)
/εn = O(

√
∆) + poly log n. This can be turned into a worst-case bound using

a well-known ‘spreading’ technique (see [30]). Letting T denote the time spent by the oracle, the
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idea is to spread its computation over Θ(εµ̃) updates, each performing Θ(T/εµ̃) operations of the
algorithm. When the computation of the oracle finishes, we change our output and immediately
start spreading its next execution. Finally, we note that by losing only a (1 − ε) factor in the
approximation, one can assume that ∆ ≤ O(

√
m/ε) using a marking algorithm of [45] (see [29,

Section 5] or [12, Section 4.7] for how this can be used for dynamic algorithms). Thus, overall, the
update-time that we get is O(min{

√
∆,m1/4}+ poly log n) = O(

√
n) in the worst-case.

The approximation guarantee follows immediately from the high probability and multiplicative
guarantee of the semi-dynamic algorithm in Lemma 5.1.

In order to prove Lemma 5.1, we build on the edge-degree constrained subgraph (EDCS) of
Bernstein and Stein [16]. An EDCS can be used to maintain the edges of a (2/3− ε)-approximate
maximum matching in O(

√
n poly(1/ε)) time [17], and this bound is known to be tight for it.

We show how to go beyond 2/3-approximation by proving a certain characterization of the tight
instances of EDCS, where it only obtains a 2/3-approximation. We first give some background on
EDCS in Section 5.1, then state our characterization for its tight instances in Section 5.2, and then
use this characterization to prove Lemma 5.1.

5.1 Background on Edge-Degree Constrained Subgraphs (EDCS)

The EDCS is a matching sparsifier introduced by Bernstein and Stein [16], defined as follows:

Definition 5.2 ([16]). For any β > β− ≥ 1, a subgraph H of G is a (β, β−)-EDCS of G if

• for all edges (u, v) ∈ H, degH(u) + degH(v) ≤ β, and

• for all edges (u, v) ∈ G \H, degH(u) + degH(v) ≥ β−.

It is known that for any integers β > β− ≥ 1, any graph G has a (β, β−)-EDCS. The main
property of EDCS, first proved in [16, 17] and further refined in [4, 10], is that if β ≥ 1/ε and
β− ≥ (1 − ε)β, then µ(G) ≥ (2

3 − O(ε))µ(G). Moreover, this guarantee is tight. That is, the
2/3 factor cannot be replaced by a larger constant even if β− = β − 1 = Θ(n) [16]. We refer
interested readers to the paper of Assadi and Bernstein [4] for an excellent overview of EDCS and
its applications across various models.

Several algorithms are known for maintaining an EDCS in dynamic graphs [16, 17, 12, 29, 35].
Here we state a simple and clean algorithm of Grandoni, Schwiegelshohn, Solomon, and Uzrad [29]
which is deterministic, works for general graphs, and its update-time bound holds in the worst-case.

Proposition 5.3 ([29]). Let G be a fully dynamic graph and let ∆ be a fixed upper bound on its
maximum degree. For some β = Θ(

√
∆ poly(1/ε)), one can maintain the edges of a (β, (1− ε)β)-

EDCS H of a graph G, as well as the edges of a (1 − ε)-approximate maximum matching MH of
H deterministically in worst-case update-time O(

√
∆ poly(1/ε)).

Combined with the guarantee above on the approximation ratio of EDCS, we get a fully dynamic
algorithm that maintains a (2

3 − ε)-approximate matching of G in O(
√

∆ poly(1/ε)) update-time.

5.2 A Structural Result on Tight Instances of EDCS

Recall that our goal in Lemma 5.1 is to go beyond 2/3-approximation. Towards this, we prove
a structural result on the tight instances of EDCS, and then use it to break 2/3-approximation.
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Lemma 5.4 is this characterization. In essence, it shows that when an EDCS H with the right
parameters does not include a strictly larger than 2/3-approximation, then there is an almost
2/3-approximate matching M in H that is far from being maximal (not maximum) for G. More
precisely, Lemma 5.4 guarantees that there must be a matching of size nearly µ(G)/3 in G among
vertices left unmatched by M .

Lemma 5.4 (On Tight Instances of EDCS in Bipartite Graphs). Let ε ∈ (0, 1
120), let H be

a (β, (1−ε)β)-EDCS of a bipartite graph G for any β > (1−ε)β ≥ 1. Let Vmid and Vlow respectively
include vertices v such that degH(v) ∈ [.4β, .6β] and degH(v) ∈ [0, .2β]. Let H ′ := H[Vlow, Vmid]
be the subgraph of H on edges with one endpoint in Vmid and one in Vlow. Let δ ∈ (2ε, 1

60) be any
parameter. If µ(H) ≤ (2

3 + δ)µ(G) then the following hold:

(P1) µ(H ′) ≥
(

2
3 − 120

√
δ
)
µ(G).

(P2) For any matching M in H ′, µ(G[Vmid \ V (M)]) ≥ (1
3 − 800 · δ)µ(G).

(P3) |Vmid| < 8µ(G).

The proof of Lemma 5.4 is quite involved, so we defer it to Section 5.4. It is worth noting that
we did not attempt to optimize the constants in Lemma 5.4.

Comparison to a Characterization of Assadi and Behnezhad [3]: Prior to this work,
another characterization of tight instances of EDCS was given in [3] in the context of random
order streaming algorithms. The characterization of [3] implies existence of a nearly 2

3 -approximate
matching in subgraph H[Vmid] when µ(H) is not strictly larger than 2

3µ(G). Roughly speaking, [3]
showed that this matching in H[Vmid] can be found early on in the stream, and showed how the
rest of the stream could be used to discover many length-five augmenting paths for it and beat
2/3-approximation for random-order streams. We do not know how to find or estimate the number
of length-five augmenting paths efficiently in the dynamic setting. Fortunately, the guarantee of
Lemma 5.4 helps us avoid them all togeher, and only focus on length-one augmenting paths instead.
The following figure illustrates how the two guarantees differ. It is a tight instance of EDCS, where
the vertices in Vmid all have degree β/2 in H. The dashed edges are missed from the EDCS
while all other edges are present. It can be confirmed that these missed edges alone imply that
µ(H) ≤ 2

3µ(G). The blue matching ML on the left is the matching in H[Vmid] used by [3]. The
green matching MR on the right is the matching of H ′ that Lemma 5.4 guarantees to exist. While
both are of size 2

3µ(G), the key difference is that each edge of MR has exactly one endpoint in Vmid,
whereas both endpoints of all edges of ML are in Vmid. Consequently, while ML is nearly maximal
for G and only leaves length-five augmenting paths, MR is far from being maximal for G and all
the dashed edges can be directly added to it.

.

Figure 1: Comparison of the matching implied in the work of Assadi and Behnezhad [3] (the blue matching
on the left), and the matching guaranteed by Lemma 5.4 (the green matching on the right).
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5.3 The Semi-Dynamic Algorithm (Proof of Lemma 5.1) via Lemma 5.4

In this section, we show how the characterization of Lemma 5.4 can be used to prove our semi-
dynamic algorithm in Lemma 5.1 for beating 2/3-approximation in bipartite graphs.

Data Structures: As in Section 4, we start by describing the data structures maintained by the
semi-dynamic algorithm. We maintain the adjacency matrix of the graph G. Additionally, we run
Proposition 5.3 to maintain the edges of a (β, (1 − ε)β)-EDCS H of G for β = Θ(

√
∆ poly(1/ε)),

as well as a (1 − ε)-approximate maximum matching MH of H in O(
√

∆ poly(1/ε)) worst-case
update-time, where we will set ε to be a sufficiently small absolute constant.

It remains to show how the query algorithm works. That is, how we produce the (2
3 + δ0)-

approximate estimate µ̃ for µ(G).

