$$
L_{i j}=S P(0, j) \quad 25.1-6
$$

Fix vertex V we want for each vertex j
for each j

Look fir i such that

$$
\operatorname{SP} \vee \sim j
$$

$$
\text { pred. }=i
$$

(wert. v)
computed as SP matrix

$$
\begin{aligned}
& \operatorname{SP}^{(v, i)}+w_{i j}=\operatorname{SP}\left(v_{1} j\right) \\
& \underbrace{L_{v i}}_{\text {corpuked }}+w_{i j}=\underbrace{L_{v_{j}}}_{\text {comm }}
\end{aligned}
$$

Floyd-Warshall (W) $k=n$
$1 \quad n=W$.rows
$2 D^{(0)}=W_{\text {stack }} \quad$ stonabe $t=3$
3 for $k=1$ to $n \quad k=2$
$4 \quad$ let $D^{(k)}=\left(d_{i j}^{(k)}\right)$ be a new $n \times n$ matrix for $i=1$ to n
for $j=1$ to n

$S P(S, V)$ all shortest paths
$m_{v}=\operatorname{Min} \#$ of edges on all $S p(s, v)=3$ minedsesp

$$
\begin{array}{r}
\max _{\text {(graph })}\left\{\operatorname{mav}^{2}\right\}=\text { \# of edges large } \\
\text { ewugh to cover } \\
\\
\min _{\text {eggs }}-S P \text { to every } v
\end{array}
$$

