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1 Introduction and our results

This is a draft of a companion paper to [DILV24], to which we refer for background and
discussion.

A distribution D over {−1, 1}n is (ϵ, k)-biased if for every S ⊆ [n] of size 0 < |S| ≤ k
we have |E[DS]| ≤ ϵ, where DS :=

∏
i∈S Di. If ϵ = 0 then any k bits are uniform and

D is called k-wise uniform or simply k-uniform. If k = n then D is called ϵ-biased. The
study of these distributions permeates and precedes theoretical computer science. They were
studied already in the 40’s [RR47], are closely related to universal hash functions [CW79],
error-correcting codes (see e.g. [HH23]), and in their modern guise were introduced in the
works [ABI86, CGH+85, NN90].

1.1 Our results: Bounded uniformity

Exploited in countless works, one of the most useful properties of such distributions D
is that the distribution of their Hamming weight |1⊤D| is approximately binomial. Yet,
perhaps surprisingly, available bounds were either loose or only applied to specific settings of
parameters.

We obtain new lower bounds on P[|1⊤D| ≥ t], the cumulative density function of the
weight distribution of any k-uniform distribution D, generalizing or strengthening a number of
previous works. In particular this allows us to bound the distance between |1⊤D| and binomial.

∗Partially supported by NSF grant DMS 2147769.
†Supported by NSF grant CCF-2114116.
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We summarize our results in a table, then discuss them, and finally state corresponding
theorems.

t Upper bound Lower bound
(∀D, error is ≤) (∃D s.t. error is ≥)

Regime 1: t ∈ [0, c
√
n] c/

√
k [BGGP12, DGJ+10, DKN10] c/

√
k (Theorem 1)

Regime 2: t ∈ [c
√
n, c

√
nk] ct

2/n (Folklore, Corollary 11) ct
2/n/

√
k (Theorem 1)

Regime 3: t ∈ [c
√
nk,∞] (ckn/t2)k/2 (Folklore, Corollary 11) (ckn/t2)k/2 (Theorem 2)

Table 1: Upper and lower bounds on maxD |P[|1⊤D| ≥ t] − P[B ≥ t]| where D is k-wise
uniform on {−1, 1}n, and B is binomial

Regime 1. We obtain error bounds tight up to constant, in particular removing a logarithmic
factor from a lower bound sketched in [BGGP12].

Regime 2. The upper bound follows by applying the tail bound for k′-wise uniformity, for
k′ := a ≤ k, which shows that P[|1⊤D| ≥ t] ≤ c−a. This is also a bound on the error because
P[B ≥ t] ≤ c−t2/n as well.

Regime 3. As for Regime 2, we note that the upper bound for the tail is also an upper
bound on the error.

The lower bound follows from Theorem 2 because P[B ≥ t] ≤ c−t2/n which less than 1/2
the bound in Theorem 2 when t ≥

√
ckn. This generalizes [BS15].

To illustrate this regime, note that in particular for t = c
√
n log n we show that the error

is large: ≥ (c/ log n)k, whereas P[B ≥ t] ≤ 1/nc is exponentially smaller.

Theorem 1. For every k and t, there exists a k-wise uniform distribution D on {−1, 1}n
such that

P[1⊤D ≥ t]− P[1⊤U ≥ t] ≥ c
√

n
k
P[1⊤U = t] ≥ 2−t2/n/(2

√
k).

The latter inequality is Fact 7.

Note that P[1⊤U = t] on the right hand side cannot be replaced with P[1⊤U ≥ t].

Theorem 2. For every k ≤ (n/9)1/3 and t ≥
√
nk, there exists a k-wise uniform distribution

D on {−1, 1}n such that P[1⊤D ≥ t] ≥ 1
4k3/2

( kn
16t2

)k/2.

1.2 Our results: Small-bias distributions

We develop a paradigm to obtain small-bias distributions from k-uniform distributions while
retaining some of their deviation properties. The paradigm has two steps. First, symmetrize
the distribution. If the distribution is typically supported on nearly balanced strings, this
step has the effect of making the bias small on tests of size not too large. Second, add noise,
following [LV17]. This makes the bias small on large tests. Historically, this was our first
approach to obtain the main results in [DILV24].