The Query Algorithm: When queried, we run (an estimate) of the following algorithm:

Algorithm 2:

1. Let H be the (β, (1− ε)β)-EDCS that we maintain in our data structure.

2. Let Vmid := {v | degH(v) ∈ [.4β, .6β]} and let Vlow := {v | degH(v) ∈ [0, .2β]}.
3. Let H ′ := H[Vlow, Vmid].

4. Find a (1− ε)-approximate maximum matching MH′ in H ′.

5. Let F := G[Vmid \ V (MH′)]. (We will not construct F explicitly.)

6. Let g := |GMM(F, π)| for an arbitrary permutation π.

7. Return µ̃′ := max{|MH |, |MH′ | + g}, where MH is the (1 − ε)-approximate matching of H
that we maintain in our data structures.

Let us show that the output of Algorithm 2 can be estimated efficiently, in the desired time of
Lemma 5.1.

Lemma 5.5. Let µ̃′ be as in Algorithm 2. There is an algorithm that takes O(n
√

∆ poly(1/ε)) +
Õ(n poly(1/ε)) time and returns a number µ̃′′ such that w.h.p. (i) µ̃′′ ≤ µ̃′, (ii) µ̃′′ ≥ |MH |, and
(iii) µ̃′′ ≥ |MH′ |+ g − ε|Vmid|.

Proof. First, note that H, Vmid, Vlow, and H ′ can all be explicitly constructed in time linear in the
size of H, which is O(nβ) (since any (β, ·)-EDCS has maximum degree at most β). Moreover, a
(1−ε)-approximate matching of an m-edge graph can be found in O(m/ε) time using the algorithm
of Hopcroft and Karp [33]. Therefore, since H ′ is a subgraph of H and thus also has at most O(nβ)
edges, it takes O(nβ/ε) time to construct matching MH′ of H ′. Finally, instead of constructing
F explicitly and computing g for it, we use Proposition 4.4. Note that since we have adjacency
matrix access to graph G, we can provide adjacency matrix to its subgraph F as well. Moreover,
since F has only |Vmid| vertices by its definition, Proposition 4.4 takes O(|Vmid|/ε3) = Õ(n/ε3) time
to produce g̃ such that w.h.p. Eπ |GMM(F, π)| − ε|Vmid| ≤ g̃ ≤ Eπ |GMM(F, π)|. Using this instead
of g in Algorithm 2, we obtain the estimate µ̃′′ that satisfies guarantees (i), (ii), (iii) of the lemma.
The final running time of the algorithm is O(nβ/ε) + Õ(n/ε3) which is the desired bound of the
lemma given that β = Θ(

√
∆ poly(1/ε)).

Next, we focus on the approximation ratio of the output of Algorithm 2. The following lemma
essentially lower bounds the output of Lemma 5.5 by (2

3 + δ0)µ(G).
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Lemma 5.6. Let δ0 = 1.8 × 10−6. For Algorithm 2, at least one of the inequalities |MH | ≥
(2

3 + δ0)µ(G) and |MH′ |+ g − ε|Vmid| ≥ (2
3 + δ0)µ(G) must hold.

Proof. Let δ = 1.9× 10−6 and suppose that we set ε < δ/100. If |MH | ≥ (1− ε)(2
3 + δ)µ(G), then

|MH | ≥
(2

3
+ δ − ε

)
µ(G) ≥

(2

3
+ 0.99δ

)
µ(G) ≥

(2

3
+ δ0

)
µ(G),

which is exactly the first inequality. So let us assume that |MH | < (1− ε)(2
3 + δ)µ(G). Given that

|MH | ≥ (1 − ε)µ(H) for being a (1 − ε)-approximate matching, we get that µ(H) < (2
3 + δ)µ(G).

Plugging this into the characterization of Lemma 5.4 for the tight instances of EDCS (noting in
particular that δ and ε satisfy the range constraints), we get:

(P1) µ(H ′) ≥
(

2
3−120

√
δ
)
µ(G). This, in particular, implies that |MH′ | ≥ (1−ε)(2

3−120
√
δ)µ(G).

(P2) For any matching M in H ′, µ(G[Vmid \ V (M)]) ≥ (1
3 − 800 · δ)µ(G). Using MH′ for M in

this statement, this means that µ(F ) ≥ (1
3 − 800δ)µ(G). Since g is at least half the size of

µ(F ) for being the size of a maximal matching, we thus get that g ≥ 1
2(1

3 − 800δ)µ(G).

(P3) |Vmid| ≤ 8µ(G).

From this, we can infer the second inequalit as follows:

|MH′ |+ g − ε|Vmid| ≥ (1− ε)
(2

3
− 120

√
δ
)
µ(G) +

1

2

(1

3
− 800δ

)
µ(G)− 8εµ(G)

≥ (1− ε)
(2

3
− 120

√
δ +

1

6
− 400δ − 8ε

)
µ(G)

≥ (1− ε)
(2

3
+ 1.9× 10−6 − 8ε

)
µ(G) (Since δ = 1.9× 10−6.)

≥
(2

3
+ δ0

)
µ(G). (Since δ0 = 1.8× 10−6 and ε < δ/100.)

This completes the proof.

Next, we show that the output µ̃′ of Algorithm 2 does not overestimate the matching size.

Observation 5.7. For Algorithm 2, it holds with probability 1 that µ̃′ ≤ µ(G).

Proof. Algorithm 2 sets µ̃′ = max{|MH |, |MH′ |+ g}. Clearly |MH | ≤ µ(G) since MH is a matching
of H ⊆ G. On the other hand, take the matching MF = GMM(F, π) and note that g is defined to
be |MF | in Algorithm 2. Since F = G[Vmid \ V (MH′)], the edges of MF are vertex disjoint from
MH′ . Hence, MF ∪MH′ is a matching of G, and so |MF ∪MH′ | = |MH′ |+ g ≤ µ(G).

We are now ready to finish the proof of Lemma 5.1.

Proof of Lemma 5.1. The data structures that we store, as discussed, take O(
√

∆ poly(1/ε)) =
O(
√

∆) worst-case update time. When the oracle is called, we call the algorithm of Lemma 5.5
and return its estimate µ̃′′. Its running time is O(n

√
n) + Õ(n) since we set ε to be an absolute

constant. This is the desired running time in Lemma 5.1. For the approximation, first note by
Lemma 5.5 and Observation 5.7, that we have µ̃′′ ≤ µ(G) w.h.p. Moreover, by Lemma 5.6 and
Lemma 5.5, we have µ̃′′ ≥ (2

3 + δ0)µ(G) w.h.p. This completes the proof.
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5.4 Proof of Lemma 5.4; the Characterization for Tight EDCS Instances

In this section, we prove Lemma 5.4. Let L and R with |L| = |R| = n be the two vertex parts for
graph G. We use the following standard extension of the Hall’s theorem.

Proposition 5.8 (Extended Hall’s Theorem [31]). Let G = (L,R,E) be a bipartite graph and
|L| = |R| = n. Then,

max(|A| − |N(A)|) = n− µ(G),

where A ranges over L or R, separately. We refer to such set A as a witness set.

Let A be the Hall’s witness of H as defined in Proposition 5.8. Suppose w.l.o.g. that A ⊆ L.
Define A := L \ A, B := NH(A), B := R \ B. Fix a maximum matching M? of graph G. Let M

?

be the edges in M? that have one endpoint in A and one endpoint in B. Note that no edge of M
?

can belong to H. We also define S := V (M
?
), W := (A ∪B) \ S, and T = A ∪B. See Figure 2.

S

S
AA

BB

W

T

T

W

M

Figure 2: An illustration of the Hall’s witness A for H, along with the sets B,A,B, S,W .

We show in this section that when H does not include a larger than 2/3-approximation, then
(almost) all vertices in S and T must have degree very close to β/2 and so belong to U (as defined
in Lemma 5.4). Additionally, we show that very few vertices of W belong to U .

To proceed, we need some notation that we summarize below.

• HS , HW : We partition the edges of H into two subgraphs HS and HW . The edges between
S and T belong to HS and the edges between W and T belong to HW .

• d(v), dS(v), dW (v): The degree of a vertex v in graphs H, HS , and HW respectively.

• m, mS , mW : The number of edges in H, HS , and HW respectively. (Other than the discussion
of this section, we use m to denote the number of edges of G instead.)

