
404 

A faster and simpler fully dynamic transitive closure 

L i a m  Rod i t t y  * 

A b s t r a c t  

We obtain a new fully dynamic algorithm for maintain- 
ing the transitive closure of a directed graph. Our algo- 
r i thm maintains the transitive closure matrix in a total  
running time of O (ran + (ins + del) . n 2), where ins (del) 
is the number of insert (delete) operations performed. 
Here n is the number of vertices in the graph and m 
is the initial number of edges in the graph. Obviously, 
reachability queries can be answered in constant time. 
The space required by the algorithm is O(n2). Our al- 
gorithm can also support  path queries. If v is reachable 
from u, the algorithm can produce a path  from u to v 
in time proportional to the length of the path. The best 
previously known algorithm for the problem is due to 
Demetrescu and Italiano [3]. Their  algorithm has total  
running time of O(n 3 + (ins + del). n2). The query time 
is also constant. We also present an algorithm for di- 
rected acyclic graphs (DAGs) with a total  running time 
of O(mn + ins .  n 2 + del). Our algorithms are obtained 
by combining some new ideas with techniques of Ital- 
iano [7], King [8], King and Thorup [10] and Frigioni et 
al. [4]. We also note that  our algorithms are extremely 
simple and can be easily implemented. 

1 I n t r o d u c t i o n  

The problem of maintaining the transitive closure of a 
dynamic directed graph, i.e., a directed graph that  un- 
dergoes a sequence of edge insertions and deletions, is a 
well studied and well motivated problem. Demetrescu 
and Italiano [3], improving an algorithm of King [8], 
obtained recently an algorithm for dynamically main- 
taining the transitive closure under a sequence of edge 
insertions and deletions with a total  running t ime of 
O(n 3 + (ins + del) • n~), where n is the number of ver- 
tices in the graph and ins (del) is the number of insert 
(delete) operations performed. King and Thorup [10] 
reduced the space requirements of these algorithms. All 
these algorithms support extended insert and delete op- 
erations in which an arbitrary set of edges, all touching 
the same vertex, may be inserted, and a completely ar- 
bi trary set of edges may be deleted, all in one update  
operation. 

We present an algorithm that  maintains the transi- 
tive closure matrix with a total  running time of O ( m n +  
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(ins + del). n2). Here n is the number of vertices in the 
graph and m is the initial number of edges in the graph. 
When the transitive closure of a graph is explicitly main- 
tained, it is of course possible to answer every reacha- 
bility query, after each update, in O(1) time. As the 
insertion or deletion of a single edge may change ~ ( n  2) 
entries in the transitive closure matrix, an amortized 
update  time of O(n2), in the worst-case, is essentially 
optimal. The time needed for computing the transitive 
closure of a graph using the best available algorithm 
that  does not resort to fast matrix multiplication, is 
~(rnn). Thus, if an explicit transitive closure matrix is 
to be maintained, our algorithm, with a total  running 
time of O(mn + (ins + del) • n2), is essentially optimal. 
For directed acyclic graphs (DAGs), we obtain an even 
bet ter  result. We present a very simple algorithm whose 
total  running time is O(mn + ins .  n 2 + del). In this al- 
gorithm, the amortized cost of each delete operation is 
covered by preceding insert operations. Our algorithms 
are also essentially optimal in terms of space usage. In 
particular, both algorithms use only O(n ~) space, even 
when path queries are supported. 

A fully dynamic transitive closure algorithm sup- 
ports the following operations: 

• Insert(Eu, u): Insert a set of edges all incident to 
the vertex u. We refer to u as the insertion center. 

• Delete(E'):  Delete an arbitrary set of edges from 
the graph. 

• Query(u, v): Is the vertex v reachable from u? 

A decremental (incremental) algorithm is an algo- 
r i thm that  can handle only deletions (insertions). Many 
partially dynamic algorithms were developed. Rodi t ty  
and Zwick [12], improving an algorithm of Baswana et 
al. [1], obtained recently a decremental algorithm for 
general directed graphs that  processes any sequence of 
edge deletions in O(mn) total expected time, essentially 
the time needed for computing the transitive closure 
of the initial graph. Italiano [6] and independently La 
Poutr@ and van Leeuven [11] obtained an incremental al- 
gorithm for general directed graphs with an amortized 
time of O(n) per edge insertion. 

