
404

A faster and simpler fully dynamic transitive closure

L i a m Rod i t t y *

A b s t r a c t

We obtain a new fully dynamic algorithm for maintain-
ing the transitive closure of a directed graph. Our algo-
r i thm maintains the transitive closure matrix in a total
running time of O (ran + (ins + del) . n 2), where ins (del)
is the number of insert (delete) operations performed.
Here n is the number of vertices in the graph and m
is the initial number of edges in the graph. Obviously,
reachability queries can be answered in constant time.
The space required by the algorithm is O(n2). Our al-
gorithm can also support path queries. If v is reachable
from u, the algorithm can produce a path from u to v
in time proportional to the length of the path. The best
previously known algorithm for the problem is due to
Demetrescu and Italiano [3]. Their algorithm has total
running time of O(n 3 + (ins + del). n2). The query time
is also constant. We also present an algorithm for di-
rected acyclic graphs (DAGs) with a total running time
of O(mn + ins . n 2 + del). Our algorithms are obtained
by combining some new ideas with techniques of Ital-
iano [7], King [8], King and Thorup [10] and Frigioni et
al. [4]. We also note that our algorithms are extremely
simple and can be easily implemented.

1 I n t r o d u c t i o n

The problem of maintaining the transitive closure of a
dynamic directed graph, i.e., a directed graph that un-
dergoes a sequence of edge insertions and deletions, is a
well studied and well motivated problem. Demetrescu
and Italiano [3], improving an algorithm of King [8],
obtained recently an algorithm for dynamically main-
taining the transitive closure under a sequence of edge
insertions and deletions with a total running t ime of
O(n 3 + (ins + del) • n~), where n is the number of ver-
tices in the graph and ins (del) is the number of insert
(delete) operations performed. King and Thorup [10]
reduced the space requirements of these algorithms. All
these algorithms support extended insert and delete op-
erations in which an arbitrary set of edges, all touching
the same vertex, may be inserted, and a completely ar-
bi trary set of edges may be deleted, all in one update
operation.

We present an algorithm that maintains the transi-
tive closure matrix with a total running time of O (m n +

- - - - - ~ o o l of Computer Science, Tel Aviv University, Tel Aviv
69978, Israel. E-maih liamr~post .tau.a¢.il.

(ins + del). n2). Here n is the number of vertices in the
graph and m is the initial number of edges in the graph.
When the transitive closure of a graph is explicitly main-
tained, it is of course possible to answer every reacha-
bility query, after each update, in O(1) time. As the
insertion or deletion of a single edge may change ~ (n 2)
entries in the transitive closure matrix, an amortized
update time of O(n2), in the worst-case, is essentially
optimal. The time needed for computing the transitive
closure of a graph using the best available algorithm
that does not resort to fast matrix multiplication, is
~(rnn). Thus, if an explicit transitive closure matrix is
to be maintained, our algorithm, with a total running
time of O(mn + (ins + del) • n2), is essentially optimal.
For directed acyclic graphs (DAGs), we obtain an even
bet ter result. We present a very simple algorithm whose
total running time is O(mn + ins . n 2 + del). In this al-
gorithm, the amortized cost of each delete operation is
covered by preceding insert operations. Our algorithms
are also essentially optimal in terms of space usage. In
particular, both algorithms use only O(n ~) space, even
when path queries are supported.

A fully dynamic transitive closure algorithm sup-
ports the following operations:

• Insert(Eu, u): Insert a set of edges all incident to
the vertex u. We refer to u as the insertion center.

• Delete(E'): Delete an arbitrary set of edges from
the graph.

• Query(u, v): Is the vertex v reachable from u?

A decremental (incremental) algorithm is an algo-
r i thm that can handle only deletions (insertions). Many
partially dynamic algorithms were developed. Rodi t ty
and Zwick [12], improving an algorithm of Baswana et
al. [1], obtained recently a decremental algorithm for
general directed graphs that processes any sequence of
edge deletions in O(mn) total expected time, essentially
the time needed for computing the transitive closure
of the initial graph. Italiano [6] and independently La
Poutr@ and van Leeuven [11] obtained an incremental al-
gorithm for general directed graphs with an amortized
time of O(n) per edge insertion.

A comparison of our fully dynamic transitive closure
algorithms and the previously available ones is given
in Table 1. We denote by ins (del) the number of
insert (delete) operations performed. Note that we
only consider here algorithms that explicitly maintain

http://crossmark.crossref.org/dialog/?doi=10.5555%2F644108.644172&domain=pdf&date_stamp=2003-01-12

405

Graph Type of algorithm Path query Total running time Reference

DAGs Monte Carlo No O(n 3 + (ins + del) . n 2) [9]

D A G s D e t e r m i n i s t i c Yes O (m n + i n s . n 2 + del) This paper

Monte Carlo
Deterministic
Deterministic

General
General
General

No

Yes
No

Yes General

O(n TM + (ins + de l) . n 2"26)

O(n 3 logn + i n s . n 2 logn + del)
O(n 3 + (ins + del) . n 2)

O (m n + (ins + del) . n 2) Determinis t ic

[91
[81
[3]

This paper

Table 1: Fully dynamic transitive closure algorithms.

the transitive closure matrix, and thus have a constant
time query. We refer the reader to [12] for details on
reachability algorithms with a non-constant query time.