• d̄S(T ) := mS/|T |, d̄W (T ) := mW /|T |, d̄(T ) := m/|T |: These are the average degrees of
vertices in T in graphs HS , HW , and H respectively.

• d̄(S) := mS/|S|, d̄(W ) := mW /|W |: The average degrees in S and W respectively.

• T̂ := {v ∈ T : d(v) > (1 + α)dS(v)} where α := 3
√
δ.

The characterization: Our proofs proceed by assuming µ(H) < (2
3 + δ)µ(G), and then proving

some structural properties of the subgraph H. In particular, we show that if µ(H) < (2
3 + δ)µ(G),

then all the following must hold:

• |S \ Vmid| ≤ 199 · δµ(G) (stated as Claim 5.17). That is, almost all vertices in S belong to Vmid.
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• |T \ Vmid| ≤ 600 · δµ(G) (stated as Claim 5.18). That is, almost all vertices in T belong to Vmid.

• |W \Vlow| ≤ 33 ·
√
δµ(G) (stated as Claim 5.19). That is, almost all vertices in W belong to Vlow.

We note that the upper bound on |S \ Vmid| can also be inferred from the characterization of
Assadi and Behnezhad [3]. The other two bounds require new ideas.

We first show how these properties imply our desired Lemma 5.4 for bipartite graphs.

Proof of Lemma 5.4 for bipartite graphs. We prove (P1), (P2), and (P3) of Lemma 5.4 one by one.

(P1): µ(H ′) ≥ (2
3−120

√
δ)µ(G). Take the maximum matching M? of G we fixed at the beginning

of this section. Recall that M
?

is the edges of M? that go from A to B, and also recall that we
defined S = V (M

?
). Now take the matching M̃? := M? \ M?

. Since M? is a matching and

V (M
?
) = S, we get that no vertex in S can be matched by M̃?. Hence, any edge in M̃? must

have one endpoint in T and one endpoint in W . Call an edge e ∈ M̃? bad if it has an endpoint in
W \ Vlow or an endpoint in T \ Vmid, and good otherwise. We have

(# of bad edges) ≤ |W \ Vlow|+ |T \ Vmid|
Claims 5.18,5.19

≤ 33
√
δµ(G) + 600δµ(G) < 119

√
δµ(G),

where the last inequality holds since δ < 1/60. From this, we get that

(# of good edges) ≥ |M̃?| − 119
√
δµ(G)

= (µ(G)− |S|/2)− 119
√
δµ(G)

(Since |M?| = µ(G), |S| = 2|M?|, and |M̃?| = |M?| − |M?|.)

≥ µ(G)− 1

2
(
2

3
+ 3δ)µ(G)− 119

√
δµ(G) (|S| ≤ (2

3 + 3δ)µ(G) by Claim 5.15.)

>

(
2

3
− 120

√
δ

)
µ(G). (Holds since δ < 1/60.)

Now observe that since a good edge (u, v) has one endpoint in Vlow and one endpoint in Vmid, we
have d(u)+d(v) ≤ .2β+.6β = .8β. SinceH is a (β, (1−ε)β)-EDCS ofG and .8β < (1−ε)β, excluding

(u, v) from H would violate the second property of EDCS. Hence, all good edges in M̃? must belong
to H. Additionally, all good edges must also belong to subgraph H ′ of H, since they have one
endpoint in Vmid and one in Vlow. Thus, we get that µ(H ′) ≥ (# of good edges) ≥ (2

3−120
√
δ)µ(G).

(P2): For any matching M in H ′, µ(G[Vmid \ V (M)]) ≥ (1
3 − 800δ)µ(G).

We say an edge e ∈ M
?

is wasted if at least one of its endpoints is matched by M . Take a
wasted edge (u, v) ∈M?

and suppose that its endpoint v is matched to some vertex w in M . First,
note that v ∈ S since S = V (M

?
) and note that w ∈ T since (u,w) ∈ M ⊆ H ′ ⊆ H and all edges

of S go to T in H. Second, note that since M is a matching in H ′, one vertex of (w, v) must belong
to Vmid and one to Vlow. From this, we get that for any wasted edge in M

?
, there is at least one

dedicated vertex in S ∪ T that belongs to Vlow. Hence,

(#of wasted edges) ≤ |S ∩ Vlow|+ |T ∩ Vlow|
≤ |S \ Vmid|+ |T \ Vmid|. (Since Vlow ∩ Vmid = ∅ by their definition.)

≤ 199δµ(G) + 600δµ(G) (By Claims 5.17 and 5.18.)
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= 799δµ(G).

Since any edge of M
?

that is not wasted belongs to G[Vmid \ V (M)], we get that

µ(G[Vmid \ V (M)]) ≥ |M?| − 799δµ(G) =
1

2
|S| − 799δµ(G)

≥ 1

2

(
2

3
− 2δ

)
µ(G)− 799δµ(G) (By Claim 5.15.)

=

(
1

3
− 800δ

)
µ(G).

(P3): |Vmid| < 2µ(G). We have

|Vmid| = |Vmid ∩ S|+ |Vmid ∩ T |+ |Vmid ∩W | (Since S, T , W partition V .)

≤ |S|+ |T |+ |Vmid ∩W |
≤ |S|+ |T |+ |W \ Vlow| (Since Vlow ∩ Vmid = ∅.)

≤ |S|+ |T |+ 33
√
δµ(G) (By Claim 5.19.)

< 8µ(G),

where the last inequality follows from |S| = 2|M?| ≤ 2µ(G), |T | = µ(H) ≤ µ(G), and 33
√
δ < 4.3

(since δ < 1/60).

Thus, it just remains to prove the three upper bounds above on |S\Vmid|, |T \Vmid|, and |W \Vlow|.
We continue with some basic guarantees of the Hall’s witness in Section 5.4.1, prove a parametrized
guarantee on d̄S(T ) in Section 5.4.2, prove some useful auxiliary claims in Section 5.4.3, and then
the upper bounds on |S \ Vmid|, |T \ Vmid|, and |W \ Vlow| in Section 5.4.4.

5.4.1 Basic Guarantees of Hall’s Witness

Claims 5.9 to 5.11 below are all by now standard in analyzing EDCS. We provide the full proofs
nonetheless to keep our discussion of this section self-contained.

Claim 5.9. µ(H) = |T |.
Proof. We have |T | = |A| + |B| = n − (|A| − |B|) = n − (n − µ(H)) = µ(H), where the third
equation follows from Proposition 5.8 and the fact that A is a witness set of H.

Claim 5.10. |S| ≥ 2(µ(G)− µ(H)).

Proof. Let H? := M?∪H. Note that µ(H?) ≥ |M?| = µ(G). From Proposition 5.8, this means that
|A|−|NH?(A)| ≤ n−µ(H?) ≤ n−µ(G). On the other hand, since A is a witness set for H, we know
that |A| − |B| = n− µ(H). Putting the two together, we get that |NH?(A)| − |B| ≥ µ(G)− µ(H).
From the construction of H?, this implies that at least µ(G) − µ(H) edges of A in M? should go
to B, implying that |M?| ≥ µ(G)− µ(H). The claim follows since |S| = 2|M?| by definition.

Claim 5.11. µ(H) ≥ 2d̄(S)

2d̄(S)+d̄S(T )
· µ(G).

Proof. Observe from definition that d̄S(T ) · |T | = mS = d̄(S) · |S|. Therefore |T | = |S|d̄(S)

d̄S(T )
. Plugging

|S| ≥ 2(µ(G)− µ(H)) of Claim 5.10, and µ(H) = |T | of Claim 5.9, we get that

µ(H) ≥ 2(µ(G)− µ(H))d̄(S)

d̄S(T )
⇔ µ(H) ≥ 2d̄(S)

2d̄(S) + d̄S(T )
· µ(G).
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5.4.2 A Parametrized Lower Bound on the degrees of T to S

The following Lemma 5.12 is our most technical lemma of this section. It gives a useful lower bound
on the average degree d̄S(T ) based on a parameter γ ≥ 0. We will later show that if µ(H) is not
much larger than 2

3µ(G), then γ should be very close to zero, implying several useful properties on
the structure of such tight instances.