A comparison of our fully dynamic transitive closure 
algorithms and the previously available ones is given 
in Table 1. We denote by ins (del) the number of 
insert (delete) operations performed. Note that  we 
only consider here algorithms that  explicitly maintain 
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Graph Type of algorithm Path  query Total running time Reference 

DAGs Monte Carlo No O(n  3 + (ins + del) . n 2) [9] 

D A G s  D e t e r m i n i s t i c  Yes O ( m n  + i n s .  n 2 + del) This  paper  

Monte Carlo 
Deterministic 
Deterministic 

General 
General 
General 

No 

Yes 
No 

Yes General  

O(n TM + ( ins + de l ) .  n 2"26) 

O(n  3 logn + i n s .  n 2 logn + del) 
O(n  3 + (ins + del) . n 2) 

O ( m n  + ( ins  + del) . n 2) Determinis t ic  

[91 
[81 
[3] 

This  paper  

Table 1: Fully dynamic transitive closure algorithms. 

the transitive closure matrix, and thus have a constant 
time query. We refer the reader to [12] for details on 
reachability algorithms with a non-constant query time. 

King and Sagert [9] gave the first algorithm whose 
update time is faster than computing the transitive clo- 
sure from scratch. Their algorithm counts the number 
of different paths between each two vertices. Obviously, 
this counting technique can only work for DAGs. In this 
case the total running time is O(n  3 + ( ins  + del) • n2). 
They extended this technique to general graphs by de- 
composing the graph into its strongly connected com- 
ponents (SCCs). In the general case, the total running 
time of their algorithm is O(n  T M  + (ins + del) . n2"26). 
Their algorithm is a Monte-Carlo algorithm. The num- 
ber of paths between two vertices can be exponential 
in n. To reduce the word size their algorithm is ran- 
domized with one-sided error. The general algorithm 
uses rectangular matrix multiplication. 

Next, King [8] presented a deterministic algorithm 
that  substantially improved the randomized algorithm 
of King and Sagert [9]. She presented a general frame- 
work for the fully dynamic transitive closure and also for 
the fully dynamic all pairs shortest paths problem. Her 
framework is composed from two ingredients. A decre- 
mental algorithm that  maintains the 'old' paths of the 
initial graph and an algorithm that  maintains a forest 
of in-trees and out-trees around each vertex that  served 
as an insertion center. These trees are updated after 
each deletion. The total running time of the algorithm 
is O(n  3 log n + i n s .  n 2 log n + del). 

Demetrescu and Italiano [3], improving the algo- 
ri thm of King [8], obtained recently an algorithm with 
a total running time of O(n  3 + ( ins  + del) • n2). Their 
algorithm uses a general framework of dynamic evalua- 
tion of polynomials over matrices. 

We introduce a new concept named dynamic blocks. 
The dynamic blocks are a relaxed version of the strongly 
connected component of dynamic graphs. Using this 
new concept we improve the total running time of all 
previously known algorithms. Our algorithm has a total 
running time of O ( m n  + ( ins  + del) . n2). As mentioned 

above, for explicitly maintaining the transitive closure 
matrix, this is essentially the best algorithm possible. 
Our algorithm uses very simple techniques. We use the 
framework of King [8] with more efficient ingredients. 
For the maintenance of the initial graph through a 
sequence of edge deletions we use a variant of the 
algorithm of Frigioni et al. [4] whose total running 
time is O ( m n  + del • m) .  For the maintenance of a 
foreest of in-trees and out-trees we introduce a new 
algorithm with an initial cost of O(n 2) for each new 
tree and an amortized cost of O(n 2) for the deletion of 
an arbitrary set of edges from the whole forest. The 
total running time of our algorithm on a forest of O(n)  
trees is O( (ins + del) . n2). 

The rest of this extended abstract is organized 
as follows. In the next section we present a new 
decremental algorithm for maintaining a tree of the 
SCCs reachable from a given vertex. A modification 
of this algorithm is used in Section 3 to obtain an 
algorithm for the maintenance of a forest of in-trees and 
out-trees whose total running time is O(( ins  + del) • 
n2). In Section 4 we obtain our new fully dynamic 
transitive closure algorithm for general graphs using 
King's framework with our forest algorithm and the 
variant of the algorithm of Frigioni et al. [4]. In 
Section 5 we show how to support path queries without 
increasing the space requirements. We end in Section 6 
with some concluding remarks and open problems. 

2 Reachabi l i ty  tree  of  s trongly  connec ted  
c o m p o n e n t s  

In this section we consider the dynamic maintenance of 
a reachability tree from an arbitrary vertex in a general 
directed graph under a sequence of edge deletions. The 
algorithm that  we present is slower then building the 
reachability tree each time from scratch using BFS or 
DFS. This algorithm is presented here in an a t tempt  to 
describe our ideas in the simplest possible setting. In 
Section 3 we use this algorithm as one of the ingredients 
of our fully dynamic algorithm. 

We start  with the following simple lemma: 
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I n i t T r e e ( u ) :  
1. Allocate a Tree structure and its arrays 
2. using Tree. 
3. elem ~-- Ge tSCC(G) ,  reach[1 : leleml] ~-'* '  and initialize at using elern 
4. Call Bui ldMatr i x (Tree )  and then ReconnectTree(Tree,  u, 1) 

B u i l d  M a t r i x  ( T r e e  ) : 
1. using Tree. 