King and Sagert [9] gave the first algorithm whose
update time is faster than computing the transitive clo-
sure from scratch. Their algorithm counts the number
of different paths between each two vertices. Obviously,
this counting technique can only work for DAGs. In this
case the total running time is O(n 3 + (ins + del) • n2).
They extended this technique to general graphs by de-
composing the graph into its strongly connected com-
ponents (SCCs). In the general case, the total running
time of their algorithm is O(n T M + (ins + del) . n2"26).
Their algorithm is a Monte-Carlo algorithm. The num-
ber of paths between two vertices can be exponential
in n. To reduce the word size their algorithm is ran-
domized with one-sided error. The general algorithm
uses rectangular matrix multiplication.

Next, King [8] presented a deterministic algorithm
that substantially improved the randomized algorithm
of King and Sagert [9]. She presented a general frame-
work for the fully dynamic transitive closure and also for
the fully dynamic all pairs shortest paths problem. Her
framework is composed from two ingredients. A decre-
mental algorithm that maintains the 'old' paths of the
initial graph and an algorithm that maintains a forest
of in-trees and out-trees around each vertex that served
as an insertion center. These trees are updated after
each deletion. The total running time of the algorithm
is O(n 3 log n + i n s . n 2 log n + del).

Demetrescu and Italiano [3], improving the algo-
ri thm of King [8], obtained recently an algorithm with
a total running time of O(n 3 + (ins + del) • n2). Their
algorithm uses a general framework of dynamic evalua-
tion of polynomials over matrices.

We introduce a new concept named dynamic blocks.
The dynamic blocks are a relaxed version of the strongly
connected component of dynamic graphs. Using this
new concept we improve the total running time of all
previously known algorithms. Our algorithm has a total
running time of O (m n + (ins + del) . n2). As mentioned

above, for explicitly maintaining the transitive closure
matrix, this is essentially the best algorithm possible.
Our algorithm uses very simple techniques. We use the
framework of King [8] with more efficient ingredients.
For the maintenance of the initial graph through a
sequence of edge deletions we use a variant of the
algorithm of Frigioni et al. [4] whose total running
time is O (m n + del • m) . For the maintenance of a
foreest of in-trees and out-trees we introduce a new
algorithm with an initial cost of O(n 2) for each new
tree and an amortized cost of O(n 2) for the deletion of
an arbitrary set of edges from the whole forest. The
total running time of our algorithm on a forest of O(n)
trees is O((ins + del) . n2).

The rest of this extended abstract is organized
as follows. In the next section we present a new
decremental algorithm for maintaining a tree of the
SCCs reachable from a given vertex. A modification
of this algorithm is used in Section 3 to obtain an
algorithm for the maintenance of a forest of in-trees and
out-trees whose total running time is O((ins + del) •
n2). In Section 4 we obtain our new fully dynamic
transitive closure algorithm for general graphs using
King's framework with our forest algorithm and the
variant of the algorithm of Frigioni et al. [4]. In
Section 5 we show how to support path queries without
increasing the space requirements. We end in Section 6
with some concluding remarks and open problems.

2 Reachabi l i ty tree of s trongly connec ted
c o m p o n e n t s

In this section we consider the dynamic maintenance of
a reachability tree from an arbitrary vertex in a general
directed graph under a sequence of edge deletions. The
algorithm that we present is slower then building the
reachability tree each time from scratch using BFS or
DFS. This algorithm is presented here in an a t tempt to
describe our ideas in the simplest possible setting. In
Section 3 we use this algorithm as one of the ingredients
of our fully dynamic algorithm.

We start with the following simple lemma:

406

I n i t T r e e (u) :
1. Allocate a Tree structure and its arrays
2. using Tree.
3. elem ~-- Ge tSCC(G) , reach[1 : leleml] ~-'* ' and initialize at using elern
4. Call Bui ldMatr i x (Tree) and then ReconnectTree(Tree, u, 1)

B u i l d M a t r i x (T r e e) :
1. using Tree.

.

3.
4.

5.

6.

M[l :n , l :n] ~ A, m ~ n
for i ~- 1 to 2n

if elem[i] ~ N U L L then

m ~-- ra + 1 and col[i] ~-- m

for v ~- 1 to n do M[v, rn] *-- min~e~lem[~] M[v, x]

R e c o n n e e t T r ee (T r e e , u, t):
1. using Tree.
2. for i ~-- 1 to 2n do if reach[i] = 1 then reach[i] ~-- '* '
3. reach[at[u]] ~-- 1
4. for i ~ 1 to 2n do if reach[i] = ' * ' then Reconnect(Tree, i, t)

R e c o n n e c t (T r e e , i, t):
1. using Tree.
2 .