Using this approach we extend the results in the previous subsection to small-bias
distributions.
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Corollary 3. For any k and t ∈ [c
√
n, (ckn3)1/4], there exists an (ck/n)k/4-biased distribution

D such that P[1⊤D ≥ t] ≥ min{1/
√
k, (ckn/t2)k/2}.

1.3 Our results: Small-bias distributions plus noise

A main result from [DILV24] is that n−k-bias distributions plus noise do not fool thresholds
with error less than ck. This is then used to show that they do not fool, even with constant
error, other models like small-space algorithms or small-depth circuits.

In this paper we give four alternative proofs of this main result from [DILV24]. Also, the
proofs provide additional information. In [DILV24] the pseudorandom distribution put more
mass than the binomial on the tail. In some of the proofs presented here, the mass will be
less. This also provides a more complete picture of how these distributions can be designed.

One proof follows from Corollary 3. The other three proofs are presented in Section 5.
These proofs may be of independent interest. One proof uses convex geometry and a new
bound between the normal distribution and any mixture of few normal distributions with
bounded variance.

2 Proof of Theorem 2

The proof of Theorem 2 follows the same strategy in [BS15]. However, there are some
noticeable differences. First, we decouple the threshold and the error parameters. Second,
we do not pass the argument to the Gaussian distribution. Finally and most importantly,
their proof appears to incur a loss of a 1/

√
n factor in their lower bound on the tail, which is

significant in certain regimes of parameters, e.g. k = 2 and t = no(1).
To prove Theorem 2, we use tools in approximation theory. In particular, to remove the

loss in [BS15], we rely on the following inequality by Erdéyi.

Lemma 4 (Theorem 2.1 (q = 1 case) in [Erd16]). For m ∈ N and L > 0, let Q ∈ C[x] be a
degree-d univariate polynomial (with complex coefficients) such that

|Q(0)| > 1

L

( m∑
j=1

|Q(j)|
)
.

Then d ≥ 7
√
m/L.

We also need the following inequality due to Ehlich, Zeller, Coppersmith, Rivlin, and
Cheney.

Lemma 5 (Lemma 20 in [BS15]). Let p be a univariate degree-d polynomial such that
|p(i)| ≤ 1 on i ∈ {0, . . . ,m}, where 3d2 ≤ m. Then |p(x)| ≤ 3/2 for every x ∈ [0,m].

We will also use the following extremal property of Chebyshev polynomials Tk.

Fact 6. Let p be a univariate polynomial of degree k such that |p(t)| ≤ 1 on [−1, 1]. For
every s ≥ 1, |p(s)| ≤ Tk(s) ≤ (2|s|)k, where Tk is the Chebyshev polynomial of degree k.
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Proof. Fill in later.

Fact 7 (cf. Lemma 23 in [BHLV19]). If a is an integer such that |a| ≤ n and a ≡ n mod 2,
then P[B = a] ≥ 2−a2/n 1

2
√
n
.

By strong duality, we have

max
D

P
[
1(1⊤D ≥ t)

]
= min

p
E
[
p(U)

]
,

where the maximum is over all k-wise uniform distributions D, and the minimum is over all
degree-k (upper sandwiching) polynomials p : {−1, 1}n → R such that p(x) ≥ 1(1⊤x ≥ t).

Let p be a degree-k polynomial attaining δ := minp E[p(U)]. Define the univariate
polynomial q to be the symmetrization of p, that is, q(

∑n
i=1 xi) := p(x).

We use Lemma 4 and 5 to bound q(t) on t ∈ [−
√
kn,

√
kn].

Lemma 8. |q(t)| ≤ 2δ · k3/2 · 2k+1 for every t ∈ [−
√
kn,

√
kn],

To prove Lemma 8, we use Lemma 4 to bound q(t) on the integer points between −
√
kn

and
√
kn, and then extend the bound to the whole interval using Lemma 5.

Claim 9. 0 ≤ q(t) ≤ δ · k3/2 · 2k+1 for every t ∈ {−
√
kn, . . . ,

√
kn},

Proof of Lemma 8. We bound q(t) on [0,
√
kn]. A similar argument handles [−

√
kn, 0]. Let

Q be the degree-k polynomial Q(t) := q(
√
kn − t). By Claim 9, we have |Q(j)| ≤ M on

j ∈ {0, . . . ,
√
kn}, where M := δ · k3/2 · 2k+1. As 3k2 ≤

√
kn for k ≤ (n/9)1/3, by Claim 9,

we have q(t) ≤ 3M/2 for every t ∈ [0,
√
kn].