. 

3. 
4. 

5. 

6. 

M[l :n , l :n ]  ~ A, m ~ n 
for i ~- 1 to 2n 

if elem[i] ~ N U L L  then 

m ~-- ra + 1 and col[i] ~-- m 

for v ~- 1 to n do M[v, rn] *-- min~e~lem[~] M[v, x] 

R e c o n n e e t T r  ee (  T r e e ,  u,  t): 
1. using Tree. 
2. for i ~-- 1 to 2n do if reach[i] = 1 then reach[i] ~-- '* '  
3. reach[at[u]] ~-- 1 
4. for i ~ 1 to 2n do if reach[i] = ' * '  then Reconnect(Tree,  i, t) 

R e c o n n e c t ( T r e e ,  i, t): 
1. using Tree. 
2 .  

3. 
4. 

5. 
6. 

7. 

while row[i] < n do 
if M[row[i], col[i]] < t and row[i] ~ elern[i] then 

if reach[at[row[i]]] - - ' , '  then Reconnect(Tree,  at[row[i]], t) 
if reach[at[row[i]]] = 1 then reach[i] ~ 1; return 

row[i] row[i] + 1 
reach[i] e- 0 

Dele te (E' ) :  
1. Update A with E ~ and elem' ~-- G e t S C C ( G )  
2. using Tree. 

3. for i ~-- 1 to 2n 
4. if elem[i] ¢ N U L L  and elem'[i] = N U L L  then reach[i] ~- 0 
5. if elem[i] -- N U L L  and elem'[i] ¢ N U L L  then reach[i] ~ - ' , '  
6. elem ~-- elem p, call Bui ldMat r i x (Tree )  and then ReconnectTree(Tree,  u, 1) 

Figure 1: A decremental algorithm for maintaining a tree of SCCs reachable from u. 

LEMMA 2.1. Let G = (V, E)  be a directed graph that 
undergoes a sequence of edge deletions. The number of 
different SCCs during all the deletion process is at most 
2n - 1. 

Proof. We prove it by building a forest whose vertices 
are the SCCs of the graph G during all the deletion 
process. Each decomposed SCC is connected to the 
SCCs that  were created from it by the deletion. In this 
forest, each non-leaf vertex has at least two children. As 
there are at most n leafs, the total number of vertices 
is at most 2n - 1. [] 

The new algorithm is given in Figure 1. The 
algorithm maintains the SCCs of the graph that  are 

reachable form the vertex u. It handles any sequence of 
edge deletions in O(n 2 + del • n 2) total running time, 
where del is the number of delete operations. Each 
query is answered correctly in O(1) worst-case time. 
This algorithm uses a similar approach to the one used 
by King and Thorup [10] to save space. 

We denote by A the adjacency matrix of the graph, 
where A[u,v] = 1 if (u,v)  e E and A[u,v] = oc 
otherwise. We denote by M an adjacency matrix of 
size n × (n + ISI), where $ is the set of the SCCs of the 
current graph. The rows of the matrix are the vertices 
of the graph. The first n columns are the vertices of 
the graph and the rest of the columns correspond to the 
current SCCs of the graph. We set M[I :  n, 1: n] to A. 
Each column j,  where j > n is associated with a SCC. 
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The entry M[u, j] is set to 1 if there is an edge from u to 
a vertex in the SCC corresponding to the j - th  column, 
otherwise it is set to c~. 

In order to maintain the tree information we define 
a s tructure named Tree tha t  contains the following 
arrays. An array named elem that  holds for each SCC a 
pointer to a list of its vertices. An array named at tha t  
holds for each vertex the index of the SCC tha t  contains 
it. An array named col is used to associate each SCC to 
the right column in the matr ix  M.  An array named row 
is used to hold the tail of the edge that  connects each 
SCC to the reachability tree. An array named reach is 
used to hold for each SCC if it is reachable from u. By 
Lemma 2.1, the total  number of different S C C s  in any 
sequence of edge deletions is at most  2 n -  1, thus all the 
arrays in use are of size 2n. 

Note that  for each SCC i we can check whether it 
still exists, i.e., was not decomposed, using the array 
elem. If  it still exists, then elem[i] points to a list 
containing the vertices of the SCC, otherwise elem[i] 
is NULL.  If reach[i] = 1 then SCC i is reachable from 
u. After a delete operation we can access the matr ix  
entry that  connects i to u using row[i] and col[i] to 
check whether the connecting edge is still present in the 
graph. 

As mentioned above the Tree structure holds these 
arrays. In our algorithm description we use the line 
'using Tree. '  when we like to access the arrays directly. 

