Derandomization: New Results and Applications

Emanuele Viola Harvard University

March 2006

Randomness in Computation

- Useful throughout Computer Science
 - Algorithms
 - Learning Theory
 - Complexity Theory
- Question: Is Randomness necessary?

Derandomization

Goal: remove randomness

Why study derandomization?

Breakthrough [R '04]:
 Connectivity in logarithmic space (SL = L)

Breakthrough [AKS '02]:
 Primality in polynomial time (PRIMES ∈ P)

Randomness vs. Time

Goal:

simulate randomized computation deterministically

Trivial Derandomization:

If A uses n random bits, enumerate all 2ⁿ possibilities

```
Probabilistic polynomial-time \subseteq exponential time 
BPP \subseteq Time(2^{poly(n)})
```

Strong Belief: BPP = P (Time(poly(n)))
 Complexity Assumptions ⇒ BPP = P [BFNW,NW,IW,...]

Outline

Overview of derandomization

- Derandomization of restricted models
 - Application: Hardness Amplification in NP
 - New derandomization

- Derandomization of general models
 - BPP vs. PH
 - Proof of Lower Bound

Constant-Depth Circuits

Probabilistic constant-depth circuit (BP AC⁰)

- Theorem [N '91]: BP AC⁰ ⊆ Time(n^{polylog n})
 - Compare to BP P \subseteq Time(2^{poly(n)})

Application: Avg-Case Hardness of NP

- Study hardness of NP on random instances
 - Natural question, essential for cryptography
- Currently cannot relate to P ≠ NP [FF,BT,V]
- Hardness amplification

Definition: $f: \{0,1\}^n \rightarrow \{0,1\}$ is δ -hard if

for every efficient algorithm M : $Pr_x[M(x) \neq f(x)] \geq \delta$

$$f \longrightarrow \frac{\text{Hardness}}{\text{Amplification}} \longrightarrow f'$$
.01-hard (1/2 - ϵ)-hard

Previous Results

• Yao's XOR Lemma: $f'(x_1,...,x_n) := f(x_1) \oplus \cdots \oplus f(x_n)$ $f' \approx (1/2 - 2^{-n})$ -hard, almost optimal

Cannot use XOR in NP: f ∈ NP ⇒ f ′ ∈ NP

- Idea: $f'(x_1,...,x_n) = C(f(x_1),...,f(x_n))$, C monotone - e.g. $f(x_1) \land (f(x_2) \lor f(x_3))$. $f \in NP \Rightarrow f' \in NP$
- Theorem [O'D]: There is C s.t. f $' \approx (1/2 1/n)$ -hard
- Barrier: No monotone C can do better!

Our Result on Hardness Amplification

- Theorem [HVV]: Amplification in NP up to $\approx 1/2$ 2^{-n}
 - Matches the XOR Lemma
- Technique: Derandomize!

Intuitively,
$$f' := C(f(x_1),...,f(x_n),....f(x_2^n))$$

 $f'(1/2 - 1/2^n)$ -hard by previous result

Problem: Input length = 2ⁿ

Note C is constant-depth

Derandomize: input length \rightarrow n, keep hardness

Outline

Overview of derandomization

- Derandomization of restricted models
 - Application: Hardness Amplification in NP
 - New derandomization

- Derandomization of general models
 - BPP vs. PH
 - Proof of Lower Bound

Previous Results

Recall Theorem [N]:

BP $AC^0 \subseteq Time(n^{polylog n})$

- But AC⁰ is weak: Majority ∉ AC⁰
 - Majority $(x_1,...,x_n) := \sum_i x_i > n/2$?
- Theorem [LVW]:
 BP Maj AND ⊆ Time(2^{nε})

Derandomize incomparable classes

Our New Derandomization

Theorem [V]: BP Maj AC⁰ ⊆ Time(2^{nε})

Derandomize constant-depth circuits with few Majority gates =

- Improves on [LVW]. Slower than [N] but richer richest probabilistic circuit class in Time(2^{nε})
- Techniques: Communication complexity + switching lemma [BNS,HG,H,HM,CH]

Outline

Overview of derandomization

- Derandomization of restricted models
 - Application: Hardness Amplification in NP
 - New derandomization

- Derandomization of general models
 - BPP vs. PH
 - Proof of Lower Bound

BPP vs. POLY-TIME HIERARCHY

Probabilistic Polynomial Time (BPP):
 for every x, Pr [M(x) errs] ≤ 1%

Strong belief: BPP = P [NW,BFNW,IW,...]
 Still open: BPP ⊆ NP ?