Proof of Claim 9. Fix a point t0 ∈ [−
√
kn,

√
kn] and without loss of generality assume t0 > 0.

As P[B = t] is decreasing on positive integers t and q(t) ≥ 0 on the support of B, we have

P
[
B =

√
kn

] √
nk∑

j=1

q(t0 − j) ≤

√
nk∑

j=1

P
[
B = t0 − j

]
q(t0 − j)

≤ E[q(B)] = δ.

Rearranging gives √
nk∑

j=1

q(t0 − j) ≤ δ

P[B =
√
kn]

≤ δ ·
√
n · 2k+1.

Consider the polynomial Q(t) := q(t − t0) of degree k. Let m =
√
nk, and L = m/k2 =

n1/2k−3/2. As k < 7
√
m/L = 7k, by the contrapositive of Lemma 4, we have

|q(t0)| = |Q(0)| ≤ 1

L

m∑
j=1

|Q(j)|

=
1

L

√
kn∑

j=1

q(t0 − j)

≤ δ ·
√
n · 2k+1

L
= δ · k3/2 · 2k+1.
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Let s :=
√
kn. Observe that q(t) ≥ 1(t ≥ t) = 1. Let q̃s(θ) = q(θs). By Lemma 8, we

have maxθ∈[−1,1]|q̃(θ)| ≤ 2δ · k3/2 · 2k+1. By Fact 6, for t ≥ s, we have

1 ≤ q(t) = q̃s

( t

s

)
≤

(2t
s

)k

· max
θ∈[−1,1]

|q̃s(θ)|

≤
( 2t√

kn

)k

· 2δ · k3/2 · 2k+1.

Rearranging gives δ ≥ 1
4k3/2

( kn
16t2

)k/2.

3 Proof of Corollary 3

Let D be the symmetrization of the k-wise uniform distribution in Theorem 2 with the
t replaced with 3t. Let D′ be D conditioned on |1⊤D| ≤ n0.9. By Corollary 11, D′ is
δ := (k/n0.8)k/2-close to D.

Consider D′ ·N 1
2
. We have |E[D′S]| ≤ δ for |S| ≤ k. For |S| ∈ [k + 1, n], by Corollary 13,

we have |E[D′S]| ≤ n−0.1k. For |S| ≥ n0.9, we have |E[N1/2]| ≤ 2−n0.9
.

By Theorem 2, we have P[1⊤D′ ≥ 3t] ≥ (ckn/t2)k/2+ δ. Note that E[1⊤(x ·Nρ)] = ρ(1⊤x).
So conditioned onD′ ≥ 3t, by a Chernoff bound, the probabilityD′·N1/2 ≥ t is 1−2−Ω(t) ≥ 1/2.
Hence P[1⊤(D′ ·Nρ) ≥ t] ≥ (ckn/t2)k/2 + δ ≥ (ckn/t2)k/2.

4 Proof of Theorem 1

We rely on the result from [BHLV19] that for every a, m, and k ≤ n/(8m2), there is a k-wise
uniform distribution D supported on {x ∈ {−1, 1}n : 1⊤x ≡ a (mod m)}. Moreover, implicit
in the proof they show that the probability mass on every point s in the support of D is at
least (m/4) · P[1⊤U = s].

Let m =
√

n/(8k). We can pick a such that t belongs to the support of some k-wise
uniform D, from which we conclude that

ϵ := P[1⊤D = t]− P[1⊤U = t] ≥ (m/4− 1)P[1⊤U = t].

Now, we have either

P[1⊤D ≥ t]− P[1⊤U ≥ t] ≥ ϵ/2 or

P[1⊤D ≤ t]− P[1⊤U ≤ t] ≥ ϵ/2,

as otherwise, summing both inequalities give (1 + P[1⊤D = t]) − (1 + P[1⊤U = t]) < ϵ, a
contradiction. If we are in the second case, we can consider D, the complement of D, which
is also k-wise independent, and P[1⊤D ≤ t] = P[1⊤(D) ≥ t].
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5 Alternative proofs that small-bias plus noise does not

fool thresholds

We begin with some preliminaries. We need the following well-known moment bounds for
k-wise uniform distributions. For a short proof see [BHLV19], Lemma 32.