Lemma 5.12. It holds that d̄S(T ) ≤ (1− γ)β − d̄(S) where

γ :=

∑
v∈S(d(v)− d̄(S))2 + 1

2

∑
v∈T (dS(v)− d̄S(T ))2 + 1

4 |T̂ |δd̄S(T )2

mSβ
≥ 0.

Proof. Since H is a (β, (1− ε)β)-EDCS, we get from the first condition of EDCS that∑
(u,v)∈HS

d(u) + d(v) ≤
∑

(u,v)∈HS

β = mSβ. (6)

Let us now focus on the LHS of (6). Each vertex v ∈ S ∪ T participates in the sum dS(v) times for
each of its edges in HS , and each time adds a value of d(v) to the sum. Hence,∑

(u,v)∈HS

d(u) + d(v) =
∑

v∈S∪T
dS(v)d(v)

=
∑
v∈S

d(v)2 +
∑
v∈T

dS(v)d(v) (Since dS(v) = d(v) for all v ∈ S.)

= |S|d̄(S)2 +
∑
v∈S

(d(v)− d̄(S))2 +
∑
v∈T

dS(v)d(v)

(This follows from applying Fact C.1 on the first quadratic sum.)

≥ mS d̄(S) +
∑
v∈S

(d(v)− d̄(S))2 +
∑
v∈T

dS(v)d(v). (Since |S|d̄(S) = mS .)

Plugging this lower bound on the LHS of (6) back to (6) and moving the terms, we get that∑
v∈T

dS(v)d(v) ≤ mS(β − d̄(S))−
∑
v∈S

(d(v)− d̄(S))2. (7)

Next, we focus on the LHS of (7). For any vertex v ∈ T define xv := dS(v)− d̄S(T ). We have∑
v∈T

dS(v)d(v) ≥
∑
v∈T\T̂

dS(v)2 + (1 + α)
∑
v∈T̂

dS(v)2 (By definition of T̂ .)

=
∑
v∈T

dS(v)2 + α
∑
v∈T̂

dS(v)2

=
∑
v∈T

(d̄S(T ) + xv)
2 + α

∑
v∈T̂

(d̄S(T ) + xv)
2 (By definition of xv.)

= |T |d̄S(T )2 +
∑
v∈T

x2
v + 2d̄S(T )

∑
v∈T

xv + α
∑
v∈T̂

(d̄S(T ) + xv)
2

= |T |d̄S(T )2 +
∑
v∈T

x2
v + α

∑
v∈T̂

(d̄S(T ) + xv)
2

(Since
∑

v∈T xv =
∑

v∈T (dS(v)− d̄S(T )) =
∑

v∈T dS(v)−
∑

v∈T d̄S(T ) = mS −mS = 0.)

17



≥ |T |d̄S(T )2 + (1− α)
∑
v∈T

x2
v +

∑
v∈T̂

(αx2
v + α(d̄S(T ) + xv)

2)

≥ |T |d̄S(T )2 + (1− α)
∑
v∈T

x2
v +

∑
v∈T̂

αd̄S(T )2/4

(If |xv| ≥ d̄S(T )/2 then αx2
v ≥ αd̄S(T )2/4 otherwise α(d̄S(T ) + xv)

2 ≥ αd̄S(T )2/4.)

≥ mS · d̄S(T ) +
1

2

∑
v∈T

(dS(v)− d̄S(T ))2 + |T̂ | · αd̄S(T )2/4.

(By definition of xv, and since α = 3
√
δ < 3

√
1/60 < 1/2.)

Plugging this lower bound on the LHS of (7) back to (7), we get that

mS · d̄S(T ) + (1− α)
∑
v∈T

(dS(v)− d̄S(T ))2 + |T̂ | · αd̄S(T )2/4 ≤ mS(β − d̄(S))−
∑
v∈S

(d(v)− d̄(S))2.

Moving the terms, we get that

d̄S(T ) ≤ (β − d̄(S))−
∑

v∈S(d(v)− d̄(S))2 + 1
2

∑
v∈T (dS(v)− d̄S(T ))2 + |T̂ |αd̄S(T )2/4

mS

= (β − d̄(S))− γβ (By definition of γ in the claim statement.)

= (1− γ)β − d̄(S).

This is the desired upper bound on d̄S(T ). Note also that the non-negativity of γ follows from the
fact that all the terms in it are non-negative.

5.4.3 Some Auxiliary Claims

Before proving our main characterization, we prove a few useful claims in this section. Namely,
that under µ(H) < (2

3 + δ)µ(G), we have

• (1− ε)β/2 ≤ d̄(S) ≤ (1 + 3δ)β/2 (stated as Claim 5.13).

That is, the average degree of S in H should be close to β/2.

• (1− 6δ)β/2 ≤ d̄S(T ) ≤ (1 + ε)β/2 (stated as Claim 5.14).

That is, the average degree of T to S in H should be close to β/2.

• (2
3 − 2δ)µ(G) ≤ |S| ≤ (2

3 + 3δ)µ(G) (stated as Claim 5.15).

That is, |S| should be close to 2
3µ(G).

• γ ≤ 2δ (stated as Claim 5.16).

That is, the parameter γ of Lemma 5.12 should be small.

We now state and prove these claims one by one.

Claim 5.13. If µ(H) < (2
3 + δ)µ(G), then (1− ε)β/2 ≤ d̄(S) ≤ (1 + 3δ)β/2.

Proof. We first prove the lower bound which in fact holds regardless of the assumption of the
claim. Since H has no edges between A and B by definition, then any edge in M

?
must be missing

from H. Hence, by the second condition of EDCS, for any (u, v) ∈ M?
, d(u) + d(v) ≥ (1 − ε)β.
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Thus
∑

(u,v)∈M? d(u) + d(v) ≥ |M?|(1− ε)β. The LHS equals
∑

v∈S d(v) = mS since S = V (M
?
).

Dividing through by |S| = 2|M?| we obtain d̄(S) ≥ (1− ε)β/2.

For the upper bound, suppose for contradiction that d̄(S) > (1 + 3δ)β/2. We have

µ(H) ≥ 2d̄(S)

2d̄(S) + d̄S(T )
µ(G) (By Claim 5.11.)

≥ 2d̄(S)

2d̄(S) + β − d̄(S)
µ(G) (Since d̄S(T ) ≤ (1− γ)β − d̄(S) ≤ β − d̄(S) by Lemma 5.12.)

=
2d̄(S)

β + d̄(S)
µ(G) >

(1 + 3δ)β

β + (1 + 3δ)β/2
µ(G) =

2 + 6δ

3 + 3δ
µ(G) ≥

(
2

3
+ δ

)
µ(G),

where the last inequality holds for all 0 ≤ δ ≤ 1/3. This contradicts the assumption of the claim,
and so the claimed upper bound on d̄(S) must hold.

Claim 5.14. If µ(H) < (2
3 + δ)µ(G), then (1− 6δ)β/2 ≤ d̄S(T ) ≤ (1 + ε)β/2.

Proof. The upper bound follows from d̄S(T ) ≤ β − d̄(S) of Lemma 5.12 and d̄(S) ≥ (1− ε)β/2 of
Claim 5.13. For the lower bound, suppose for contradiction that d̄S(T ) < (1− 6δ)β/2. We have

µ(H)
Claim 5.11
≥ 2d̄(S)

2d̄(S) + d̄S(T )
µ(G)

Claim 5.13
≥ (1− ε)β

(1− ε)β + d̄S(T )
µ(G) ≥ (1− ε)β

β + (1− 6δ)β/2
µ(G)

=
2− 2ε

3− 6δ
µ(G) ≥

(
2

3
+ δ

)
µ(G),

where the last inequality holds for all 1/2 > δ ≥ 2ε ≥ 0. This contradicts the assumption of the
claim and proves the lower bound on d̄S(T ).

Claim 5.15. If µ(H) < (2
3 + δ)µ(G), then (2

3 − 2δ)µ(G) ≤ |S| ≤ (2
3 + 3δ)µ(G).

