
en.wikipedia.org
/wiki/Johnson%27s_algorithm

Johnson's algorithm
Contributors to Wikimedia projects ⋮ 5-7 minutes
⋮ 12/16/2004
DOI: 10.1145/321992.321993, Show Details

Johnson's algorithm
Class All-pairs shortest path problem (for weighted graphs)

Data structure Graph
Worst-case performance

Johnson's algorithm is a way to find the shortest paths between all pairs of vertices in an edge-
weighted directed graph. It allows some of the edge weights to be negative numbers, but no
negative-weight cycles may exist. It works by using the Bellman–Ford algorithm to compute a
transformation of the input graph that removes all negative weights, allowing Dijkstra's algorithm

to be used on the transformed graph.[1][2] It is named after Donald B. Johnson, who first published

the technique in 1977.[3]

A similar reweighting technique is also used in Suurballe's algorithm for finding two disjoint paths
of minimum total length between the same two vertices in a graph with non-negative edge

weights.[4]

Algorithm description[edit]

Johnson's algorithm consists of the following steps:[1][2]

1. First, a new node q is added to the graph, connected by zero-weight edges to each of the
other nodes.

2. Second, the Bellman–Ford algorithm is used, starting from the new vertex q, to find for each
vertex v the minimum weight h(v) of a path from q to v. If this step detects a negative cycle,
the algorithm is terminated.

3. Next the edges of the original graph are reweighted using the values computed by the
Bellman–Ford algorithm: an edge from u to v, having length , is given the new length
w(u,v) + h(u) − h(v).

4. Finally, q is removed, and Dijkstra's algorithm is used to find the shortest paths from each
node s to every other vertex in the reweighted graph. The distance in the original graph is then
computed for each distance D(u , v), by adding h(v) − h(u) to the distance returned by
Dijkstra's algorithm.

https://en.wikipedia.org/wiki/Johnson%27s_algorithm
https://doi.org/10.1145%2F321992.321993
https://en.wikipedia.org/wiki/All-pairs_shortest_path_problem
https://en.wikipedia.org/wiki/Graph_(data_structure)
https://en.wikipedia.org/wiki/Best,_worst_and_average_case
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Shortest_path
https://en.wikipedia.org/wiki/All-pairs_shortest_path_problem
https://en.wikipedia.org/wiki/Weighted_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Negative_number
https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Donald_B._Johnson
https://en.wikipedia.org/wiki/Suurballe%27s_algorithm
https://en.wikipedia.org/w/index.php?title=Johnson%27s_algorithm&action=edit§ion=1
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Example[edit]

The first three stages of Johnson's algorithm are depicted in the illustration below.

The graph on the left of the illustration has two negative edges, but no negative cycles. The center
graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm
with q as starting vertex, and the values h(v) computed at each other node as the length of the
shortest path from q to that node. Note that these values are all non-positive, because q has a
length-zero edge to each vertex and the shortest path can be no longer than that edge. On the
right is shown the reweighted graph, formed by replacing each edge weight by w(u,v) + h(u)
− h(v). In this reweighted graph, all edge weights are non-negative, but the shortest path between
any two nodes uses the same sequence of edges as the shortest path between the same two
nodes in the original graph. The algorithm concludes by applying Dijkstra's algorithm to each of
the four starting nodes in the reweighted graph.

Correctness[edit]

In the reweighted graph, all paths between a pair s and t of nodes have the same quantity h(s) −
h(t) added to them. The previous statement can be proven as follows: Let p be an path. Its
weight W in the reweighted graph is given by the following expression:

Every is cancelled by in the previous bracketed expression; therefore, we are left with
the following expression for W:

The bracketed expression is the weight of p in the original weighting.

Since the reweighting adds the same amount to the weight of every path, a path is a shortest
path in the original weighting if and only if it is a shortest path after reweighting. The weight of
edges that belong to a shortest path from q to any node is zero, and therefore the lengths of the
shortest paths from q to every node become zero in the reweighted graph; however, they still

https://en.wikipedia.org/w/index.php?title=Johnson%27s_algorithm&action=edit§ion=2
https://en.wikipedia.org/wiki/File:Johnson%27s_algorithm.svg
https://en.wikipedia.org/w/index.php?title=Johnson%27s_algorithm&action=edit§ion=3

remain shortest paths. Therefore, there can be no negative edges: if edge uv had a negative
weight after the reweighting, then the zero-length path from q to u together with this edge would
form a negative-length path from q to v, contradicting the fact that all vertices have zero distance
from q. The non-existence of negative edges ensures the optimality of the paths found by
Dijkstra's algorithm. The distances in the original graph may be calculated from the distances
calculated by Dijkstra's algorithm in the reweighted graph by reversing the reweighting

transformation.[1]

Analysis[edit]
The time complexity of this algorithm, using Fibonacci heaps in the implementation of Dijkstra's
algorithm, is : the algorithm uses time for the Bellman–Ford stage of
the algorithm, and for each of the instantiations of Dijkstra's algorithm. Thus,
when the graph is sparse, the total time can be faster than the Floyd–Warshall algorithm, which

solves the same problem in time .[1]

References[edit]

1. ^ Jump up to: a b c d Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein,
Clifford (2001), Introduction to Algorithms, MIT Press and McGraw-Hill, ISBN 978-0-262-
03293-3. Section 25.3, "Johnson's algorithm for sparse graphs", pp. 636–640.

2. ^ Jump up to: a b Black, Paul E. (2004), "Johnson's Algorithm", Dictionary of Algorithms and
Data Structures, National Institute of Standards and Technology.

3. ^ Johnson, Donald B. (1977), "Efficient algorithms for shortest paths in sparse networks",
Journal of the ACM, 24 (1): 1–13, doi:10.1145/321992.321993.

4. ^ Suurballe, J. W. (1974), "Disjoint paths in a network", Networks, 14 (2): 125–145,
doi:10.1002/net.3230040204.

External links[edit]
Boost: All Pairs Shortest Paths

https://en.wikipedia.org/w/index.php?title=Johnson%27s_algorithm&action=edit§ion=4
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Fibonacci_heap
https://en.wikipedia.org/wiki/Sparse_graph
https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
https://en.wikipedia.org/w/index.php?title=Johnson%27s_algorithm&action=edit§ion=5
https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein
https://en.wikipedia.org/wiki/Introduction_to_Algorithms
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-262-03293-3
https://xlinux.nist.gov/dads/HTML/johnsonsAlgorithm.html
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Donald_B._Johnson
https://en.wikipedia.org/wiki/Journal_of_the_ACM
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F321992.321993
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1002%2Fnet.3230040204
https://en.wikipedia.org/w/index.php?title=Johnson%27s_algorithm&action=edit§ion=6
http://www.boost.org/doc/libs/1_40_0/libs/graph/doc/johnson_all_pairs_shortest.html