Lemma 10. Let D be a (2k)-wise uniform distribution on {−1, 1}n. Then E[(
∑n

i=1Di)
2k] ≤√

2 (2kn/e)k.

By Markov’s inequality, this implies the following tail bound.

Corollary 11. Let D be a (2k)-wise uniform distribution on {−1, 1}n. For every integer
t > 0, we have

P
[
|1⊤D| ≥ t

]
≤

√
2

(
2kn

et2

)k

.

The following fact says that a distribution remains close to itself after conditioning on
any high probability event.

Fact 12. Let D be any distribution on {−1, 1}n and E be any event. Then the conditional
distribution D | E is (1− P[E])-close to D.

Proof. Let E be the complement of E. For every Boolean test g : {−1, 1}n → {0, 1} we have

E[g(D)] = E[g(D | E)](1− P[E]) + E[g(D | E)]P[E]

= E[g(D | E)] +
(
E[g(D | E)]− E[g(D | E)]

)
P[E].

So |E[g(D)]− E[g(D | E)]| ≤ P[E], as |E[g(D | E)]− E[g(D | E)]| is bounded by 1.

The (shifted) Krawtchouk polynomials K can be defined by

K(k, t) :=
∑
|S|=k

zS,

where z ∈ {−1, 1}n is any string such that 1⊤z = t, and zS is the product of the bits of z
indexed by S.

For discussion and the next bound see [DILV24].

Corollary 13. For every 1 ≤ ℓ ≤ n, we have
∣∣K(ℓ, t)

∣∣ ≤ (
n
ℓ

)
( ℓ
n
+ t2

n2 )
ℓ
2 .

The next lemma is a general lemma showing that adding noise to a symmetric nearly
k-wise uniform distribution causes it to be small-biased.

Lemma 14. Let D be a symmetric distribution supported on {x ∈ {−1, 1}n : |1⊤x| ≤ t} which
is ϵ-close to being (2k)-wise uniform. Then D ·N1/2 is

(
(2/n)k + (2t/n)2k + 2−

√
n + ϵ

)
-biased.

Proof. Let D′ = D · N1/2. Note that noise does not increase bias. If |S| ≤ 2k, then
E[D′S] ≤ E[DS] ≤ ϵ. If 2k ≤ |S| ≤

√
n, then by Corollary 13 we have

|E[D′S]| ≤ |E[DS]| ≤ K(|S|, t)(
n
|S|

) + ϵ ≤
(
|S|
n

+
t2

n2

)|S|/2

+ ϵ ≤
(
2

n

)k

+

(
2t

n

)2k

+ ϵ.

Finally, if |S| ≥
√
n, then |E[D′S]| ≤ |E[NS

1/2]| ≤ 2−
√
n.
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5.1 Sums of independent random variables and normal distribution

In this section we collect several results about normal and binomial distributions that are
used later. For context, we begin with the well-known Berry–Esseen theorem. Let N (0, 1)
denote the standard normal distribution, which has mean 0 and variance 1.

Lemma 15 (Theorem 11.2 in [Das08]). Let Y1, . . . , Yn be n independent random variables
with E[Yi] = 0, Var[Yi] = σ2

i , E[|Yi|3] < ∞. Let Y :=
∑n

i=1 Yi. For every θ ∈ R,∣∣∣∣P[ Y(∑n
i=1 σ

2
i

)1/2 ≥ θ

]
− P

[
N (0, 1) ≥ θ

]∣∣∣∣ ≤ ∑n
i=1 E[|Yi|3](∑n
i=1 σ

2
i

)3/2 .
For fixed ρi’s and σi’s, the additive error given by Lemma 15 is roughly 1/

√
n. So, for

Theorem 21 to hold with k ≥ c log n, we would need a more refined approximation. For this
reason, we will be using the following Cramér’s estimate of sums of independent random
variables, which gives a multiplicative rather than additive approximation in terms of the
standard normal distribution.