The algorithm starts  by calling Ini tTree(u)  to ini- 
tialize all the arrays mentioned above. The SCCs of 
the graph are computed using any linear t ime algorithm 
(see Tarjan [14], Sharir [13], Gabow [5], or Chapter  22 of 
Cormen et al. [2]). We assume that  GetSCC(G)  builds 
the array elem as defined above. We also assume tha t  
in the first call to GetSCC(G) the SCCs are assigned 
consecutive numbers start ing from 1. The SCCs are 
marked in the array reach with ' . '  to point that  the al- 
gori thm needs to check whether they are reachable from 
u. Next, it builds the matr ix  M using the current set of 
SCCs of the graph, by calling Bui ldMatr ix(Tree) .  Fi- 
nally, in order to create an implicit tree of SCCs rooted 
at at[u], ReconnectTree is called. We note tha t  the last 
parameter  of ReconnectTree will be used in Section 3. 

Edge deletions are handled in a very similar way. 
First the set of edges E ~ is removed from the graph G. 
Then, the matrix M is rebuilt and the tree is recon- 
nected. We now claim: 

THEOREM 2.1. The algorithm handles the initialization 
process and a sequence of del deletions in a total worst- 
case time of O(n 2 + del . n2). 

Proof. We analyze the cost of the procedure 
Bui ldMatr ix  and ReconnectTree, which are the 
most t ime consuming steps. We show that  the total 
cost of a sequence of one initialization and del deletions 
is at most O(n 2 + del • n2). We first analyze the cost 

of the procedure Bui ldMatr ix .  By Lemma 2.1 the 
number  of columns is O(n). Each column participates 
in the creation of at most one other column, thus the 
total  cost of building the matr ix  is O(del • n2). Next, 
we show that  the total  t ime spent in ReconnectTree 
is O(n 2 + del • n). I t  is clear that  the total  t ime spent 
in reconnecting the tree is equal to the number  of 
access operations performed to the matr ix  M. For the 
SCC i the entry [v, col[ill is first accessed when row[i] 
is advanced from v - 1 to v. If  this entry connects 
i to the SCCs reachability tree of u then after each 
deletion this entry is checked to see whether it is still 
a valid connection to the reachability tree of u. The 
first and the last accesses are charged to the creation 
of the tree. After advancing row[i] from v to v + 1 
the entry [v, col[i]] is never accessed again. Thus, the 
total  number of first and last accesses to all the cells 
is O(n2). Each access between the first and the last 
access is done only once in each deletion. Thus, the 
total  t ime spent in the tree in checking whether an 
entry is still a valid connection to the reachability tree 
of u is O(del • n). In each deletion we calculate the 
SCCs of the graph. Thus the total  cost of a sequence 
of one initialization operation and del deletions is at 
most O(n 2 d- del • n2). [] 

The vertex set used by the algorithm is the set of 
the SCCs of the graph, thus the set of edges considered 
by the algorithm does not contain any cycle. If  an 
entry does not connect a SCC to u, then this entry is 
never examined again. This method was first suggested 
by La Poutr6 and van Leeuven [11] and independently 
by Italiano [7] for the decrementai maintenance of the 
transitive closure of DAGs. I t  was extended by La 
Poutr6 and van Leeuven [11] and later by Frigioni et 
al. [4] to general graphs by using the SCCs graph. 

Next, we show tha t  the algorithm maintains cor- 
rectly the reachability tree of u. We show tha t  the pro- 
cedure ReconnectTree finds correctly all the SCCs in S 
that  are reachable from u. 

THEOREM 2.2. Let i be a SCC. When ReconnectTree 
terminates, reach[i] is set to 1 if  and only if  i is 
reachable from u. 

Proof. First note tha t  ReconnectTree terminates as the 
graph of SCCs is acyclic. We prove that  ReconneetTree 
finds a pa th  from u to i if and only if there is one. 
The proof is by induction on the number of SCCs on a 
pa th  from u to i. The basis of the induction is easily 
established by setting reach[at[row[i]]] to 1 in line 3. If  
there is a pa th  from u to i, then there exist an entry 
[v, col[i]], where at[v] = i' and i' is reachable from u. 
Unless the SCC i is connected to the tree, at some stage, 
by a different path,  row[/] is advanced and eventually 
row[i] = v. The pa th  from u to i ~ is shorter than  the 
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pa th  from u to i, thus by the induction hypothesis the 
recursive call to Reconnect(Tree, i', t) connects i ~ to the 
tree in line 3 of Reconnect and in line 4 reach[i] is set 
to 1. [] 

3 A forest  o f  b l o c k  trees  

In this section we extend the previous algorithm to a 
fully dynamic transitive closure algorithm where the 
initial graph is empty. We allow the insertion of a 
set of edges, all touching the same vertex. We refer 
to such a vertex as the center of the insertion. An in- 
tree (all the vertices tha t  reach the center) and an out- 
tree (all the vertices tha t  are reachable from the center) 
are formed around the center and a cost of O(n  2) is 
charged to the insertion for all future deletions from 
these two trees. The total  t ime for maintaining such 
a forest using the algorithm of the previous section is 
O((ins  + de l ) .  n2), where ins (del) is the number of 
the insertions (deletions). In the next Section we use 
the framework of King [8] with our forest as one of its 
ingredients to obtain a fully dynamic transitive closure 
algorithm for any graph (not necessarily empty)  with a 
total  running t ime of O ( m n  + (ins + del) • n2). 