3.
4.

5.
6.

7.

while row[i] < n do
if M[row[i], col[i]] < t and row[i] ~ elern[i] then

if reach[at[row[i]]] - - ' , ' then Reconnect(Tree, at[row[i]], t)
if reach[at[row[i]]] = 1 then reach[i] ~ 1; return

row[i] row[i] + 1
reach[i] e- 0

Dele te (E') :
1. Update A with E ~ and elem' ~-- G e t S C C (G)
2. using Tree.

3. for i ~-- 1 to 2n
4. if elem[i] ¢ N U L L and elem'[i] = N U L L then reach[i] ~- 0
5. if elem[i] -- N U L L and elem'[i] ¢ N U L L then reach[i] ~ - ' , '
6. elem ~-- elem p, call Bui ldMat r i x (Tree) and then ReconnectTree(Tree, u, 1)

Figure 1: A decremental algorithm for maintaining a tree of SCCs reachable from u.

LEMMA 2.1. Let G = (V, E) be a directed graph that
undergoes a sequence of edge deletions. The number of
different SCCs during all the deletion process is at most
2n - 1.

Proof. We prove it by building a forest whose vertices
are the SCCs of the graph G during all the deletion
process. Each decomposed SCC is connected to the
SCCs that were created from it by the deletion. In this
forest, each non-leaf vertex has at least two children. As
there are at most n leafs, the total number of vertices
is at most 2n - 1. []

The new algorithm is given in Figure 1. The
algorithm maintains the SCCs of the graph that are

reachable form the vertex u. It handles any sequence of
edge deletions in O(n 2 + del • n 2) total running time,
where del is the number of delete operations. Each
query is answered correctly in O(1) worst-case time.
This algorithm uses a similar approach to the one used
by King and Thorup [10] to save space.

We denote by A the adjacency matrix of the graph,
where A[u,v] = 1 if (u,v) e E and A[u,v] = oc
otherwise. We denote by M an adjacency matrix of
size n × (n + ISI), where $ is the set of the SCCs of the
current graph. The rows of the matrix are the vertices
of the graph. The first n columns are the vertices of
the graph and the rest of the columns correspond to the
current SCCs of the graph. We set M[I : n, 1: n] to A.
Each column j, where j > n is associated with a SCC.

407

The entry M[u, j] is set to 1 if there is an edge from u to
a vertex in the SCC corresponding to the j - th column,
otherwise it is set to c~.

In order to maintain the tree information we define
a s tructure named Tree tha t contains the following
arrays. An array named elem that holds for each SCC a
pointer to a list of its vertices. An array named at tha t
holds for each vertex the index of the SCC tha t contains
it. An array named col is used to associate each SCC to
the right column in the matr ix M. An array named row
is used to hold the tail of the edge that connects each
SCC to the reachability tree. An array named reach is
used to hold for each SCC if it is reachable from u. By
Lemma 2.1, the total number of different S C C s in any
sequence of edge deletions is at most 2 n - 1, thus all the
arrays in use are of size 2n.

Note that for each SCC i we can check whether it
still exists, i.e., was not decomposed, using the array
elem. If it still exists, then elem[i] points to a list
containing the vertices of the SCC, otherwise elem[i]
is NULL. If reach[i] = 1 then SCC i is reachable from
u. After a delete operation we can access the matr ix
entry that connects i to u using row[i] and col[i] to
check whether the connecting edge is still present in the
graph.

As mentioned above the Tree structure holds these
arrays. In our algorithm description we use the line
'using Tree. ' when we like to access the arrays directly.

The algorithm starts by calling Ini tTree(u) to ini-
tialize all the arrays mentioned above. The SCCs of
the graph are computed using any linear t ime algorithm
(see Tarjan [14], Sharir [13], Gabow [5], or Chapter 22 of
Cormen et al. [2]). We assume that GetSCC(G) builds
the array elem as defined above. We also assume tha t
in the first call to GetSCC(G) the SCCs are assigned
consecutive numbers start ing from 1. The SCCs are
marked in the array reach with ' . ' to point that the al-
gori thm needs to check whether they are reachable from
u. Next, it builds the matr ix M using the current set of
SCCs of the graph, by calling Bui ldMatr ix(Tree) . Fi-
nally, in order to create an implicit tree of SCCs rooted
at at[u], ReconnectTree is called. We note tha t the last
parameter of ReconnectTree will be used in Section 3.

Edge deletions are handled in a very similar way.
First the set of edges E ~ is removed from the graph G.
Then, the matrix M is rebuilt and the tree is recon-
nected. We now claim:

THEOREM 2.1. The algorithm handles the initialization
process and a sequence of del deletions in a total worst-
case time of O(n 2 + del . n2).

