Graphs II - Shortest paths

Single Source Shortest Paths
All Sources Shortest Paths

some drawings and notes from prof. Tom Cormen

Single Source SP

@® Context: directed graph G=(V,E,w), weighted edges

® The shortest path (SP) between vertices u and v is
the path that has minimum tfotal weight

— total weight is obtained by summing up paths edges weights

: ; P . :
§(u,v) = min{w(p) : u ~ v} if there is a path from u to v

otherwise .

@ Note: SP cannot contain cycles
— positive cycles: a shortest path obtained by taking out the cycle

— negative cycles: a shortest path obtained by iterating through
the cycle rew more times, minimum weight is -co.

Negative edges and cycles

a b
@O—— . .
3 4 @ Exercise: explain the
s e 6 d g following :
o ——E__—
-3
2 e 3 i 7
OO

® SP(s,a)=3

@ SP(s,b)= -1

® SP(s,g)=3
@ negative weights possible ® SP(se)=-c0

@ negative cycles make
some shortest paths -co

Single Source SP

(b)

® Task: Given a source vertex seV, find the shortest
path from s fo all other vertices

— will write inside each vertex v the shortest path estimate ESP(s,v)
weight from the source

— these estimates change as the algorithm progresses
— highlight edges that give the SP-s
— highlighted edges form a tree with source as root

— tree not unique as (b) and (c) are both valid

Relaxation

@ if current (estimate) ESP(s,u) is 5 and edge (u,v) has
\éveizgr%’r w(u,v)=2, we can reach v with a path of
4=

— if current estimate ESPSrs,v) is more than 7, we “relax edge (u,v)”
by replacing the estimate ESP(s,v) =T7.

— if not (ESP(s,v)<7), we do nothing

U V U V
@ 2 B 2 7
O——@ O——©
| RELAX(u,v,w) | RELAX(u,v,w)

Bellman Ford

@ source is the SP tree root
@® BF algorithm progresses in “waves", similar to BFS

® takes a maximum of |V|-1 waves to find SP

— since there cannot be cycles

Bellman-Ford SSSP algorithm

® idea : relax all edges once (in any order) and weve
got CORRECT all SP-s of one edge

r%lax again all edges (any order) and we obtained all SP-s of two
edges

relax ... again, and get all SP-s of three edges

no SP can have more than |VI-1 edges, so repeat the relax-all-
edges step |V|-1 times, to get all SP-s

p BELLMAN-FORD

|

4

P init all SP : SP(s,v)= » for all v, SP(s,s)=0

for k=1:|V|-1

b relax all edges

check for negative cycles

SSSP exercise

@® Discover SP by hand (start from
source)

Bellman Ford

@ discover SP(s,v) means having the current
estimate equal with the actual (unknown) SP

— discover SP : ESP(s,v) = SP(s,v)
— ESP written "inside" each node, it may further decrease

— once SP discovered, the ESP never decreases

Bellman Ford

@ discover SP(s,v) means having the current
estimate equal with the actual (unknown) SP

— discover SP : ESP(s,v) = SP(s,v)
— ESP written "inside" each node, it may further decrease

— once SP discovered, the ESP never decreases

® init all ESP = o0

Bellman Ford

@ discover SP(s,v) means having the current
estimate equal with the actual (unknown) SP

— discover SP : ESP(s,v) = SP(s,v)
— ESP written "inside" each node, it may further decrease

— once SP discovered, the ESP never decreases

® init all ESP = o0

® relax all edges (first time):
discover all SP-s of one edge

Bellman Ford

@ discover SP(s,v) means having the current
estimate equal with the actual (unknown) SP

— discover SP : ESP(s,v) = SP(s,v)
— ESP written "inside" each node, it may further decrease

— once SP discovered, the ESP never decreases

® init all ESP = o0

® relax all edges (first time):
discover all SP-s of one edge

® relax all edges (second time):

discover all SP-s of two edges

Bellman Ford

@ discover SP(s,v) means having the current
estimate equal with the actual (unknown) SP

— discover SP : ESP(s,v) = SP(s,v)
— ESP written "inside" each node, it may further decrease

— once SP discovered, the ESP never decreases

® init all ESP = o0

® relax all edges (first time):
discover all SP-s of one edge

\ o) @ relax all edges (second time):
discover all SP-s of two edges

% ® ... repeat

— how many times?