- Theorem [SG,L; '83]: BPP $\subseteq \Sigma_2$ P
- Recall

$$\begin{array}{ccc}
\mathsf{NP} = \Sigma_1 \, \mathsf{P} & \to & \exists \ \mathsf{y} \ \mathsf{M}(\mathsf{x}, \mathsf{y}) \\
\Sigma_2 \, \mathsf{P} & \to & \exists \ \mathsf{y} \ \forall \ \mathsf{z} \ \mathsf{M}(\mathsf{x}, \mathsf{y}, \mathsf{z})
\end{array}$$

The Problem we Study

• More precisely [SG,L] give BPTime(t) $\subseteq \Sigma_2$ Time(t²)

Question[Rest of this Talk]:
 Is quadratic slow-down necessary?

Motivation: Lower bounds
 Know NTime ≠ Time on some models [P+,F+,...]
 Technique: speed-up computation with quantifiers
 To prove NTime ≠ BPTime cannot afford Σ₂Time(t²)

Approximate Majority

- Input: R = 101111011011101011
- Task: Tell $Pr_i[R_i = 1] \ge 99\%$ from $Pr_i[R_i = 1] \le 1\%$ Do not care if $Pr_i[R_i = 1] \sim 50\%$ (approximate)

The connection [FSS]

$$M(x;u) \in BPTime(t)$$

$$R = 11011011101011$$

 $|R| = 2^t \rightarrow R_i = M(x;i)$

Compute M(x):

Tell
$$Pr_u[M(x) = 1] \ge 99\%$$

from $Pr_u[M(x) = 1] \le 1\%$

Compute Appr-Maj

BPTime(t)
$$\subseteq \Sigma_2$$
 Time(t') $= \exists \forall \text{ Time(t')}$

Running time t'

- run M at most t'/t times

Bottom fan-in f = t' / t

Our Results

- Theorem[V]: Small depth-3 circuits for Approximate Majority on N bits have bottom fan-in Ω(log N)
- Corollary: Quadratic slow-down necessary for relativizing techniques:

BPTime A (t)
$$\subseteq \Sigma_2$$
Time A (t^{1.99})

- Theorem[DvM,V]: BPTime (t) $\subseteq \Sigma_3$ Time (t · log⁵ t)
 - Previous result [A]: BPTime (t) $\subseteq \Sigma_{O(1)}$ Time(t)
- For time, the level is the third!

Outline

Overview of derandomization

- Derandomization of restricted models
 - Application: Hardness Amplification in NP
 - New derandomization

- Derandomization of general models
 - BPP vs. PH
 - Proof of Lower Bound

Our Negative Result

• Theorem[V]: $2^{N^{\epsilon}}$ -size depth-3 circuits for Approximate Majority on N bits have bottom fan-in $f = \Omega(\log N)$

Recall:

Tells
$$R \in YES := \{ R : Pr_i [R_i = 1] \ge 99\% \}$$
 from $R \in NO := \{ R : Pr_i [R_i = 1] \le 1\% \}$

Proof

 Circuit is OR of s depth-2 circuits

$$C_1 C_2 C_3 \cdots C_s$$

By definition of OR:

$$R \in YES \Rightarrow some C_i (R) = 1$$

 $R \in NO \Rightarrow all C_i (R) = 0$

By averaging, fix C = C_i s.t.