Proof. We analyze the cost of the procedure
Bui ldMatr ix and ReconnectTree, which are the
most t ime consuming steps. We show that the total
cost of a sequence of one initialization and del deletions
is at most O(n 2 + del • n2). We first analyze the cost

of the procedure Bui ldMatr ix . By Lemma 2.1 the
number of columns is O(n). Each column participates
in the creation of at most one other column, thus the
total cost of building the matr ix is O(del • n2). Next,
we show that the total t ime spent in ReconnectTree
is O(n 2 + del • n). I t is clear that the total t ime spent
in reconnecting the tree is equal to the number of
access operations performed to the matr ix M. For the
SCC i the entry [v, col[ill is first accessed when row[i]
is advanced from v - 1 to v. If this entry connects
i to the SCCs reachability tree of u then after each
deletion this entry is checked to see whether it is still
a valid connection to the reachability tree of u. The
first and the last accesses are charged to the creation
of the tree. After advancing row[i] from v to v + 1
the entry [v, col[i]] is never accessed again. Thus, the
total number of first and last accesses to all the cells
is O(n2). Each access between the first and the last
access is done only once in each deletion. Thus, the
total t ime spent in the tree in checking whether an
entry is still a valid connection to the reachability tree
of u is O(del • n). In each deletion we calculate the
SCCs of the graph. Thus the total cost of a sequence
of one initialization operation and del deletions is at
most O(n 2 d- del • n2). []

The vertex set used by the algorithm is the set of
the SCCs of the graph, thus the set of edges considered
by the algorithm does not contain any cycle. If an
entry does not connect a SCC to u, then this entry is
never examined again. This method was first suggested
by La Poutr6 and van Leeuven [11] and independently
by Italiano [7] for the decrementai maintenance of the
transitive closure of DAGs. I t was extended by La
Poutr6 and van Leeuven [11] and later by Frigioni et
al. [4] to general graphs by using the SCCs graph.

Next, we show tha t the algorithm maintains cor-
rectly the reachability tree of u. We show tha t the pro-
cedure ReconnectTree finds correctly all the SCCs in S
that are reachable from u.

THEOREM 2.2. Let i be a SCC. When ReconnectTree
terminates, reach[i] is set to 1 if and only if i is
reachable from u.

Proof. First note tha t ReconnectTree terminates as the
graph of SCCs is acyclic. We prove that ReconneetTree
finds a pa th from u to i if and only if there is one.
The proof is by induction on the number of SCCs on a
pa th from u to i. The basis of the induction is easily
established by setting reach[at[row[i]]] to 1 in line 3. If
there is a pa th from u to i, then there exist an entry
[v, col[i]], where at[v] = i' and i' is reachable from u.
Unless the SCC i is connected to the tree, at some stage,
by a different path, row[/] is advanced and eventually
row[i] = v. The pa th from u to i ~ is shorter than the

4 0 8

pa th from u to i, thus by the induction hypothesis the
recursive call to Reconnect(Tree, i', t) connects i ~ to the
tree in line 3 of Reconnect and in line 4 reach[i] is set
to 1. []

3 A forest o f b l o c k trees

In this section we extend the previous algorithm to a
fully dynamic transitive closure algorithm where the
initial graph is empty. We allow the insertion of a
set of edges, all touching the same vertex. We refer
to such a vertex as the center of the insertion. An in-
tree (all the vertices tha t reach the center) and an out-
tree (all the vertices tha t are reachable from the center)
are formed around the center and a cost of O(n 2) is
charged to the insertion for all future deletions from
these two trees. The total t ime for maintaining such
a forest using the algorithm of the previous section is
O((ins + de l) . n2), where ins (del) is the number of
the insertions (deletions). In the next Section we use
the framework of King [8] with our forest as one of its
ingredients to obtain a fully dynamic transitive closure
algorithm for any graph (not necessarily empty) with a
total running t ime of O (m n + (ins + del) • n2).

The main idea of the algorithm of this section is tha t
the same adjacency matr ix can serve as the adjacency
matr ix for all the trees in the forest. We show tha t if
the vertex sets of the trees of the forest are maintained
in a certain way, then the size of the adjacency matr ix is
at most O(n 2) and the construction of this matr ix can
be done in O(n 2) time.

We now define the insertion index of each edge and
insertion center.

DEFINITION 3.1. (INSERTION INDEX) Consider an in-
sertion of a set Eu of edges, centered at u. Let k be the
number of vertices, other than u, that served as inser-
tion centers before this insert operation, but not after it.
The insertion index of the set Eu and the center u is set
to k + 1. I f the initial graph is not empty, the index of
its edges is set to O.

