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Randomness in Computation

« Useful throughout Computer Science
— Algorithms
— Learning Theory
— Complexity Theory

» Question: Is Randomness necessary?



Derandomization

Goal: remove randomness

Why study derandomization?

Breakthrough [R ‘04]:
Connectivity in logarithmic space (SL = L)

Breakthrough [AKS ‘02]:
Primality in polynomial time (PRIMES € P)



Randomness vs. Time

« Goal:
simulate randomized computation deterministically

 Trivial Derandomization:
If A uses n random bits, enumerate all 2" possibilities

Probabilistic polynomial-time C exponential time
BPP C Time(2roly(n))

» Strong Belief: BPP =P ( Time(poly(n)) )
Complexity Assumptions = BPP = P [BFNW,NW,IW,...]



Outline

 Qverview of derandomization

« Derandomization of restricted models
— Application: Hardness Amplification in NP
— New derandomization

» Derandomization of general models

— BPP vs. PH
— Proof of Lower Bound



Constant-Depth Circuits

 Probabilistic constant-depth circuit (BP ACO?)

>~ Depth

« Theorem [N ‘91]: BP AC? C Time(npolylog n)

— Compare to BP P C Time(2roly()



Application: Avg-Case Hardness of NP

 Study hardness of NP on random instances
— Natural question, essential for cryptography

» Currently cannot relate to P # NP [FF,BT,V]

* Hardness amplification
Definition: f : {0,1}" — {0,1} is o-hard if
for every efficient algorithm M : Pr, [M(x) # f(x)] > &

f Har_d_nes_s >
01-hard Amplification (1/2 - €)-hard




Previous Results
Yao's XOR Lemma: f’(X4,..., X,) = f(xy) & --- & f(x,)
f’'~ (1/2 —2™M)-hard, almost optimal

Cannot use XOR In NP:fe NP =% f'e NP

Idea: f'(xy,..., xn) C( f(x4),..., f(x,) ), C monotone

—e.g.f(x) A (f(x,) V f(Xs)).T€ NP = f’c NP

Theorem [O'D]: Thereis Cs.t. ' ~ (1/2 — 1/n)-hard

Barrier: No monotone C can do better!



Our Result on Hardness Amplification

Theorem [HVV]: Amplification in NP up to =~ 1/2 - 2™
— Matches the XOR Lemma

Technique: Derandomize!
Intuitively, f* := G( f(x4),..., f(X,), ... ... f(X5n) )
f* (1/2 —1/2" )-hard by previous result

Problem: Input length = 2"

.
Note C is constant-depth C
F(X1)yeees FOX )y 2o oon F(Xo0)

Derandomize: input length — n, keep hardness
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Previous Results

Recall Theorem [N]:
BP AC? C Time(npolylog n)

Theorem [LVW]:
BP Maj AND C Time(2"")

Derandomize incomparable classes



Our New Derandomization
« Theorem [V] : BP Maj AC? C Time(2"%)

Derandomize
constant-depth circuits
with few Majority gates =

* Improves on [LVW]. Slower than [N] but richer
richest probabilistic circuit class in Time(2"")

» Technigues: Communication complexity +
switching lemma [BNS,HG,H,HM,CH]
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BPP vs. POLY-TIME HIERARCHY

Probabilistic Polynomial Time (BPP):
for every x, Pr[ M(x) errs | < 1%

Strong belief: BPP =P  [NW,BFNW,IW,...]
Still open: BPP C NP ?

Theorem [SG,L; ‘83]: BPP C £, P
Recall

NP=X P — dyM(xy)
>, P — dyVz M(xy,2z)



The Problem we Study

* More precisely [SG,L] give
BPTime(t) C X, Time( t?)

« Question[Rest of this Talk]:
Is quadratic slow-down necessary?