The main idea of the algorithm of this section is tha t  
the same adjacency matr ix  can serve as the adjacency 
matr ix  for all the trees in the forest. We show tha t  if 
the vertex sets of the trees of the forest are maintained 
in a certain way, then the size of the adjacency matr ix  is 
at most O(n  2) and the construction of this matr ix  can 
be done in O(n 2) time. 

We now define the insertion index of each edge and 
insertion center. 

DEFINITION 3.1. (INSERTION INDEX) Consider an in- 
sertion of a set Eu of edges, centered at u. Let k be the 
number of vertices, other than u, that served as inser- 
tion centers before this insert operation, but not after it. 
The insertion index of the set Eu and the center u is set 
to k + 1. I f  the initial graph is not empty, the index of 
its edges is set to O. 

Note that  an insert operation may  change the 
insertion index of previously inserted edges and previous 
insertion centers. The insertion indices are maintained 
using an array of size n named Index  and a counter k 
initialized to 0. If an insertion is performed around the 
vertex u for the first time, then k ~ k + l .  I f u  is already 
assigned an insertion index i, then the insertion index 
of each edge and center with index between i + 1 and k 
is decremented by 1 and k remains unchanged. In both  
cases the insertion index of the edges of E~ is set to k 
and Index[k] is set to u. 

Next, we extend the definition of the adjacency 
matr ix  of the graph using the insertion index of each 
edge. 

DEFINITION 3.2. (INDEXED ADJACENCY MATRIX) Let 
G = (V, E) be a directed graph. Its indexed adjacency 
matrix A is defined as follows: I f  (u, v) E E then A[u, v] 
is the insertion index of the edge (u, v). / f  (u, v) ~ E 
then A[u, v] = co. 

Let $ be the set of SCCs of the graph G after the 
last update  (deletion or insertion). We define So to be 
a set whose elements are {v}, for each v E V. Using 
these sets we define dynamic blocks for each insertion 
index as follows. 

DEFINITION 3.3. (DYNAMIC BLOCKS) Two vertices 
vl,  v2 belong to the same block, with respect to u, if  and 
only i f  vl and v2 were in the same SCC of the graph 
after the last insertion operation centered at u, and 
after every subsequent delete operation. Let Bi be the 
set of blocks with respect to the vertex u with insertion 
index i, where 1 < i < k and let 13o = So. 

Note tha t  blocks are dynamic in nature, as they 
may change after each update  operation. (An insert 
operation may only change the blocks with respect 
to the last insertion center). Next,  we prove tha t  
the dynamic blocks satisfy the following containment 
property. 

LEMMA 3.1. (CONTAINMENT PROPERTY) Each block 
from the block set 13~ contains one or more blocks from 
the block set Bi-1. 

Proof. For each Bi E B~ and v E B~ there exists 
Bi-1  E Bi-1 such tha t  v E B~-i .  We prove tha t  
Bi-1 C Bi. Assume on the contrary tha t  there is a 
vertex v '  such tha t  v ' E Bi-1  but  v ~ ~ B~. By the 
definition of dynamic blocks if v and v ~ are not in the 
same block of B~, then there was a delete operat ion after 
the insertion corresponding to index i - 1 tha t  placed v 
and v t in two different SCCs. By the same definition if v 
and v t were placed in different SCCs after the insertion 
corresponding to index i - 1, then v and v ' can not be 
in the same block of Bi-1. [] 

Using Lemma  3.1 we prove the following theorem. 

THEOREM 3.1. I f  I3o, 131,... ,13k are the dynamic blocks 
of a directed graph with n vertices that undergoes a 
sequence of edge insertions and deletions then I U 13~1 < 
2 n -  1. 

Proof. We build a forest and we show tha t  its size is at 
most  2n - 1. Let I U Bil be the set of vertices of the 
forest. (Note tha t  if B E B~ and B E Bi-1, B appears  
as a vertex only once). If  we connect each block in 
level j to the two or more blocks in level i < j tha t  it 
contains, we get a forest in which each non-leaf vertex 
has at least two children. As there are at most n leafs 
we get by Lemma 3.1 tha t  I UBil < 2n - 1. [] 
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InitForest: 
1. k ~-- 0, a l loca te  an  a r r a y  Index  of size n 

BuildMatrix(  Forest ): 
1. M [ l : n , l : n ]  ~ A, m ~- n 
2. for i ~-- 1 to  k 

3. using Forest[i]. 
. 

5. 

6. 

7. 

8. 