Note that an insert operation may change the
insertion index of previously inserted edges and previous
insertion centers. The insertion indices are maintained
using an array of size n named Index and a counter k
initialized to 0. If an insertion is performed around the
vertex u for the first time, then k ~ k + l . I f u is already
assigned an insertion index i, then the insertion index
of each edge and center with index between i + 1 and k
is decremented by 1 and k remains unchanged. In both
cases the insertion index of the edges of E~ is set to k
and Index[k] is set to u.

Next, we extend the definition of the adjacency
matr ix of the graph using the insertion index of each
edge.

DEFINITION 3.2. (INDEXED ADJACENCY MATRIX) Let
G = (V, E) be a directed graph. Its indexed adjacency
matrix A is defined as follows: I f (u, v) E E then A[u, v]
is the insertion index of the edge (u, v). / f (u, v) ~ E
then A[u, v] = co.

Let $ be the set of SCCs of the graph G after the
last update (deletion or insertion). We define So to be
a set whose elements are {v}, for each v E V. Using
these sets we define dynamic blocks for each insertion
index as follows.

DEFINITION 3.3. (DYNAMIC BLOCKS) Two vertices
vl, v2 belong to the same block, with respect to u, if and
only i f vl and v2 were in the same SCC of the graph
after the last insertion operation centered at u, and
after every subsequent delete operation. Let Bi be the
set of blocks with respect to the vertex u with insertion
index i, where 1 < i < k and let 13o = So.

Note tha t blocks are dynamic in nature, as they
may change after each update operation. (An insert
operation may only change the blocks with respect
to the last insertion center). Next, we prove tha t
the dynamic blocks satisfy the following containment
property.

LEMMA 3.1. (CONTAINMENT PROPERTY) Each block
from the block set 13~ contains one or more blocks from
the block set Bi-1.

Proof. For each Bi E B~ and v E B~ there exists
Bi-1 E Bi-1 such tha t v E B~-i . We prove tha t
Bi-1 C Bi. Assume on the contrary tha t there is a
vertex v ' such tha t v ' E Bi-1 but v ~ ~ B~. By the
definition of dynamic blocks if v and v ~ are not in the
same block of B~, then there was a delete operat ion after
the insertion corresponding to index i - 1 tha t placed v
and v t in two different SCCs. By the same definition if v
and v t were placed in different SCCs after the insertion
corresponding to index i - 1, then v and v ' can not be
in the same block of Bi-1. []

Using Lemma 3.1 we prove the following theorem.

THEOREM 3.1. I f I3o, 131,... ,13k are the dynamic blocks
of a directed graph with n vertices that undergoes a
sequence of edge insertions and deletions then I U 13~1 <
2 n - 1.

Proof. We build a forest and we show tha t its size is at
most 2n - 1. Let I U Bil be the set of vertices of the
forest. (Note tha t if B E B~ and B E Bi-1, B appears
as a vertex only once). If we connect each block in
level j to the two or more blocks in level i < j tha t it
contains, we get a forest in which each non-leaf vertex
has at least two children. As there are at most n leafs
we get by Lemma 3.1 tha t I UBil < 2n - 1. []

409

InitForest:
1. k ~-- 0, a l loca te an a r r a y Index of size n

BuildMatrix(Forest):
1. M [l : n , l : n] ~ A, m ~- n
2. for i ~-- 1 to k

3. using Forest[i].
.

5.

6.

7.

8.

9.

for j ~-- 1 to 2n

if [subblock[j][= 1 then col[j] ~-- F o r e s t [i - 1].col[subblock[j][1]]
if [subblock[j][> 1 then

m ~- m + 1, col[j] ~-- m
for v ~-- 1 to n

M[v, m] ~-- minbe~ubblo~k[j] M[v, Forest[i - 1].col[b]]

InsertF(E~, u):
1. if 3i such t h a t Index[i] = u t hen

2. for j ~ i to k - 1

3. Index[j] ~-- Index[j + 1], Forest[j] ~- Forest[j + 1]

4. else

5. k ~ k + 1 and a d d Forest[k]
6. u p d a t e a r rays sublock and elern of Forest[k] using GetSCC(G) , Index[k] ~-- u
7. Bu i ldMatr ix (Fores t)
8. ReconnectTree(Forest[k], Index[k], k)

DeleteF(Et):
1. U p d a t e A wi th E ~ and $ ~ GetSCC(G)
2. for i ~-- 1 to k

3. subblock' ~-- UpdateBlocks(Forest[i].subblock, $)
4. for i ~- 1 t o k

5. for j ~ 1 to 2n

6. if Forest[i].subblock[j] ~ N U L L and subblock'[j] = N U L L t hen Forest[i].reaeh[j] ~-- 0
7. if Farest[i].subblock[j] = N U L L and subblock'[j] ¢ N U L L t hen Forest[i].reach[j] ~ - ' * '

8. Forest[i].subblock ~-- subblocM
9. Bu i ldMatr ix (Fores t) .

10. for i ~ 1 to k do ReconnectTree(Forest[i], Index[i], i).