* Motivation: Lower bounds
Know NTime # Time on some models [P+,F+,...]
Technique: speed-up computation with quantifiers
To prove NTime # BPTime cannot afford £, Time( t2)



Approximate Majority

* |nput: R =101111011011101011
« Task: Tell Pr,[R, =1] > 99% from Pr,[R =1]<1%
Do not care if Pr,[ R, = 1] ~ 50% (approximate)

* Model: Depth-3 circuit W) ~

ERNPR
Sy
ASAR

R=101111011011101011

> Depth




The connection [FSS]

M(x;u) € BPTime(t) =) R=11011011101011
R| =2t “R = M(x;)

Compute M(x):
Tell Pr[M(x) = 1] > 99%
from Pr [M(x) = 1] < 1%

Compute Appr-Maj

BPTime(t) C X, Time(t))
=3V Time(t)

101111011011101011

Running time t’ # Bottom fan-in f = t’ / t
— run M at most t'/t times



Our Results

Theorem[V] : Small depth-3 circuits for Approximate
Majority on N bits have bottom fan-in Q(log N)

Corollary: Quadratic slow-down necessary for
relativizing techniques:

BPTime A (t) X =,Time A (t99)

Theorem[DvM,V]: BPTime (t) C ;Time (t - log°t)
— Previous result [A]: BPTime (t) C Yoy Time(t)

For time, the level is the third!
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Our Negative Result

- Theorem[V]: 2N"-size depth-3 circuits for Approximate
Majority on N bits have bottom fan-in f = Q(log N)

 Recall:

f
R=101111011011101011  |R[=N

Tels Re YES := {R:Pr[R = 1] > 99% }
fromRe NO ={R:Pr[R =1<1%}




Proof

Circuitis ORofs M

depth-2 circuits C,C,Cq -+ - C,

By definition of OR :
R e YES =someC, (R) =1
ReNO = all G(R)=0

By averaging, fix C = G;s.t.
PFRGYES [C (X)=1 ]21/5
VReNO = C(R)=0

Claim: Impossible if C has bottom fan-in < elog N



CNF Claim

* Depth-2 circuit = CNF
rm (X, VXV%g ) A (=X,) A (xeVxXe)
X1 X5 Xg y XN
bottom fan-in = clause size

« Claim: All CNF C with clauses of size ¢-log N
Either Prg _ves [C(X) =1]<1/2V
or there is R € NO : C(x) =

 Note: Claim = Theorem



Either Prg _ ves [C(X)=1]<1/2Nor IR € NO : C(x) = 1

Proof Outline

 Definition: S C {X4,X,,...,Xy} IS @ covering if every
clause has a variable in S

E.g.: S={X3X4} C=(X;VXoVX%5) A (—%X4) A (X5VX5)

* Proof idea: Consider smallest covering S
Case |S|BIG:Prg .ves [C (X)) =1]<1/2V

Case |S| tiny : Fix few variables and repeat



Either Prg _ ves [C(X)=1]<1/2Nor IR € NO : C(x) = 1

Case |S| BIG

* |S| > N° = have N°/(e:log N) disjoint clauses I
— Can find I’ greedily

* Pracves [C(R)=1] <Pr[ Vi [y(R)=1]
=1L P (R) = 1] (independence)
<[IL (1 —=1/100¢09N) =[] (1 — 1/NOw)

= (1= 1/NO®) I8l < N V4



Either Prg _ ves [C(X)=1]<1/2Nor IR € NO : C(x) = 1

Case |S| tiny

« |S|<N° = Fixvariablesin S
— Maximize Prg . yes [C(X)=1]

* Note: S covering = clauses shrink

Example X, 0
(VX5 ) A (56) A (V) 50 o4 (V) A (X9

* Repeat
Consider smallest covering S’, etc.



Either Prg _ ves [C(X)=1]<1/2Nor IR € NO : C(x) = 1

Finish up

» Recall: Repeat =- shrink clauses
So repeat at most €-log N times

* When you stop:
Either smallest covering size > N8/
OrC=1
Fixed < (e-log N) N® < N vars.

Setrestto 0 = R € NO : C(R) =1 \/
Q.E.D.



Conclusion

« Derandomization: powerful technique

« Restricted models: Constant-depth circuits (AC9)
— Derandomization of ACY N]
— Application: Hardness Amplification in NP [HVV]
— Derandomization of AC° with few Maj gates [V]

* General models: BPP vs. PH
— BPTime(t) C X, Time(t?) [SG,L]
— BPTime (t) & Z,Time (t'99) (w.r.t. oracle) [V]
Lower Bound for Approximate Majority



Thank you!