Lemma 16 (Chapter VIII, Equation (2.41) in [Pet75]). There exists a constant c > 0 such
that the following holds. Let Y1, . . . , Yn be n independent random variables with E[Yi] = 0,
and E[Y 2

i ] = σ2
i for each i ∈ [n]. Let Y :=

∑n
i=1 Yi. For 0 ≤ θ ≤ cn1/6, there exists an

ϵ ∈ [0, (θ+1)
c
√
n
] such that

P
[

Y(∑n
i=1 σ

2
i

)1/2 ≥ θ

]
= P

[
N (0, 1) ≥ θ

]
· exp

( ∑n
i=1 E[Y 3

i ]

6
(∑n

i=1 σ
2
i

)3/2 · θ3
)
(1 + ϵ).

To relate Lemma 16 to Lemma 15, note that when θ is small, exp(
∑n

i=1 E[Y 3
i ]

6(
∑n

i=1 σ
2
i )

3/2 · θ3) is

roughly 1 +
∑n

i=1 E[Y 3
i ]

(
∑n

i=1 σ
2
i )

3/2 . We will use following approximation on the tails of the standard

normal distribution.

Lemma 17 (Lemma 22.2 in [Kle20]). For any θ > 0,

1

θ + 1
θ

≤ P
[
N (0, 1) ≥ θ

]
·
√
2π

e−θ2/2
≤ 1

θ
.

5.2 Three more ways to get bounded-uniform distributions with
contrained support

The first is given immediately from this result.

Lemma 18 ([BHLV19]). For any integer k, there is a symmetric distribution D supported
on {x ∈ {−1, 1}n : |1⊤x| ≤ 10

√
kn} which is (2k)-wise uniform.

For the second, rather then relying on the somewhat technical result in [BHLV19], we use
Carathéodory’s theorem from convex geometry, stated next, which has a simple proof. See
e.g. Theorem 2.3 in Chapter 1 in [Bar02]:
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Lemma 19. Let S ⊂ Rd be a set. Every point in the convex hull of S can be represented as
a convex combination of d+ 1 points from S.

Next is our application of this lemma in this context.

Lemma 20. For any integer k and t, there is a symmetric distribution D supported on
{x ∈ {−1, 1}n : 1⊤x ∈ {w1, . . . , w2k+1} ∧ |w1|, . . . , |w2k+1| ≤ t} which is (ckn/t2)k/2-close to
a (2k)-wise uniform distribution.

Proof. Let Z := {−n,−n + 1, . . . , n}. For each i ∈ Z define vi := (i, i2, . . . , ik) ∈ Rk and
define b ∈ Rk as b :=

∑
i∈Z P[B = i]vi = (E[B],E[B2], . . . ,E[Bk]), which is manifestly in the

convex hull of the vi. By Lemma 19 b is a convex combination of k+ 1 points vi. Let W ⊂ Z
be the corresponding set of k + 1 indices i. So then we can write b =

∑
i∈W pivi where the pi

are ≥ 0 and sum to 1.
Let DW be the distribution over W where P[DW = i] = pi. We have (E[DW ],E[D2

W ], . . . ,
E[Dk

W ]) = b and so the first k moments of DW match those of B. Let Dk be the symmetric
distribution over {−1, 1}n such that P[1⊤(Dk) = i] = P[DW = i]. Note that Dk is k-
wise uniform. We conclude by taking Dk conditioned on the event 1⊤(Dk) < t, which is
(ckn/t2)k/2-close to Dk by Corollary 11 and Fact 12.

Finally, we mention that a third way is to use the standard construction of bounded-
uniform distributions via BCH codes, and then use results from algebraic geometry to bound
the Hamming weight, specifically Theorem 18 in [MS77].

5.3 BHLV

Here we prove Theorem 21, which immediately follows from Lemma 22.

Theorem 21. For any ρ ∈ (0, 1] and k ≤ cρ2n1/3, there is a n−ck-biased distribution D on
{−1, 1}n and θ = c

√
nk/ρ such that

P[B ≥ θ] ≥ P[1⊤(D ·Nρ) ≥ θ] + 2−ck/ρ2 .