9. 

for j ~-- 1 to  2n 

if [subblock[j][ = 1 then  col[j] ~-- F o r e s t [ i -  1].col[subblock[j][1]] 
if  [subblock[j][ > 1 then  

m ~- m + 1, col[j] ~-- m 
for v ~-- 1 to  n 

M[v, m] ~-- minbe~ubblo~k[j] M[v, Forest[i - 1].col[b]] 

InsertF( E~, u): 
1. if  3i such t h a t  Index[i] = u t hen  

2. for j ~ i to  k -  1 

3. Index[j] ~-- Index[j  + 1], Forest[j] ~- Forest[j  + 1] 

4. else 

5. k ~ k + 1 and  a d d  Forest[k] 
6. u p d a t e  a r rays  sublock and  elern of Forest[k] using GetSCC(G) ,  Index[k] ~-- u 
7. Bu i ldMatr ix (Fores t )  
8. ReconnectTree( Forest[k], Index[k], k) 

DeleteF(Et): 
1. U p d a t e  A wi th  E ~ and  $ ~ GetSCC(G)  
2. for i ~-- 1 to  k 

3. subblock' ~-- UpdateBlocks(Forest[i].subblock, $ )  
4. for i ~-  1 t o  k 

5. for j ~ 1 to  2n 

6. if Forest[i].subblock[j] ~ N U L L  and subblock'[j] = N U L L  t hen  Forest[i].reaeh[j] ~-- 0 
7. if Farest[i].subblock[j] = N U L L  and  subblock'[j] ¢ N U L L  t hen  Forest[i].reach[j] ~ - ' * '  

8. Forest[i].subblock ~-- subblocM 
9. Bu i ldMatr ix (Fores t ) .  

10. for i ~ 1 to  k do ReconnectTree(Forest[i], Index[i], i). 

Figu re  2: Ma in t a in ing  a forest.  

Using these  d y n a m i c  blocks we m a i n t a i n  a forest  
of  in- t rees  and  out - t rees .  The  a lgo r i thm appea r s  in 
F igure  2. This  a lgo r i thm is a genera l i za t ion  of the  
a lgo r i thm from Sect ion 2. In s t ead  of working  wi th  
j u s t  one t ree  and  al lowing only  de le t ions  we allow also 
inser t ion  of a set  of  edges a round  a ce r ta in  ver tex.  The  
a lgo r i thm main ta ins  an in- t ree  and  an ou t - t r ee  a round  
each such inser t ion  center .  The  ver tex  set  of each t ree  is 
t he  set of dynamic  blocks as defined above.  The  use of  
dynamic  blocks ma in ta ins  two i m p o r t a n t  p rope r t i e s  of  
the  trees.  The  to t a l  n u m b e r  of  different blocks in each 
t ree  is at  most  2n - 1 and  the  set  of edges wi th  inser t ion  
index less t han  or  equal  to  i does not  con ta in  a cycle on 
the  blocks of  the  set Bi. 

The  inser t ions  are  hand l ed  as follow. Af t e r  each 

inser t ion  we check whe the r  th is  is a new inser t ion  center  
and  u p d a t e  the  inser t ion  indices accordingly.  We then  
bu i ld  the  m a t r i x  M from sc ra tch  and  a new in- t ree  and  
a new ou t - t r ee  are  in i t ia l ized  wi th  Bk as the i r  ver tex  
set. Note  t h a t  the  inser t ion  index is passed  to  the  
reconnec t ion  procedure .  Th is  allows the  connec t ion  
p rocedure  to  consider  on ly  edges t h a t  were present  in 
the  g raph  when the  t ree  was formed and  by  t h a t  the  
set  of  edges cons idered  by  the  reconnec t ion  process  
does  not  con ta in  any cycle on the  set  of  the  t ree  
blocks.  To s impl i fy  the  p re sen ta t ion  we only  consider  
the  cons t ruc t ion  of t he  out - t rees .  T h e  in- t rees  are  
cons t ruc t ed  similarly.  

The  de le t ions  are  ha nd l e d  as follow. Af te r  each 
de le t ion  the  set  of  new SCCs  of t he  g r a p h  is r eca lcu la t ed  
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Figure 3: (a) The forest adjacency matr ix  M; (b) Maintaining dynamic blocks, where n = 7 and k = 4. 

and the dynamic blocks are updated  accordingly. The 
matr ix  M is rebuilt  with the new blocks and then 
each tree is reconnected by calling to the reconnection 
procedure with the tree insertion index. 

The adjacency matr ix  M used by the reconnection 
process in each tree is composed of columns that  are 
the elements of the sets B0, B1 - B 0 , . . . ,  Bk - Bk-1  and 
rows which are the vertices of the graph as appears  in 
Figure 3(a). By Theorem 3.1 I U Bi[ <_ 2n - 1 thus the 
size of the matr ix  M is O(n2). 