Proof. For the lower bound, observe that

|S|
Claim 5.10
≥ 2(µ(G)− µ(H)) > 2

(
µ(G)− (

2

3
+ δ)µ(G)

)
≥
(2

3
− 2δ

)
µ(G).

For the upper bound, we have

µ(H)
Claim 5.9

= |T | = mS

d̄S(T )
=
|S|d̄(S)

d̄S(T )

Claims 5.13 and 5.14
≥ |S|(1− ε)β/2

(1 + ε)β/2
≥ (1− 2ε)|S|.

Hence, the assumption µ(H) < (2
3 + δ)µ(G) implies that

|S| ≤ 1

1− 2ε
(
2

3
+ δ)µ(G)

(ε<1/120)
< (1 + 4ε)(

2

3
+ δ)µ(G)

(δ>2ε,0<δ<1/60)
< (

2

3
+ 3δ)µ(G).

Claim 5.16. If µ(H) < (2
3 + δ)µ(G), then γ ≤ 2δ.

Proof. Suppose for contradiction that γ > 2δ. Then

d̄S(T ) ≤ (1− γ)β − d̄(S) (By Lemma 5.12)

< (1− 2δ)β − d̄(S)

≤ (1− 2δ)β − (1 + 3δ)β/2 (By Claim 5.13)

≤ (1− 6δ)β/2.

This contradicts Claim 5.14 that d̄S(T ) ≥ (1− 6δ)β/2 and proves the claim.
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5.4.4 The Main Characterization

Having proved the auxiliary claims above and the parametrized guarantee of Lemma 5.12, we ready
to prove the main characterizations of this section on |S \ Vmid|, |T \ Vmid, and |W \ Vlow|.

Claim 5.17. If µ(H) < (2
3 + δ)µ(G), then |S \ Vmid| ≤ 199 · δµ(G).

Proof. Suppose for contradiction that |S \ Vmid| > 199 · δµ(G). If v 6∈ Vmid, then d(v) 6∈ [.4β, .6β]
by definition of Vmid. Since (1 − ε)β/2 ≤ d̄(S) ≤ (1 + 3δ)β/2 by Claim 5.13 and δ < 1/60 and
ε < 1/120, we get .49β < d̄S(T ) < .53β. Thus for all v ∈ S \Vmid, we have (d(v)− d̄(S))2 ≥ (.07β)2.
Hence, by definition of γ in Lemma 5.12 and the non-negativity of the terms in its numerator, we
get that

γ ≥
∑

v∈S(d(v)− d̄(S))2

mSβ
≥ |S \ Vmid| · (.07β)2

mSβ
=
|S \ Vmid| · (.07β)2

|S|d̄(S)β

Claim 5.13
≥ |S \ Vmid| · (.07β)2

|S|(1 + 3δ)β2/2

≥ 2(1− 4δ)(0.07)2 |S \ Vmid|
|S|

≥ 1

110
· |S \ Vmid|
|S|

. (Since δ < 1/60.)

≥ 1

110
· 199 · δµ(G)

(2
3 + 3δ)µ(G)

(By Claim 5.15 and the assumption that |S \ Vmid| > 199 · δµ(G).)

> 2δ. (Since δ < 1/60.)

But this contradicts Claim 5.16 that γ ≤ 2δ, completing the proof.

Claim 5.18. If µ(H) < (2
3 + δ)µ(G), then |T \ Vmid| ≤ 600 · δµ(G).

Proof. Suppose for contradiction that |T \ Vmid| > 600 · δµ(G). If v 6∈ Vmid, then by definition
of Vmid, we have d(v) 6∈ [.4β, .6β]. Since by Claim 5.14 (1 − 6δ)β/2 ≤ d̄S(T ) ≤ (1 + ε)β/2 and
δ < 1/60 and ε < 1/120, we get .45β ≤ d̄S(T ) < .51β. Thus for all v ∈ T \ Vmid, we have
(dS(v)− d̄S(T ))2 ≥ (.05β)2. Hence, by definition of γ in Lemma 5.12 and the non-negativity of the
terms in its numerator,

γ ≥
1
2

∑
v∈T (dS(v)− d̄S(T ))2

mSβ
≥ |T \ Vmid| · (.05β)2

2mSβ
=
|T \ Vmid| · (.05β)2

2|S|d̄(S)β

Claim 5.13
≥ |T \ Vmid| · (.05β)2

|S|(1 + 3δ)β2

≥ (1− 4δ)(0.05)2 |T \ Vmid|
|S|

≥ 1

414
· |T \ Vmid|

|S|
(Since δ < 1/60.)

≥ 1

414
· 600δµ(G)

(2
3 + 3δ)µ(G)

(By Claim 5.15 and the assumption that |T \ Vmid| > 600δµ(G).)

> 2δ. (Since δ < 1/60.)

But this contradicts Claim 5.16 that γ ≤ 2δ, completing the proof.

Claim 5.19. If µ(H) < (2
3 + δ)µ(G), then |W \ Vlow| ≤ 33

√
δµ(G).

Proof. First, we claim that |T̂ | < 22δ|S|/α. Suppose for contradiction that |T̂ | ≥ 22δ|S|/α. By
definition of γ in Lemma 5.12 and the non-negativity of the terms in its numerator, we have

γ ≥
1
4 |T̂ |αd̄S(T )2

mSβ
=
|T̂ |αd̄S(T )2

4|S|d̄(S)β

Claims 5.13 and 5.14
≥ |T̂ |α((1− 6δ)β/2)2

4|S|((1 + 3δ)β/2)β
=

1

8
· α(1− 6δ)2

(1 + 3δ)
· |T̂ |
|S|

≥ 1

8
α(1− 15δ) · |T̂ |

|S|
(0<δ<1/60)

≥ α

11
· T̂
|S|

(|T̂ |≥22δ|S|/α)

≥ 2δ.
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But this contradicts Claim 5.16 that γ ≤ 2δ, therefore we must have |T̂ | < 22δ|S|/α.

Now take a vertex v ∈ W \ Vlow. We have d(v) ≥ .2β by definition of Vlow. This means that
mW ≥ .2β|W \ Vlow|. On the other hand, since any vertex has degree at most β in a (β, (1− ε)β)-
EDCS, and for any vertex v ∈ T \ T̂ we have d(v) ≤ (1 + α)dS(v) by definition of T̂ , we get

mW =
∑
v∈T

dW (v) =
∑
v∈T

(d(v)− dS(v)) ≤
∑
v∈T\T̂

αdS(v) +
∑
v∈T̂

β ≤ αmS + β|T̂ |.

Additionally, since mS = |S|d̄(S) we get by Claim 5.13 that mS ≤ |S|(1 + 3δ)β/2. Combined with
our earlier lower bound on mW , this implies that

.2β|W \ Vlow| ≤ α|S|(1 + 3δ)β/2 + β|T̂ | ⇔ |W \ Vlow| ≤ 5(α(1 + 3δ)|S|/2 + |T̂ |).

Using our earlier bound of |T̂ | < 22δ|S|/α, we get that

|W \ Vlow| ≤ 5(α(1 + 3δ)|S|/2 + 22δ|S|/α).

Since α = 3
√
δ by definition and 0 < δ < 1/60, this implies |W \ Vlow| < 46

√
δ|S|. Given the upper

bound of |S| ≤ (2
3 +3δ)µ(G) in Claim 5.15 and since δ < 1/60, we get |W \Vlow| ≤ 46(2

3 +3δ)µ(G) ≤
33
√
δµ(G).

As discussed earlier, Claims 5.17 to 5.19 together imply Lemma 5.4 for bipartite graphs.

6 Beating Half for General Graphs

Our discussion of Section 4 crucially relied on the graph G being bipartite. In this section, we
prove Theorem 1 for general graphs. Our main result of this section is the following semi-dynamic
algorithm, akin to Lemma 4.2, but now for general graphs.

Lemma 6.1. For any ε > 0 and any n-vertex fully dynamic graph G, there is a (randomized) data
structure A that takes (poly log n) worst-case update-time, and upon being queried takes Õ(n/ε5)
time to produce a number µ̃ such that .5018 · µ(G)− εn ≤ E[µ̃] ≤ µ(G).