Lemma 22. Let k and ρ ∈ (0, 1] such that k ≤ cρ2n1/3. Let θ = c
√
nk/ρ. For every

x ∈ {−1, 1}n with |1⊤x| ≤ 10
√
nk we have

P
[
B ≥ θ

]
≥ P

[
1⊤(x ·Nρ) ≥ θ

]
+ 2−ck/ρ2 .

Proof of Theorem 21 assuming Lemma 22. Let D := D′ · N1/2, where D′ is the (2k)-wise

uniform distribution from Lemma 18 supported on {x ∈ {−1, 1}n : |1⊤x| ≤ 10
√
kn}. By

Lemma 14, D is (ck/n)k-biased. The theorem now follows by Lemma 22, as D · Nρ =
D′ ·N1/2 ·Nρ = D′ ·Nρ/2.

Proof of Lemma 22. Fix any x ∈ {−1, 1}n. Note that for any i ∈ [n],

E[(x ·Nρ)i] = ρxi, E[(x ·Nρ)
2
i ] = 1 and E[(x ·Nρ)

3
i ] = −ρxi

Let us consider the mean zero variables Yi := (x ·Nρ)i − ρxi. We have

E[Yi] = 0, σ2
ρ := E[Y 2

i ] = 1− ρ2, and E[Y 3
i ] = 2ρ(ρ2 − 1)xi = −2ρ · σ2

ρ · xi.

8



Now fix any x : |1⊤x| ≤ 10
√
nk := t. Define θ = β

√
nk/ρ for some parameter β. Since

σ−1
ρ = 1√

1−ρ2
≥ 1 + ρ2

2
,

θ − ρ1⊤x

σρ

√
n

≥
(
1 +

ρ2

2

)
θ − ρt√

n
≥ β

√
k

(
1

ρ
+

ρ

4

)
where the last inequality holds for β > 60. Thus we have

P
[
1⊤(x ·Nρ) ≥ θ

]
= P

[∑n
i=1 Yi

σρ

√
n

≥ θ − ρ1⊤x

σρ

√
n

]
≤ P

[∑n
i=1 Yi

σρ

√
n

≥ β
√
k

(
1

ρ
+

ρ

4

)]
≤ 4P

[
N (0, 1) ≥ β

√
k

(
1

ρ
+

ρ

4

)]
.

The last ≤ follows from Lemma 16 and bounds on the error terms which we justify at the
end. And again by Lemma 16,

P
[
B ≥ θ

]
= P

[
B√
n
≥ θ√

n

]
≥ P

[
N (0, 1) ≥ β

√
k

ρ

]
.

Next, using both sides of Lemma 17,

P
[
N (0, 1) ≥ β

√
k

ρ

]
4P

[
N (0, 1) ≥ β

√
k

(
1
ρ
+ ρ

4

)] ≥ ce−β2k/8.

Setting β to a large enough constant concludes the proof.
It remains to bound the error term from Lemma 16. We claim

exp

(−2ρσ2
ρ1

⊤x

6(σρ

√
n)3

·
(
cβ

√
k

ρ

)3)
·
(
1 +

cβ
√
k

ρ
√
n

)
≤ 4.

Since k ≤ cρ2n1/3, the right term is ≤ 2 and the first term is ≤ 1 + cβ3k2

ρ2σρn
≤ 2 since 1⊤x ≥ −t

and exp(x) ≤ 1 + 2x for 0 < x < 1.

5.4 Caratheodory and mixture of gaussians

Next we give an alternate version of Theorem 21, stated below.

Theorem 23. For any ρ ∈ (0, 1] and k ≤ cn1/2 there is a n−ck-biased distribution D on
{−1, 1}n and some θ such that

|P[B ≥ θ]− P[1⊤(D ·Nρ) ≥ θ]| ≥ 2−ck/ρ − c√
n
.
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The main technical result we need, which may be of independent interest, is stated next.
We defer its proof to the next section.

Lemma 24. Let M be a mixture of k Gaussian distributions each with variance σ2 = 1− ρ2.
Then there exists an interval I such that

|P[N (0, 1) ∈ I]− P[M ∈ I]| ≥ 2−ck/ρ.

In particular, up to a factor 2 the same bound applies to some threshold.