Bellman Ford

@® Essential mechanism (BF proof):
- SP(s,v) = [al, a2, a3, a4]

— Relaxing al, then a2, then a3, then a4 - you can do them over any
amount of time, but it has to be in the right order

— SP(s,v) discovered

- for ever SP;(edEes al,a2,a3,..) there was a relaxation sequence of
these edges, in this precise order: al in the first round, a2 in the
second round, etc.

— overall quite a few more relaxations than necessary, in order to enforce
correctness in all possible cases

@® Running time: |V|-1 iterations for the outer loop

@ inner loop: relax all edges O(E)
® Total V*O(E) = O(VE)

SSSP in a DAG

® Essential mechanism:

— for ever SP=(edEes al,a2,a3,..) there was a relaxation sequence of
’rhescej e Jrges, in this precise order: al in the first round, a2 in the second
round, efc.

@® in a DAG we have a way to relax all edges in path-
order, without doing [V|-1 rounds of relax-all-edges

@® use topological sort, relax edges in topological order.

— topological sort is given by finishing DFS times (on picture)

® Running time O(E) (if E>V)
— formally O(E+V) VS Bellman Ford O(VE)

(ndershors) > pans) = (shos)
3/4

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5

SSSP in a DAG

® Essential mechanism:

— for ever SP=(edEes al,a2,a3,..) there was a relaxation sequence of
’rhescej e Jrges, in this precise order: al in the first round, a2 in the second
round, efc.

@® in a DAG we have a way to relax all edges in path-
order, without doing [V|-1 rounds of relax-all-edges

@® use topological sort, relax edges in topological order.

— topological sort is given by finishing DFS times (on picture)

® Running time O(E) (if E>V)
— formally O(E+V) VS Bellman Ford O(VE)

= e
3/4

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5

SSSP in a DAG

® Essential mechanism:

— for ever SP=(edEes al,a2,a3,..) there was a relaxation sequence of
’rhescej e Jrges, in this precise order: al in the first round, a2 in the second
round, efc.

@® in a DAG we have a way to relax all edges in path-
order, without doing [V|-1 rounds of relax-all-edges

@® use topological sort, relax edges in topological order.

— topological sort is given by finishing DFS times (on picture)

® Running time O(E) (if E>V)
— formally O(E+V) VS Bellman Ford O(VE)

= <
p——
3/4

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5

SSSP in a DAG

® Essential mechanism:

— for ever SP=(edEes al,a2,a3,..) there was a relaxation sequence of
’rhescej e Jrges, in this precise order: al in the first round, a2 in the second
round, efc.

@® in a DAG we have a way to relax all edges in path-
order, without doing [V|-1 rounds of relax-all-edges

@® use topological sort, relax edges in topological order.

— topological sort is given by finishing DFS times (on picture)

® Running time O(E) (if E>V)
— formally O(E+V) VS Bellman Ford O(VE)

= <
3/4

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5

SSSP in a DAG

® Essential mechanism:

— for ever SP=(edEes al,a2,a3,..) there was a relaxation sequence of
’rhesg e Jrges, in this precise order: al in the first round, a2 in the second
round, efc.

@® in a DAG we have a way to relax all edges in path-
order, without doing [V|-1 rounds of relax-all-edges

@® use topological sort, relax edges in topological order.

— topological sort is given by finishing DFS times (on picture)

® Running time O(E) (if E>V)
— formally O(E+V) VS Bellman Ford O(VE)

= —
3/4

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5

SSSP in a DAG

® Essential mechanism:

— for ever SP=(edEes al,a2,a3,..) there was a relaxation sequence of
’rhesg e Jrges, in this precise order: al in the first round, a2 in the second
round, efc.