This algorithm uses an array of size n named 
Forest. Each element of this array is the Tree structure 
from the previous section with some minor changes. 
The structure contains the same arrays as in Section 2 
with an additional array subblock. This array holds for 
each block the blocks from the previous insertion index 
tha t  compose it as appears  in Figure 3(b). The  array 
elem holds for each block the vertices tha t  compose 
it. This change is necessary for the implementat ion of 
BuildMatrix. 

THEOREM 3.2. The algorithm of Figure 2 maintains 
the forest with a total running time of O( (ins+del).n2). 

Proof. The procedure DeleteF updates  at most  n dy- 
namic block sets using UpdateBlocks. The update  pro- 
cess of the blocks can be done in O(n) t ime for each 
block set, thus the total  t ime for updat ing the dynamic 
blocks is O(n2). Next the matr ix  M is rebuilt. By The- 
orem 3.1 the number  of columns in M is at most  O(n). 
By Lemma 3.1 (the containment property)  each column 
part icipate in the creation of exactly one other column, 
thus the building t ime of the matr ix  M is at most O(n2). 
The reconnection cost is part i t ioned into two different 
costs. In each tree the cost of checking whether the last 
entry tha t  connected a block to the tree is still a valid 
connection is charged to the deletion and gives a total  
of O(n) for a tree and O(n 2) for all the trees. The cost 
of inquiring new entries of the matr ix  M is charged to 
the insertion tha t  created each of the trees. Thus, the 
total  t ime for all the deletions is O(del • n 2) amortized 

time. The procedure InsertF creates an in-tree and an 
out-tree for the insertion center. Each tree creation is 
charged with O(n  2) t ime for all the later inquiries of the 
matr ix  entries like in Theorem 2.1. The use of dynamic 
blocks maintains the proper ty  tha t  the total  number  of 
new blocks tha t  will be created in a tree during any se- 
quence of deletions is O(n). The tota l  t ime for all the 
insertions is O(ins • n 2) time. Thus , the total  running 
t ime of the algorithm is O((ins + del). n2) .  [] 

4 Fully d y n a mic  trans i t ive  c losure 

In this section we obtain our new fully dynamic transi- 
tive closure algorithm by using the framework suggested 
by King [8]. King's  framework is composed from two in- 
gredients. A decremental  algorithm tha t  maintains the 
'old'  paths of the initial graph and an algorithm tha t  
maintains a forest of in-trees and out-trees around each 
insertion center. To maintain explicitly the transitive 
closure matr ix  a matr ix  denoted by count counts all the 
insertion centers tha t  lie on a pa th  between each pair of 
vertices. To enable pa th  queries these centers are saved 
in a list for each pair. 

We replace the ingredients of King's  framework. For 
the maintenance of the initial graph through a sequence 
of edge deletions we use a variant of the algorithm of 
Frigioni et al. [4]. Their  algorithm works in a total  t ime 
of O(m2), but  it is possible to modify it to work in t ime 
of O(mn + del. m). (Obtaining such a result when each 
delete operation deletes only one edge from the graph 
is easy. Handling the more general case in which each 
delete operat ion may delete an arbi t rary set of edges 
from the graph requires more care. The full details will 
appear  in the full version of this paper) .  Clearly, we use 
the algorithm from Section 3 for the maintenance of the 
forest of in-trees and out-trees. 

Figure 4 sketches the fully dynamic transit ive clo- 
sure algorithm. 

THEOREM 4.1. The algorithm of Figure ~ handles each 
insert operation in O(n 2) worst-case time and each 
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In i t :  
1. Initialize a decremental teachability data structure and the matrix count. 
2. Call InitForest. 

I n s e r t (  E~, u): 
1. Call InsertF(Eu, u) and update the count matrix. 

Delete(El) :  
1. Call DeleteF(E') and update the count matrix. 

2. Delete from the 'old' data structure the edges of E '  with insertion index 0. 

Q u e r y ( u ,  v): 
1. If there exists an 'old' path form u to v or count(u, v) > 0 return true. 

2. Return false. 

Figure 4: Fully dynamic transitive closure algorithm. 

delete operation in O(n 2) amortized-time. The al- 
gorithm answers each query correctly in O(1) worst- 
case time. The algorithm has a total running time of 
O(mn + (ins + del) • n2). The space used by the algo- 
rithm is O(n2). 

Proof. By Theorem 3.2 the total time for maintaining 
the forest is O(ins. n 2 + del. n2). The total cost of the 
deletion only data structure is at most O(mn + del. m). 
Thus, the total time of our algorithm is O(mn + (ins + 
del). n2). [] 

In the case of DAGs we can obtain a better result. 
Italiano [7] presented a decremental algorithm for DAGs 
with a total running time of O(mn) for any sequence of 
deletions. This algorithm maintains a forest of out-trees 
from each vertex of the graph. On each such a tree the 
total time spent by the algorithm is at most O(m). By 
using King's framework with a forest of in-trees and out- 
trees maintained by the algorithm of Italiano, we obtain 
a fully dynamic algorithm for the transitive closure on 
DAGs whose total running time is O(mn+ins.n  2 +del). 