The proof of Theorem 1 for general graphs follows from Lemma 6.1:

Proof of Theorem 1 for general graphs. Follows by plugging the data structure A of Lemma 6.1 as
the data structure A in Lemma 4.1 and choosing sufficiently small ε such that .501 ≥ .5018−ε.

6.1 The Semi-Dynamic Algorithm (Proof of Lemma 6.1)

The data structures that we maintain are exactly the same as those in Section 4. Namely, we
maintain the adjacency matrix of the graph G and a (1/2 − ε)-approximate matching M of G in
(poly log n) worst-case update-time [18, 13] against adaptive adversaries. It remains to show how
to produce the number µ̃ in Õ(n/ε5) time using these data structures, which is what we focus on
in the rest of this section.

The first idea is to define a (random) bipartite subgraph GB = (L,R,EB) of G. We construct
GB in a way that all edges of M belong to EB. Specifically, for each edge in M we put one of

21



its endpoints in L and the other in R arbitrarily. The rest of the vertices (i.e., V \ V (M)) are
independently and uniformly added either to L or R. An edge belongs to GB iff it belongs to G
and it has one endpoint in L and one in R. We note that a similar randomization was used in [14].

Observation 6.2. M is a maximal matching of GB.

Proof. Holds since M ⊆ EB, M is a maximal matching of G, and GB is a subgraph of G.

Note that if we had µ(GB) = µ(G), we could simply run the algorithm of Section 4 on graph
GB. However, µ(GB) can be smaller than µ(G), and so additional ideas are needed.

The following Algorithm 3 is analogous to Algorithm 1 of Section 4.

Algorithm 3:

1. Let M and GB = (L,R,EB) be as above.

2. Let M ′ ⊆M include each edge of M independently with probability p = .03.

3. Let V ′ := V (M ′) and U := V \ V (M).

4. Let V ′R := V ′ ∩R, V ′L := V ′ ∩ L, UR := U ∩R, UL := U ∩ L.

5. Let HR := GB[V ′R, UL] be the induced bipartite subgraph of GB between V ′R and UL.

6. Let HL := GB[V ′L, UR] be the induced bipartite subgraph of GB between V ′L and UR.

7. For e = (u, v), v ∈ R, u ∈ L, let qe := Prπ[v ∈ GMM(HR, π), u ∈ GMM(HL, π) | M ′] for a
random permutation π.

8. Let ` := |GMM(G[V \ V (M)], π)| for any arbitrary permutation π.

9. Return µ̃′ := |M |+ max{`,
∑

e∈M ′ qe}.

To implement Algorithm 3, we use the following Proposition 6.3, which builds on the techniques
developed in [11]. See Appendix A for the proof.

Proposition 6.3 ([11]). Let G = (V,E) be an n-vertex graph to which we have adjacency matrix
query access and let K ⊆ V be an arbitrary subset. For any ε > 0 and v ∈ K chosen u.a.r., there
is an algorithm that succeeds with probability 1−εn/|K| and in Õ(n2/(ε|K|)) expected time returns
whether v is matched by GMM(G, π), where π is a u.a.r. permutation of E drawn by the algorithm.
The probabilistic statements depend both on the randomization of π and the randomization of v ∼ K.

Lemma 6.4. For any ε > 0, there is an algorithm that w.h.p. takes Õ(n/ε5) time and returns a
number µ̃′′ such that µ̃′ − εn ≤ µ̃′′ ≤ µ̃′. Here µ̃′ is the output of Algorithm 3.

Proof. Since M is given, we can construct L, R, M ′, V ′R, V ′L, UR, and UL in O(n) time and also
store for each vertex to which one of these sets it belongs. However, we will not compute HR or
HL explicitly as they may have Ω(n2) edges. Note, however, that any adjacency matrix query to
HR or HL can be answered in O(1) time since we have adjacency matrix access to G and explicitly
have these graphs’ vertex sets stored.

Let us condition on the outcome of M ′ for the rest of the proof. Observe that
∑

e∈M ′ qe ≤∑
e∈M ′ 1 = |M ′|. So if |M ′| ≤ εn then returning µ̃′′ = |M | proves the lemma. Thus, let us assume

|M ′| > εn. We do not know how to compute qe for every edge in M ′. Instead, we show how to
estimate the value of the sum

∑
e∈M ′ qe.
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Let k = 48 log n/ε2. For any i ∈ [k], we pick an edge ei = (vi, ui) from M ′ each uniformly
at random (with replacement), assuming w.l.o.g. that ui ∈ L, vi ∈ R. For any i ∈ [k], we run
Proposition 6.3 once on graph HR for vertex vi and once on graph HL for vertex ui for error
parameter ε′ = ε2/2. We then let Xi be the indicator of the event that both vi and ui are returned
to be matched by Proposition 6.3. Since HR and HL are vertex disjoint by construction, the
dependence of ui and vi (in that they are both endpoints of the same edge in M ′) does not affect
the guarantees of Proposition 6.3. In particular, ui (resp. vi) is still a vertex chosen u.a.r. from V ′L
(resp. V ′R).

Since |V ′R| = |V ′L| = |M ′| ≥ εn, the set K in our call to Proposition 6.3 has size εn at least.

Hence, Proposition 6.3 takes Õ(n2/(ε′εn)) = Õ(n/ε3) expected time for each i ∈ [k], and has
success probability 1 − ε′n/(εn) = 1 − ε/2. Since we call it k times, the total time-complexity is
Õ(nk/ε2) = Õ(n/ε5) in expectation. We will show later how to turn this into high probability.

Since, as discussed, our call to Proposition 6.3 has failure probability ≤ ε/2, we get that

E[Xi] =
1

|M ′|
∑

(u,v)∈M ′

(qe ± ε/2) =

 1

|M ′|
∑

(u,v)∈M ′

qe

± ε/2. (8)

Define X :=
∑

iXi and Q := X|M ′|
k . Since the Xi’s are independent (as each call to Proposition 6.3

generates a fresh random permutation), we get from the Chernoff bound that with probability
1− 2n−4, X = E[X]±

√
12 E[X] log n. As such, we get that w.h.p.

Q =
(E[X]±

√
12 E[X] log n)|M ′|
k

=
(kE[Xi]±

√
12kE[Xi] log n)|M ′|
k

= E[Xi]|M ′| ± .5ε|M ′| (Since E[Xi] ≤ 1 and k = 48 log n/ε2.)

=
∑

(u,v)∈M ′

qe ± ε|M ′| (By (8).)

=
∑

(u,v)∈M ′

qe ± .5εn. (Since |M ′| ≤ n/2.)

Note also that ` is simple to approximate within a (1 + ε) factor using the algorithm of [11] as
black-box. Therefore, returning µ̃′′ = |M |+ max{`,Q} − .5εn guarantees µ̃′ − εn ≤ µ̃′′ ≤ µ̃′ w.h.p.

Since the expected running time is Õ(n/ε5), by Markov’s inequality the algorithm terminates
in 2× Õ(n/ε5) time with probability at least 1/2. Thus, we can run O(log n) independent instances
of the algorithm, and return the output of the one that first terminates. This way, our algorithm
w.h.p. terminates in Õ(n/ε5) time. Since the guarantee on µ̃′′ holds with probability 1−1/ poly(n),
it should hold for all O(log n) instances (and so the one that first terminates) still w.h.p.

Next, we turn to analyze the approximation ratio of Algorithm 3.

Proposition 4.5, which was used in the proof of Lemma 4.6, only gives a lower bound on the
size of the matching. For our discussion of this section, however, we need a more fine-tuned bound
guaranteed by the following proposition of [14].

Proposition 6.5 ([14, Lemma 5.2]). Let 0 < p ≤ 1, let G = (A,B,E) be a bipartite graph, let
A′ ⊆ A include each vertex of A independently with probability p, and let H be the induced subgraph
of G on vertex-set A′ ∪ B. Fix an arbitrary permutation π over the edge-set of H and fix an
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arbitrary matching M of G. Let X be the number of edges in M whose endpoint in A is matched
in GMM(H,π); then

EA′ [X] ≥ p(|M | − 2p|A|).