@® in a DAG we have a way to relax all edges in path-
order, without doing [V|-1 rounds of relax-all-edges

@® use topological sort, relax edges in topological order.

— topological sort is given by finishing DFS times (on picture)

® Running time O(E) (if E>V)
— formally O(E+V) VS Bellman Ford O(VE)

= SN =
3/4

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5

SSSP in a DAG

® Essential mechanism:

— for ever SP=(edEes al,a2,a3,..) there was a relaxation sequence of
’rhesg e Jrges, in this precise order: al in the first round, a2 in the second
round, efc.

@® in a DAG we have a way to relax all edges in path-
order, without doing [V|-1 rounds of relax-all-edges

@® use topological sort, relax edges in topological order.

— topological sort is given by finishing DFS times (on picture)

® Running time O(E) (if E>V)
— formally O(E+V) VS Bellman Ford O(VE)

> e G = = U
Ghiry >{belt) (i

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

SSSP in a DAG

® Essential mechanism:

— for ever SP=(edEes al,a2,a3,..) there was a relaxation sequence of
’rhesg e Jrges, in this precise order: al in the first round, a2 in the second
round, efc.

@® in a DAG we have a way to relax all edges in path-
order, without doing [V|-1 rounds of relax-all-edges

@® use topological sort, relax edges in topological order.

— topological sort is given by finishing DFS times (on picture)

® Running time O(E) (if E>V)
— formally O(E+V) VS Bellman Ford O(VE)

> e G = = U
Ghiry>{belt) (i

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

SSSP in a DAG

® Essential mechanism:

— for ever SP=(edEes al,a2,a3,..) there was a relaxation sequence of
’rhesg e Jrges, in this precise order: al in the first round, a2 in the second
round, efc.

@® in a DAG we have a way to relax all edges in path-
order, without doing [V|-1 rounds of relax-all-edges

@® use topological sort, relax edges in topological order.

— topological sort is given by finishing DFS times (on picture)

® Running time O(E) (if E>V)
— formally O(E+V) VS Bellman Ford O(VE)

= e E <P

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

SSSP in a DAG

® Essential mechanism:

— for ever SP=(edEes al,a2,a3,..) there was a relaxation sequence of
’rhesg e Jrges, in this precise order: al in the first round, a2 in the second
round, efc.

@® in a DAG we have a way to relax all edges in path-
order, without doing [V|-1 rounds of relax-all-edges

@® use topological sort, relax edges in topological order.

— topological sort is given by finishing DFS times (on picture)

® Running time O(E) (if E>V)
— formally O(E+V) VS Bellman Ford O(VE)

= e E <P

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

Dijkstra SSSP algorithm

@ No negative weight edges allowed

® instead of relaxung all edges (like Bellman Ford), keep
track of a current “closest” vertex to the SP tree

— “closest" = minimum ESP(s,v) of nodes not already part of SP tree
— add the current-closest to the partial SP tree, v

— relax the outing edges of v (all edges v->x)
@ repeat

® similar to Prim's algorithm (conceptually)

graph G
source = s

We want to find the shortest path from s to every node

INITIALIZE -SINGL!
"SOURCE(G,s)

S=0

Q=G.V

()

After initialization, we have v.m = NIL forallv € V,s.d = 0, and v.d = oo for
veV —{s}

s=EXTRACT-MIN(Q)

S ={s} »
Q= {t,x,y,z}

We are at node s

RELAX(s, t, w)

S=15] |
Q=i b6 Vzl

Test whether we can improve the shortest path to t found so far by going through s

RELAX(s, t, w)

S ={s} A
Q= {t.x,y,z}

Updatet.d = 10 and .1 = S

RELAX(s, y, w)

S ={s} |
Q= l bt vz}

Test whether we can improve the shortest path to y found so far by going through s