Figu re 2: Ma in t a in ing a forest.

Using these d y n a m i c blocks we m a i n t a i n a forest
of in- t rees and out - t rees . The a lgo r i thm appea r s in
F igure 2. This a lgo r i thm is a genera l i za t ion of the
a lgo r i thm from Sect ion 2. In s t ead of working wi th
j u s t one t ree and al lowing only de le t ions we allow also
inser t ion of a set of edges a round a ce r ta in ver tex. The
a lgo r i thm main ta ins an in- t ree and an ou t - t r ee a round
each such inser t ion center . The ver tex set of each t ree is
t he set of dynamic blocks as defined above. The use of
dynamic blocks ma in ta ins two i m p o r t a n t p rope r t i e s of
the trees. The to t a l n u m b e r of different blocks in each
t ree is at most 2n - 1 and the set of edges wi th inser t ion
index less t han or equal to i does not con ta in a cycle on
the blocks of the set Bi.

The inser t ions are hand l ed as follow. Af t e r each

inser t ion we check whe the r th is is a new inser t ion center
and u p d a t e the inser t ion indices accordingly. We then
bu i ld the m a t r i x M from sc ra tch and a new in- t ree and
a new ou t - t r ee are in i t ia l ized wi th Bk as the i r ver tex
set. Note t h a t the inser t ion index is passed to the
reconnec t ion procedure . Th is allows the connec t ion
p rocedure to consider on ly edges t h a t were present in
the g raph when the t ree was formed and by t h a t the
set of edges cons idered by the reconnec t ion process
does not con ta in any cycle on the set of the t ree
blocks. To s impl i fy the p re sen ta t ion we only consider
the cons t ruc t ion of t he out - t rees . T h e in- t rees are
cons t ruc t ed similarly.

The de le t ions are ha nd l e d as follow. Af te r each
de le t ion the set of new SCCs of t he g r a p h is r eca lcu la t ed

410

B1-B0 .. . Bk-Bk-1

©

Bo ~1 ~2 B3 B4 S

(a) (b)

Figure 3: (a) The forest adjacency matr ix M; (b) Maintaining dynamic blocks, where n = 7 and k = 4.

and the dynamic blocks are updated accordingly. The
matr ix M is rebuilt with the new blocks and then
each tree is reconnected by calling to the reconnection
procedure with the tree insertion index.

The adjacency matr ix M used by the reconnection
process in each tree is composed of columns that are
the elements of the sets B0, B1 - B 0 , . . . , Bk - Bk-1 and
rows which are the vertices of the graph as appears in
Figure 3(a). By Theorem 3.1 I U Bi[<_ 2n - 1 thus the
size of the matr ix M is O(n2).

This algorithm uses an array of size n named
Forest. Each element of this array is the Tree structure
from the previous section with some minor changes.
The structure contains the same arrays as in Section 2
with an additional array subblock. This array holds for
each block the blocks from the previous insertion index
tha t compose it as appears in Figure 3(b). The array
elem holds for each block the vertices tha t compose
it. This change is necessary for the implementat ion of
BuildMatrix.

THEOREM 3.2. The algorithm of Figure 2 maintains
the forest with a total running time of O((ins+del).n2).

Proof. The procedure DeleteF updates at most n dy-
namic block sets using UpdateBlocks. The update pro-
cess of the blocks can be done in O(n) t ime for each
block set, thus the total t ime for updat ing the dynamic
blocks is O(n2). Next the matr ix M is rebuilt. By The-
orem 3.1 the number of columns in M is at most O(n).
By Lemma 3.1 (the containment property) each column
part icipate in the creation of exactly one other column,
thus the building t ime of the matr ix M is at most O(n2).
The reconnection cost is part i t ioned into two different
costs. In each tree the cost of checking whether the last
entry tha t connected a block to the tree is still a valid
connection is charged to the deletion and gives a total
of O(n) for a tree and O(n 2) for all the trees. The cost
of inquiring new entries of the matr ix M is charged to
the insertion tha t created each of the trees. Thus, the
total t ime for all the deletions is O(del • n 2) amortized

time. The procedure InsertF creates an in-tree and an
out-tree for the insertion center. Each tree creation is
charged with O(n 2) t ime for all the later inquiries of the
matr ix entries like in Theorem 2.1. The use of dynamic
blocks maintains the proper ty tha t the total number of
new blocks tha t will be created in a tree during any se-
quence of deletions is O(n). The tota l t ime for all the
insertions is O(ins • n 2) time. Thus , the total running
t ime of the algorithm is O((ins + del). n2) . []

4 Fully d y n a mic trans i t ive c losure

In this section we obtain our new fully dynamic transi-
tive closure algorithm by using the framework suggested
by King [8]. King's framework is composed from two in-
gredients. A decremental algorithm tha t maintains the
'old' paths of the initial graph and an algorithm tha t
maintains a forest of in-trees and out-trees around each
insertion center. To maintain explicitly the transitive
closure matr ix a matr ix denoted by count counts all the
insertion centers tha t lie on a pa th between each pair of
vertices. To enable pa th queries these centers are saved
in a list for each pair.