Lemma 6.6. For Algorithm 3, it holds that E[µ̃′] ≥ .5018µ(G).

Proof. Fix an arbitrary maximum matching M? of G. Observe that there are exactly µ(G)− |M?|
augmenting paths in M ⊕M? for M . Denoting the number of length one augmenting paths in
M ⊕M? by L1, there are exactly µ(G)− |M | −L1 augmenting paths of length at least three. Each
of these augmenting paths has exactly two (endpoint) edges that have one vertex matched in M
and one endpoint unmatched in M . Putting together these edges, we obtain a matching Z with
2(µ(G) − |M | − L1) edges, all of which belong to M?. The number of length two components in
M ⊕ Z is at most |M |. The rest of the components are length three augmenting paths for M .
Thus, there are at least |Z| − |M | = 2µ(G) − 3|M | − 2L1 length three augmenting paths for M
in M ⊕ Z. Let P = (a, u, v, b) be one of these leng-three augmenting paths with (u, v) ∈ M and
(a, u), (v, b) ∈ M?. Suppose w.l.o.g. that we assign u ∈ L and v ∈ R in Algorithm 3. Then P
remains an augmenting path in GB if a ∈ R and b ∈ L, which happens with probability 1/4. Under
this event, we say P survives to GB. Let P be the set of all the length three augmenting paths in
M? ⊕M that survive to GB, and note that

EL,R |P| ≥
1

4
(2µ(G)− 3|M | − 2L1). (9)

Define

M?
L := {(a, u) ∈M? | u ∈ L, a ∈ R, (a, u, ·, ·) ∈ P},

M?
R := {(v, u) ∈M? | v ∈ R, b ∈ L, (·, ·, v, b) ∈ P},

MP := {(u, v) ∈M | (·, u, v, ·) ∈ P}.

Furthermore, define

FL := GB[V (M) ∩ L,UR], FR := GB[V (M) ∩R,UL].

Let π be any arbitrary permutation of the edges in E. Let XL (resp. XR) denote the number of
vertices in V (M?

L) ∩ L that are matched by GMM(HL, π) (resp. GMM(HR, π)). Noting that HL is
an induced subgraph of FL including each of its vertices in its V (M) ∩ L part independently from
each other with probability p, we can apply Proposition 6.5 (on graph FL fixing matching M?

L) to
obtain that

EM ′ [XL] ≥ p(|M?
L| − 2p|V (M) ∩ L|) = p(|P| − 2p|M |). (10)

With essentially the same proof, we also get that

EM ′ [XR] ≥ p(|M?
R| − 2p|V (M) ∩R|) = p(|P| − 2p|M |). (11)

Now let M ′P be the edges in MP that also belong to subsample M ′ of M in Algorithm 3. Let
Y be the number of edges (u, v) ∈ M ′P where u is matched by GMM(HL, π) and v is matched by
GMM(HR, π). We have

Y ≥ |M ′P | − (|M ′P | −XL)− (|M ′P | −XR) = XR +XL − |M ′P |.

24



Taking expectation over M ′, plugging (10) and (11), and noting that E |M ′P | = p|MP | = p|P|, we
get

EM ′ [Y ] ≥ 2p(|P| − 2p|M |)− p|P| = p|P| − 4p2|M |.

Further taking expectation over the randomization of L,R, we get that

EM ′,L,R[Y ] ≥ pEL,R |P| − 4p2|M |
(9)

≥ p · 1

4
(2µ(G)− 3|M | − 2L1)− 4p2|M |

=
p

2
µ(G)− (

3p

4
+ 4p2)|M | − p

2
L1.

From this, we get that

E
[ ∑
e∈M ′

qe

]
≥ E

[ ∑
e∈M ′

P

qe

]
= E[Y ] ≥ p

2
µ(G)− (

3p

4
+ 4p2)|M | − p

2
L1. (12)

Therefore, we have

E[µ̃′] = |M |+ max

{
`, E

[ ∑
e∈M ′

qe

]}

≥ |M |+ max

{
L1

2
, E

[ ∑
e∈M ′

qe

]}
(Since ` is the size of a maximal matching in G[V \ V (M)] and µ(G[V \ V (M)]) ≥ L1.)

≥ |M |+ max

{
L1

2
,
p

2
µ(G)− (

3p

4
+ 4p2)|M | − p

2
L1

}
(By (12).)

= max

{
|M |+ L1

2
,
p

2
µ(G) + (1− 3p

4
− 4p2)|M | − p

2
L1

}
≥ (1− ε) max

{
µ(G)

2
+
L1

2
, (

1

2
+

1

8
p− 2p2)µ(G)− p

2
L1

}
(Since |M | ≥ (1− ε)µ(G)/2 and (1− 3p

4 − 4p2) = 0.9739 > 0 as p = 0.03.)

≥ (1− ε) max

{
µ(G)

2
+
L1

2
, .5019µ(G)− .015L1

}
(Since p = .03.)

≥ (1− ε).5018µ(G). (This holds for all values of L1.)

This completes the proof.

Lemma 6.7. For Algorithm 3, it holds with probability 1 that µ̃′ ≤ µ(G).

Proof. Condition on the outcome of M ′ in Algorithm 3. Then run the process of constructing
matchings GMM(HR, π) and GMM(HL, π) for a random π. Define

Y = {(a, u, v, b) | (a, u) ∈ GMM(HL, π), (u, v) ∈M, (v, b) ∈ GMM(HR, π)}.

Note that Y is a collection of length-three augmenting paths for M . Hence, we can apply all of
them at the same time on M . This implies that µ(G) ≥ |M |+ |Y|. Moreover, we have

Eπ[|Y| |M ′] =
∑
e∈M ′

Pr[v ∈ GMM(HR, π), u ∈ GMM(HL, π) |M ′] =
∑
e∈M ′

qe.
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Given this expected value, there must be a choice of π with |Y| ≥
∑

e∈M ′ qe. This suffices to show

µ(G) ≥ |M |+
∑
e∈M ′

qe = µ̃′.

We are now ready to complete the proof of Lemma 6.1.

Proof of Lemma 6.1. The data structures that we store, as discussed, take only (poly log n) worst-
case time to maintain against an adaptive adversary. When the algorithm is queried, we return
the output µ̃′′ of Lemma 6.4. It takes Õ(n/ε5) time to produce this by Lemma 6.4, which is the
desired query time of Lemma 6.1. Moreover, for the approximation ratio, we have

.5018µ(G)− εn
Lemma 6.6
≤ E[µ̃′]− εn

Lemma 6.4
≤ E[µ̃′′]

Lemma 6.4
≤ E[µ̃′]

Lemma 6.7
≤ µ(G).

This completes the proof of Lemma 6.1.
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A Needed Sublinear Algorithms From [11]

In our proofs, we used Propositions 6.3 and 4.4 which are implied by a result of the author in [11].
In this section, we prove why these propositions follow from [11].

In its Section 4, [11] gives an algorithm that works in the adjacency list model. The algorithm
is then adapted to the adjacency matrix model using a reduction that is provided in [11, Section 5].
The reduction works as follows. Let G = (V,E) be the graph to which we have adjacency matrix
access. A graph H = (VH , EH) is then defined based on G in such a way that any adjacency list
query to H can be answered with a single adjacency matrix query to G. The graph H has two
vertex disjoint copies G1 = (V1, E1) and G2 = (V2, E2) of G with a number of edges added between
G1 and G2. Additionally each vertex in V2 has 10n/ε leaves adjacent to it where n = |V |.

Partition V2 into V ′2 and V ′′2 := V2 \ V ′2 such that V ′2 includes a vertex v ∈ V2 iff the lowest rank
edge of v according to π is to a vertex in V1∪V2 (i.e., not to a leaf of v). Let A := GMM(H[V1], π) =
GMM(G, π), B := GMM(H,π) ∩ ((V1 × V1) ∪ (V1 × V ′2)), and C = B ∩ (V1 × V1).