$$Pr_{R \in YES}[C(x) = 1] \ge 1/s$$

 $\forall R \in NO \Rightarrow C(R) = 0$

• Claim: Impossible if C has bottom fan-in $\leq \varepsilon \log N$

CNF Claim

Depth-2 circuit

 \Rightarrow

CNF

$$(x_1Vx_2V\neg x_3) \wedge (\neg x_4) \wedge (x_5Vx_3)$$

bottom fan-in

 \Rightarrow

clause size

Claim: All CNF C with clauses of size ε·log N

Either
$$Pr_{R \in YES} [C(x) = 1] \le 1 / 2^{N^{\epsilon}}$$
 or there is $R \in NO : C(x) = 1$

Note: Claim ⇒ Theorem

Either
$$Pr_{R \in YES}[C(x)=1] \le 1/2^{N^{\epsilon}}$$
 or $\exists R \in NO : C(x) = 1$

Proof Outline

• Definition: $S \subseteq \{x_1, x_2, ..., x_N\}$ is a covering if every clause has a variable in S

E.g.:
$$S = \{x_3, x_4\}$$
 $C = (x_1 V x_2 V \neg x_3) \land (\neg x_4) \land (x_5 V x_3)$

Proof idea: Consider smallest covering S

Case |S| BIG :
$$Pr_{R \in YES} [C(x) = 1] \le 1 / 2^{N^{\epsilon}}$$

Case |S| tiny: Fix few variables and repeat

Either
$$Pr_{R \in YES} [C(x)=1] \le 1/2^{N^{\epsilon}}$$
 or $\exists \ R \in NO : C(x)=1$

Case |S| BIG

- $|S| \ge N^\delta \Rightarrow \text{have } N^\delta / (\epsilon \cdot \text{log N}) \text{ disjoint clauses } \Gamma_i \text{Can find } \Gamma_i \text{ greedily}$
- $Pr_{R \in YES}[C(R) = 1] \leq Pr[\forall i, \Gamma_i(R) = 1]$

$$= \prod_{i} Pr[\Gamma_{i}(R) = 1]$$
 (independence)

$$\leq \prod_{i} \left(1 - \frac{1}{100} \epsilon^{\log N}\right) = \prod_{i} \left(1 - \frac{1}{N^{O(\epsilon)}}\right)$$

$$= (1 - 1/N^{O(\epsilon)})^{|S|} \le e^{-N^{\Omega(1)}}$$

Either
$$Pr_{R \in YES}[C(x)=1] \le 1/2^{N^{\epsilon}}$$
 or $\exists R \in NO : C(x)=1$

Case |S| tiny

- $|S| < N^{\delta} \Rightarrow Fix variables in S$ - Maximize $Pr_{R \in YES}[C(x)=1]$
- Note: S covering ⇒ clauses shrink

Example
$$(x_1Vx_2Vx_3) \wedge (\neg x_3) \wedge (x_5V\neg x_4)$$
 $x_3 \leftarrow 0$ $x_4 \leftarrow 1$ $(x_1Vx_2) \wedge (x_5)$

Repeat
 Consider smallest covering S', etc.

Either
$$Pr_{R \in YES} [C(x)=1] \le 1/2^{N^{\epsilon}}$$
 or $\exists \ R \in NO : C(x)=1$

Finish up

- Recall: Repeat ⇒ shrink clauses
 So repeat at most ε·log N times
- When you stop:

Either smallest covering size $\geq N^{\delta}$

$$Or C = 1$$

Fixed \leq (ϵ ·log N) N $^{\delta}$ \ll N vars.

Set rest to $0 \Rightarrow R \in NO : C(R) = 1$

Conclusion

- Derandomization: powerful technique
- Restricted models: Constant-depth circuits (AC⁰)
 - Derandomization of AC⁰
 - Application: Hardness Amplification in NP [HVV]
 - Derandomization of AC⁰ with few Maj gates [V]
- General models: BPP vs. PH
 - BPTime(t) $\subseteq \Sigma_2$ Time(t²) [SG,L]
 - BPTime (t) Σ_2 Time (t^{1.99}) (w.r.t. oracle) [V]

Lower Bound for Approximate Majority

Thank you!