RELAX(s, y, w)
S= 15}
@Qe=2d b Vit

Update y.d =5 and y.m = s

S =15;
Q= L Vz;

All edges leaving s have been tested

y=EXTRACT-MIN(Q)

S= {Sf)/}
Q= X2 1

We are at node y

RELAX(y, t, w)

5={s,y}
Q=] k7

Test whether we can improve the shortest path to t found so far by going through y

RELAX(y, t, w)

5={s,y}
Ri=nd £ Xz |

Update t.d = &8 and t.m =y

RELAX(y, x, w)

5={sy}
Q= bzt

Test whether we can improve the shortest path to x found so far by going through y

RELAX(y, x, w)

S = {S,y}
Qi=id b X}

Update x.d = 14 and =.m = y

RELAX(y, z, w)

5={sy}
Q=] k7

Test whether we can improve the shortest path to z found so far by going through y

RELAX(y, z, w)

S = {S,y}
Qi=id b X}

Update z.d = 7and z.m =Y

5=1sY}
Q= b X2}

All edges leaving y have been tested

z=EXTRACT-MIN(Q)

S = {SfoZ}
Q= {t.x}

We are at node z

RELAX(z,s, w)

5=1{sy,z}
Q= {t.x)

Test whether we can improve the shortest path to s found so far by going through z

RELAX(z, x, w)

5=1{sy,z}
Q= {t.x)

Test whether we can improve the shortest path to x found so far by going through z

RELAX(z, x, w)

S=18 V. Z}
Q=i £ X}

Updatex.d = 13and z.m = 2

All edges leaving z have been tested

We are at node t

S

RELAX(t,y, w)
S =145V, 2, t}
Q = 1x;

Test whether we can improve the shortest path to y found so far by going through t

RELAX(t, x, w)
S =145V, 2, t}
Q = 1x;

Test whether we can improve the shortest path to x found so far by going through t

Update z.d =9 and z.m =1

S

All edges leaving t have been tested

x=EXTRACT-MIN(Q)
S=G.V
Q=9

We are at node x

RELAX(x, z, w)
S= GV
Q=9

Test whether we can improve the shortest path to z found so far by going through x

o=k G ¥/

Done!

All edges leaving x have been tested.
Every vertex’s shortest path from s has been determined. We are done.

Dijkstra’s Algorithm

@® correctness proof in the book

— idea: proof that for each SP, there is

DUKSTRA(G. w,) a relaxation sequence of its edges in
| INITIALIZE-SINGLE-SOURCE(G, s) path-order

2 =9 . .

3 0=G.V ® Running Time depends on

1 whileQ 0 implementation of queue

5 u = EXTRACT-MIN(Q) operations

6 S =S U {uj _ * i

1 for each vertex v € G.Adj|u] VI™ extract-min

8 RELAX(u, v, w) — |El * decrease key (at relaxation)

® Tofal

% %
= O(V*Textract-mint+E Tdecrease-key)

all edges
from u

— with Fibonacci heaps: extract-min is
O(logV) and decrease-key is O(1) ;
total’ O(E+VlogV)

Graphs II - Shortest paths

Lesson 2: All Sources Shortest Paths

ASSP

@® Task: find all shortest paths, between any two
vertices (no fixed source)

@® Slow: run Bellman Ford separately from each vertex
as source.

— running time |V| * BF-time = V*O(VE) = O(VZE)
— that is O(V*) if graph dense ExV?