We replace the ingredients of King's framework. For
the maintenance of the initial graph through a sequence
of edge deletions we use a variant of the algorithm of
Frigioni et al. [4]. Their algorithm works in a total t ime
of O(m2), but it is possible to modify it to work in t ime
of O(mn + del. m). (Obtaining such a result when each
delete operation deletes only one edge from the graph
is easy. Handling the more general case in which each
delete operat ion may delete an arbi t rary set of edges
from the graph requires more care. The full details will
appear in the full version of this paper) . Clearly, we use
the algorithm from Section 3 for the maintenance of the
forest of in-trees and out-trees.

Figure 4 sketches the fully dynamic transit ive clo-
sure algorithm.

THEOREM 4.1. The algorithm of Figure ~ handles each
insert operation in O(n 2) worst-case time and each

411

In i t :
1. Initialize a decremental teachability data structure and the matrix count.
2. Call InitForest.

I n s e r t (E~, u):
1. Call InsertF(Eu, u) and update the count matrix.

Delete(El) :
1. Call DeleteF(E') and update the count matrix.

2. Delete from the 'old' data structure the edges of E ' with insertion index 0.

Q u e r y (u , v):
1. If there exists an 'old' path form u to v or count(u, v) > 0 return true.

2. Return false.

Figure 4: Fully dynamic transitive closure algorithm.

delete operation in O(n 2) amortized-time. The al-
gorithm answers each query correctly in O(1) worst-
case time. The algorithm has a total running time of
O(mn + (ins + del) • n2). The space used by the algo-
rithm is O(n2).

Proof. By Theorem 3.2 the total time for maintaining
the forest is O(ins. n 2 + del. n2). The total cost of the
deletion only data structure is at most O(mn + del. m).
Thus, the total time of our algorithm is O(mn + (ins +
del). n2). []

In the case of DAGs we can obtain a better result.
Italiano [7] presented a decremental algorithm for DAGs
with a total running time of O(mn) for any sequence of
deletions. This algorithm maintains a forest of out-trees
from each vertex of the graph. On each such a tree the
total time spent by the algorithm is at most O(m). By
using King's framework with a forest of in-trees and out-
trees maintained by the algorithm of Italiano, we obtain
a fully dynamic algorithm for the transitive closure on
DAGs whose total running time is O(mn+ins.n 2 +del).

5 Supporting path queries
In this section we extend the algorithm to support
path queries without increasing the space in use. The
technique for that is based on the one used by King and
Thorup [10]. King maintains in her framework a list for
each pair of vertices. If an insertion center w is on a
path from u to v, then w is added to list(u, v). The size
of each list may be O(n). Thus, the total space in use
may be O(n3). Using the method King and Thorup [10]
presented in the context of fully dynamic APSP it is
possible to reduce the total space in use to O(n2). The
main idea is to keep only one list of insertion centers. In
this list the insertion centers are ordered by the insertion
index. The latest insertion center is placed at the end of
the list. Each pair of vertices u and v points to the oldest
insertion center w, which is a witness to a path from u to

v. If w is no longer a witness to a path from u to v or if
there was a new insertion around w and it may no longer
be the oldest witness, the pair u and v scans the list for
a new witness from the successor of w. This method
still keeps the time bound unchanged. When a pair of
vertices scans the list each center, which the pair scans,
was charged for their scanning in its insertion. Thus, the
scanning process is simply paid by the O(n 2) cost of each
insertion. This is the way the witnesses are maintained
and obtained for each pair of vertices. Clearly, this
method uses O(n 2) space. In our implementation the
array Index maintains the list of the insertion centers.
If the pair u and v points to the i-th insertion center w
which is a witness to a path of length g, then using the
in-tree and the out-tree of w this path can be obtained
in O(g) time. The vertex set of the in-tree and the out-
tree of w is the block set/3i. First, a list of blocks indices
b l , . . . ,bt is obtained such that u E/~i[bl] and v E/~i[bt]
and all the blocks are different (unless bl = bt). Such
a list can be obtained by scanning simultaneity from
b~ backwards to w and from bl forward to w. For each
new block on the path from u to w the algorithm checks
whether that block was scanned from v backwards to
w. The same is done to each new block on the path
from v backwards to w. When a common block is
found the algorithm terminates. By this method a list
of different blocks from u to v of size t is obtained in
O(t). The list of the blocks is composed from two parts.
The first part is bl , . . . ,br, which was obtained from
the in-tree, and the second part is b~, . . . , be, which was
obtained from the out-tree. Note that the block b,. is
the common block, which stopped the algorithm. By
the in-tree and the out-tree of w we can produce the
list xl, x2 , . . . , xr, Yr,.. •, Y~-i, Y~ of t ÷ 1 vertices. The
list satisfies that xp E •i[bp] and yq e B/[bq], where
1 < p < r and r < q < t. Note that u = xl and
v = Yr. Each Xp is the head of the edge that connects
bp-1 to bp. In a similar way each yq is the tail of the edge
that connects bq to bq+l. If xp-1 and Xp+l are in the