Observation A.1. Any vertex in V belongs to V ′2 with probability at most ε.

Proof. For a random permutation π over EH , the lowest rank edge of each vertex v ∈ V2 goes to
V1 ∪ V2 with probability at most 2n

10n/ε+2n < ε.

Define the match-status of a vertex v in a matching M to be the indicator 111(v ∈ V (M)).

Claim A.2. For a random π, there are, in expectation, at most 3εn vertices in V1 whose match-
status for A is different from C.

Proof. Define S = A ⊕ B. We claim that any component of S must be a path with at least one
endpoint in V ′2 . To see this, take an arbitrary component C of S. The lowest rank edge e ∈ C must
have an endpoint in V ′2 or else we should have e ∈ A,B as e belongs to both H[V1] and H and has
no lower rank edge in either A or B, which contradicts e ∈ S. This edge e should be an endpoint
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of the path C, since any vertex in V ′2 has degree at most 1 in S (as it cannot be matched in A).
From this, we get that the total number of connected components in S is at most |V ′2 |. As a result,
there are at most 2|V ′2 | vertices with a different match-status in A and B.

Since C is a sub-matching of B, excluding its edges that go from V1 to V ′2 , any vertex v with
a different match-status in A and C must either have a different match-status in A and B, or it
should be matched in both A and B, but its match in B is through a V1× V ′2 edge. So, in total, at
most 2|V ′2 |+ |V ′2 | vertices may have a different match-status in A and C. This completes the proof
since E |V ′2 | ≤ εn by Observation A.1.

Proof of Proposition 4.4. It is shown in the proof of [11, Lemma 5.4] that one can w.h.p. find
an estimate of E |C| (denoted M1(π) in [11]) with an additive error of O(εn) in Õ(n/ε3) time.
Claim A.2 above shows that E |C| = E |A| ± O(εn) = E |GMM(G, π)| ± O(εn). Subtracting a
sufficiently large additive factor of O(εn) from the output gives Proposition 4.4.

Proof of Proposition 6.3. It is shown in [11, Eq (9)] that for any arbitrary vertex u ∈ VH , one can
determine which edge of u (if any) belongs to GMM(H,π) in time T (u, π) where

∑
u∈VH Eπ[T (u, π)] =

Õ(n2/ε). Thus, for v ∼ K chosen u.a.r., Eπ,v[T (v, π)] = 1
|K|
∑

v∈K Eπ[T (v, π)] = O(n2/(ε|K|)),
which is the claimed time. Since the edge of v in GMM(H,π) is also given (if any) by this process,
we can determine if it belongs to C. By Claim A.2, at most 3εn vertices in V1 (and so in K) have a
different match-status in C and A = GMM(G, π). Thus, probability (taken over v ∼ K) of choosing
a vertex that is not among these εn out of K is at least (|K| − 3εn)/|K| = 1−O(εn/|K|).

B Proof of Lemma 4.1

In this section, we argue why Lemma 4.1 holds. Let us restate the lemma first.

Lemma 4.1 (restated). Let G be an n-vertex fully dynamic graph and let ε > 0 be a parameter.
Suppose that there is a (randomized) data structure A (this is the semi-dynamic algorithm) that
takes U(n) worst-case time per update to G and, upon being queried, A produces in Q(n, ε) time
a number µ̃, such that αµ(G) − εn ≤ E[µ̃] ≤ µ(G). Then there is a randomized data structure B
(this is the fully-dynamic algorithm) that maintains a number µ̃′ such that at any point during the

updates, w.h.p., (α−ε)µ(G) ≤ µ̃′ ≤ µ(G). Algorithm B takes O
((
U(n) + Q(n,ε2)

n

)
poly(log n, 1/ε)

)
worst-case update-time. Moreover, if A works against adaptive adversaries, so does B.

Let us prove the lemma step by step. First, we prove the following lemma which guarantees
all the desired properties of algorithm B, except that instead of a multiplicative approximation, it
achieves a multiplicative-additive (α, εn)-approximation.

Lemma B.1. Let algorithm A be as in Lemma 4.1. There is an algorithm C that maintains a
number µ̃c such that at any point during the updates, it holds w.h.p. that αµ(G) − O(εn) ≤ µ̃c ≤
µ(G). Algorithm C takes O

((
U(n) + Q(n,ε)

n

)
poly(log n, 1/ε)

)
worst-case update-time. Moreover,

if A works against adaptive adversaries, then so does C.

Proof. We run algorithm A in the background, paying a worst-case update-time of U(n) because
of it. We then take the lazy approach. We query A to produce the estimate µ̃, return µ̃′ := µ̃−2εn
as our output, then we do not change the output for the next εn updates, and repeat the same
process. Because every edge update can change the size of the maximum matching by at most one
(even against adaptive adversaries), it will hold at all times that αµ(G)−3εn ≤ E[µ̃′] ≤ µ(G)−εn.
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Moreover, because we query algorithm A every εn updates, the overall amortized update time of
the algorithm is O(U(n) + Q(n,ε)

εn ). It remains to (i) turn the amortized update-time bound to
worst-case, and (ii) turn the expected approximation bound to a high probability bound.

Let us address (i) first. This can be done using a well-known ‘spreading’ idea (see [30] for more
details). Instead of executing the oracle of algorithm A over one update, we spread it over multiple
updates. More precisely, we spread the Q(n, ε) time needed for the oracle over εn/2 updates, each

performing 2Q(n,ε)
εn operations of it. When the process finishes, we update our solution as before,

and immediately start spreading the next call to the oracle.

We now address (ii). To turn the approximation guarantee into a high probability bound, we
simply run O(log n) independent instances of the algorithm above, and return the average of these
O(log n) outputs as our output. Note that if algorithm A works against adaptive adversaries, then
so should all of these O(log n) instances and thus our algorithm as well.

Let us now show how we can get rid of the additive εn error. First, note that if the maxi-
mum matching size is guaranteed to be Ω(n) at all times, then a multiplicative-additive (α, εn)-
approximation for it is indeed a multiplicative (α−O(ε))-approximation. Indeed up to a poly log n
increase in the update-time, this assumption comes w.l.o.g. due to a “vertex sparsification” idea
of the literature [6, 35]. In particular, suppose µ(G) � n and suppose that we know µ(G). Then
the idea is to randomly contract the vertices into O(µ(G)/ε) vertices, then remove self-loops and
parallel edges. This way, it is not hard to see that the resulting graph still has a matching of size
at least (1− ε)µ(G) in expectation, but has much fewer vertices. The problem with this approach
is that it only works against oblivious adversaries since an adaptive adversary may insert edges
among the contracted nodes. However, [35] showed that taking poly log n of these vertex sparsified
subgraphs are resilient against adaptive adversaries also. In particular, the following was proved in
[35], which combined with Lemma B.1 implies Lemma 4.1.

Proposition B.2 ([35, Corollary 4.101]). If there is a dynamic algorithm for maintaining an
(α, δn)-approximate maximum matching for dynamic graphs in update time O(T (n, δ)) then there
is a randomized algorithm for maintaining an (α− ε)-approximate maximum matching with update
time O(T (n, ε) log4 n/ε8) which works against adaptive adversaries given the underlying algorithm
also does.

C Basic Facts

Fact C.1. Let x1, . . . , xn be an arbitrary set of reals. Then denoting x̄ = 1
n

∑n
i=1 xi, it holds that∑n

i=1 x
2
i = nx̄2 +

∑n
i=1(xi − x̄)2 ≥ nx̄2.

Proof. For any i ∈ [n] denote yi = (xi − x̄). We have

n∑
i=1

x2
i =

n∑
i=1

(x̄+ yi)
2 =

n∑
i=1

(x̄2 + y2
i + 2x̄yi) = nx̄2 +

n∑
i=1

y2
i + 2x̄

n∑
i=1

yi = nx̄2 +

n∑
i=1

y2
i ,

where the last equality follows from
∑n

i=1 yi =
∑n

i=1(xi − x̄) =
∑n

i=1 xi −
∑n

i=1 x̄ = 0.
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