® Instead, we will use dynamic programming
® C; = min SP weight (objective) between vertices i,j

@ optimal solution structure:

— if path P(i->j) from i to j in optimal and passes vertex k, then the
subpaths P(i->k) and P(k->j) must be also optimal

— optimal = shortest

P1 \/)® 22

ASSP dynamic programming

@® two options for dynamic programming

® A. go by the number of edges used in a path
— Ci™= minimum path weight between i and j using at most m edges
— CjY= weight of edge i->j, if exists (one edge)
— C;j'®= min weight of any path i->k->j (max 2 edges)

— Ci9=we O if i#], co otherwise (no edge)

® B. by the intermediary nodes in a certain fixed order

— fix order of all vertices 1,2,3,...,|VI

— C™= minimum path weight between i and j using only intermediary
vertices {1,2,.. 5)

— similar fo discrete knapsack idea, see module 6

ASSP dynamic programming by edges

\'Z ~ LN
_ﬁV i e M@Tﬁ/m
¥ S N
e (Lo £
(j ' \/:’=§>/ |

@ Cij(m) = mink { Cij(m-l), Cik(m-l)-l-ij} //bottom up computation
@® the Cij using m edges is either
— the same as Cij using m-1 edges, OR
— Cik using m-1 edges to intermediary K, plus an edge from Kk fo j w;

— all nodes k are eligible as possible "last” intermediary

ASSP dynamic programming by edges

® Compute the C™ matrix from C™Y matrix using edges
matrix W

® Extend-SP (C(m™1),W)
P for i=1:n

R for j=1:n

P a=w;

r for k=1:n

P a=min{a, Cix(™1 + wkj};

P Ciym=a

® ASSP-slow (W)
P cH) =W
for m=2:n-1
r P Ccm=Extend-SP(C(m-1),W)

P return C(»-1)

ASSP dynamic programming by edges

@ Extend-SP looks like matrix multiplication!

— Extend-SP running time O(n?)

® ASSP-slow is n*O(n®) = O(n*), same as running
Bellman Ford separately from each vertex

P Extend-SP (C(™-1),W)
P for i=l:n

? for j=1l:n

P a=w;

[for k=1:n

P a=min{a, Cix™D + wii};

P Ciym=a

P D=multiply(C, W)

P for i=1l:n

r for j=1l:n

P a=0;

[for k=1:n

P a=a+ Cik * Wkij

4 Dij=a

ASSP dynamic programming by edges

@® Think of Extending-SP as of matrix multiplication

- CV = CO*W =W; the ™" means “a=min{a, ci™b + wy}" inner
operation

- C& = clP\WwW =W?2
- C® = c@*W =W3

® Only need C"Y, not the intermediary ones
- CO =W
— C® = W2= (W2
— C% = W= (W2)2
— C® =WB= (W) etc

ASSP dynamic programming by edges

® ASSP-fast (W)
P c)) = w;
P while m<n-1

P Ccm=Extend-SP(C(®-1), C@®1), W);

P m=2*m;

P return Cm

® After | Ig(n) | iterations we have computed C™

with m=n-1. Its ok to “overshoot” as C doesnt
change after finding the SP.

® Running time ©(V3logV)

ASSP dynamic programming by vertices

® "Floyd-Warshall” algorithm

@® Fix avertexorder:1, 2, 3, .. n

— Sm= set first k of vertices = §vi, V2, ..., Vm)

® C;™ = the weight of SP(i,j) going only through
intermediary vertices in set Sy

O e L)

® m=0 : no intermediary allowed; C;©=w;

® m=l : only k=v; intermediary allowed

— Cij(1)= min {Wij , WiksWkj

ASSP dynamic programming by vertices

® dynamic recursion

® Cij(m) = min{ Cij(m'l), Cim(m—l) + ij(m-l) }

— Ci'™ = minimum between Cy™Y and the SP including vertex vm and
only other infermediaries <m.

.l
(= - o
| T P i e v, e
& i R, RIS, . Wi - ik T
C.,(*‘-')

ASSP dynamic programming by vertices

@ bottom up computation
P Floyd-Warshall-ASSP (W)

P for m=1:n
P for i=l:n
[for j=1:n

> Cis™ = min{ cis™1), cin™l) + cpjm™1) }

P return C(m)

® Running time O(V?)

— for dense graphs ExV?, Floyd-Warshall-ASSP same cost as Bellman-
Ford-SSSP