412

same SCC, then xp is also in this SCC. For each SCC of
the graph we maintain an in-tree and out-tree from an
arbi trary vertex. Each vertex which is the tail (head) of
an incoming (outgoing) edge to (from) the SCC is also
in the in-tree (out-tree). We build these trees in O(m)
after each update. A pa th from Xp to the first xp, which
is not in the SCC of xp is produced by the trees of the
SCC of Xp. This process is repeated till reaching v.

THEOREM 5.1. The algorithm can produce a path of
length ~ in 0(~) worst-case time. The required space
of the algorithm remains O(n2).

6 C o n c l u d i n g r e m a r k s a n d o p e n p r o b l e m s

We presented a fully dynamic algorithm for the mainte-
nance of the transitive closure matr ix of a general graph
whose total running t ime is essentially optimal. How-
ever, many problems still remain open, among them:

1. Is it possible to extend our simple algorithm for
DAGs to general directed graphs while keeping
the t ime bound unchanged and by tha t to obtain
an algorithm tha t charges all the cost of a delete
operation to preceding insertions?

2. Is it possible not to use amortization? Or more
precisely, is it possible tha t bo th the insertion and
the deletion t ime will be O(n 2) worst-case.

3. If a non-constant t ime query is allowed, i.e., the
transitive closure matr ix is maintained implicitly, is
there a fully dynamic reachability algorithm with
an amortized update t ime of o(n2), and worst-case
query t ime of o(m) for general directed graphs?

A c k n o w l e d g m e n t I like to thank Uri Zwick, Vera
Asudin and Eyal Even-Dar for their helpful remarks.

R e f e r e n c e s

[1] S. Baswana, R. Hariharan, and S. Sen. Improved
decremental algorithms for transitive closure and all-
pairs shortest paths. In Proceedings of the 3$th Annual
ACM Symposium on Theory of Computing, Montrdal,
Qudbec, 2002.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and
C. Stein. Introduction to algorithms. The MIT Press,
second edition, 2001.

[3] C. Demetrescu and G.F. Italiano. Fully dynanfic
transitive closure: Breaking through the O(n 2) barrier.
In Proceedings of the ~lth Annual IEEE Symposium
on Foundations of Computer Science, Redondo Beach,
California, pages 381-389, 2000.

[4] D. Frigioni, T. Miller, U. Nanni, and C. Zaroliagis. An
experimental study of dynamic algorithms for transi-
tive closure. ACM Journal of Experimental Algorith-
mics, 6, 2001.

[5] H.N. Gabow. Path-based depth-first search for strong
and biconnected components. Information Processing
Letters, 74(3-4):107-114, 2000.

[6] G.F. Italiano. Amortized efficiency of a path re-
trieval data structure. Theoretical Computer Science,
48(3):273-281, 1986.

[7] G.F. Italiano. Finding paths and deleting edges in di-
rected acyclic graphs. Information Processing Letters,
28(1):5-11, 1988.

[8] V. King. Fully dynamic algorithms for maintaining ail-
pairs shortest paths and transitive closure in digraphs.
In Proceedings off the 4Oth Annual IEEE Symposium
on Foundations of Computer Science, New York, New
York, pages 81-91, 1999.

[9] V. King and G. Sagert. A fully dynamic algorithm
for maintaining the transitive closure. In Proceedings
of the 31th Annual ACM Symposium on Theory of
Computing, Atlanta, Georgia, pages 492-498, 1999.

[10] V. King and M. Thorup. A space saving trick for di-
rected dynamic transitive closure and shortest path
algorithms. In Proceedings of the 7th Annual Inter-
national Computing and Combinatorics Conference,
Guilin, China, pages 269-277, 2001.

[lll J.A. La Poutr~ and J. van Leeuwen. Maintenance of
transitive closure and transitive reduction of graphs.
In Proceedings of the 13th International Workshop
on Graph-Theoretic Concepts in Computer Science,
Amsterdam, The Netherlands, volume 314, 1987.

[12] L. Roditty and U. Zwick. Improved dynamic reacha-
bility algorithms for directed graphs. In Proceedings of
the 43th Annual IEEE Symposium on Foundations of
Computer Science, Vancouver, Canada, 2002.

[13] M. Sharir. A strong-connectivity algorithm and its
application in data flow analysis. Computers and
Mathematics with Applications, 7(1):67-72, 1981.

[14] R.E. Tarjan. Depth first search and linear graph
algorithms. SIAM Journal on Computing, 11:146-159,
1982.