5 Supporting path queries 
In this section we extend the algorithm to support 
path queries without increasing the space in use. The 
technique for that is based on the one used by King and 
Thorup [10]. King maintains in her framework a list for 
each pair of vertices. If an insertion center w is on a 
path from u to v, then w is added to list(u, v). The size 
of each list may be O(n). Thus, the total space in use 
may be O(n3). Using the method King and Thorup [10] 
presented in the context of fully dynamic APSP it is 
possible to reduce the total space in use to O(n2). The 
main idea is to keep only one list of insertion centers. In 
this list the insertion centers are ordered by the insertion 
index. The latest insertion center is placed at the end of 
the list. Each pair of vertices u and v points to the oldest 
insertion center w, which is a witness to a path from u to 

v. If w is no longer a witness to a path from u to v or if 
there was a new insertion around w and it may no longer 
be the oldest witness, the pair u and v scans the list for 
a new witness from the successor of w. This method 
still keeps the time bound unchanged. When a pair of 
vertices scans the list each center, which the pair scans, 
was charged for their scanning in its insertion. Thus, the 
scanning process is simply paid by the O(n 2) cost of each 
insertion. This is the way the witnesses are maintained 
and obtained for each pair of vertices. Clearly, this 
method uses O(n 2) space. In our implementation the 
array Index maintains the list of the insertion centers. 
If the pair u and v points to the i-th insertion center w 
which is a witness to a path of length g, then using the 
in-tree and the out-tree of w this path can be obtained 
in O(g) time. The vertex set of the in-tree and the out- 
tree of w is the block set/3i. First, a list of blocks indices 
b l , . . .  ,bt is obtained such that u E/~i[bl] and v E/~i[bt] 
and all the blocks are different (unless bl = bt). Such 
a list can be obtained by scanning simultaneity from 
b~ backwards to w and from bl forward to w. For each 
new block on the path from u to w the algorithm checks 
whether that  block was scanned from v backwards to 
w. The same is done to each new block on the path 
from v backwards to w. When a common block is 
found the algorithm terminates. By this method a list 
of different blocks from u to v of size t is obtained in 
O(t). The list of the blocks is composed from two parts. 
The first part is bl , . . .  ,br, which was obtained from 
the in-tree, and the second part is b~, . . . ,  be, which was 
obtained from the out-tree. Note that the block b,. is 
the common block, which stopped the algorithm. By 
the in-tree and the out-tree of w we can produce the 
list xl, x2 , . . . ,  xr, Yr,.. •, Y~-i, Y~ of t ÷ 1 vertices. The 
list satisfies that  xp E •i[bp] and yq e B/[bq], where 
1 < p < r and r < q < t. Note that  u = xl and 
v = Yr. Each Xp is the head of the edge that  connects 
bp-1 to bp. In a similar way each yq is the tail of the edge 
that connects bq to bq+l. If xp-1 and Xp+l are in the 
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same SCC, then xp is also in this SCC. For each SCC of 
the graph we maintain an in-tree and out-tree from an 
arbi trary vertex. Each vertex which is the tail (head) of 
an incoming (outgoing) edge to (from) the SCC is also 
in the in-tree (out-tree). We build these trees in O(m) 
after each update.  A pa th  from Xp to the first xp, which 
is not in the SCC of xp is produced by the trees of the 
SCC of Xp. This process is repeated till reaching v. 

THEOREM 5.1. The algorithm can produce a path of 
length ~ in 0(~) worst-case time. The required space 
of the algorithm remains O(n2). 

6 C o n c l u d i n g  r e m a r k s  a n d  o p e n  p r o b l e m s  

We presented a fully dynamic algorithm for the mainte- 
nance of the transitive closure matr ix  of a general graph 
whose total  running t ime is essentially optimal.  How- 
ever, many problems still remain open, among them: 

1. Is it possible to extend our simple algorithm for 
DAGs to general directed graphs while keeping 
the t ime bound unchanged and by tha t  to obtain 
an algorithm tha t  charges all the cost of a delete 
operation to preceding insertions? 

2. Is it possible not to use amortization? Or more 
precisely, is it possible tha t  bo th  the insertion and 
the deletion t ime will be O(n 2) worst-case. 

3. If a non-constant t ime query is allowed, i.e., the 
transitive closure matr ix  is maintained implicitly, is 
there a fully dynamic reachability algorithm with 
an amortized update  t ime of o(n2), and worst-case 
query t ime of o(m) for general directed graphs? 

A c k n o w l e d g m e n t  I like to thank  Uri Zwick, Vera 
Asudin and Eyal Even-Dar for their helpful remarks. 
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