Proof of Theorem 23 assuming Lemma 24. Let D′ denote the distribution from Lemma 20
with t = k1/4n3/4, and define D = D′ ·N1/2 By Lemma 14, D is ϵ-biased where

ϵ =

(
ct

n

)2k

+

(
ckn

t2

)k

=

(
ck

n

)k/2

.

Note D · Nρ = D′ · Nρ/2. Now we claim that by the Berry-Essen theorem (Lemma 15),
D′ ·Nρ/2 is (cn−1/2) close to a mixture of 2k + 1 Gaussian distributions, each with variance
1− ρ2/4. To see this, note for any i ∈ [n],

E[(D′ ·Nρ/2)i] = (ρ/2)D′
i, E[(D′ ·Nρ/2)

2
i ] = 1 and E[(D′ ·Nρ/2)

3
i ] = −(ρ/2)D′

i.

Next we consider the mean zero variables Yi := (D′ ·Nρ/2)i − (ρ/2)D′
i. We have

E[Yi] = 0, E[Y 2
i ] = 1− ρ2/4, and E[|Yi|3] ≤ c.

Recall D′ is supported on ≤ 2k + 1 distinct weights. Condition on D′ being fixed to one of
these weights. Then for any θ, by Lemma 15 we have

P
[
1⊤(D′ ·Nρ/2) ≥ θ

]
= P

[∑n
i=1 Yi√
n

≥ θ − (ρ/2)1⊤D′
√
n

]
≤ P

[
N (µ, 1− ρ2/4) ≥ θ

]
+

c√
n
.

Note µ only depends on the weight of D′. Thus D′ · Nρ/2 is (c/
√
n)-close to a mixture of

2k + 1 Gaussians each with variance 1− ρ2/4.
On the other hand, again by Lemma 15,

P
[
B ≥ θ

√
n
]
= P

[
B√
n
≥ θ

]
≥ P

[
N (0, 1) ≥ θ

]
− c√

n
.

Combining the above with Lemma 24, there exists some θ such that∣∣∣P[B ≥ θ
√
n
]
− P

[
1⊤(D ·Nρ) ≥ θ

√
n
]∣∣∣ ≥ ∣∣∣∣P[N (0, 1) ≥ θ

]
− P

[
N (µ, 1− ρ2/4) ≥ θ

]∣∣∣∣− c√
n

≥ 2−ck/ρ − c√
n
.
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6 Proof of Lemma 24

We wish to show that a linear sum of k exponential functions with variance < 1 can not
approximate the standard normal well. We can factor the two expressions so the mixture
becomes a linear sum of k exponential functions, which can be written as

∑
i∈[k] aie

bi , while

the standard normal can be written as eαx
2
. This factoring crucially uses the fact the variances

in the mixture are identical.
We then argue the distance must be large for some point. To prove this, we show the

entries in the inverse of a Vandermonde like matrix which corresponds to the eαx
2
are not

too large. This step is the bulk of the proof. On the other hand, the Vandermonde matrix
corresponding to the sum of exponentials is singular. After some matrix norm manipulations
this allows us to achieve the desired result.

Lemma 25. Suppose that f(x) is the PDF of a Gaussian distribution with variance 1, and
g(x) is the PDF of a mixture of k Gaussian distributions with variance 1 − ρ2 = σ2 < 1.
Then

∥f − g∥∞ ≥ e−ck/ρ.

We let ϕ(x) := 1√
2π
e−x2/2 denote the probability density function of N (0, 1).

Proof of Lemma 24 assuming Lemma 25. Let g(x) denote the PDF of M and set h(x) =
ϕ(x)− g(x). By Lemma 25, there exists some a ∈ R with

|h(a)| ≥ e−ck/ρ.

We have |ϕ′(x)| ≤ (2πe)−1/2 and |g′(x)| ≤ (2πe)−1/2/σ2 for all x, so |h′(x)| ≤ (2πe)−1/2(1 +
1
σ2 ) <

1
2σ2 . We claim there exists an interval I ⊆ R with

|P[N (0, 1) ∈ I]− P [M ∈ I]| ≥ 2σ2
(
e−ck/ρ

)2
= e−ck/ρ.

To see this, assume that h(0) ≥ e−ck/ρ. Then h(x) ≥ e−ck/ρ − 1
2σ2 |x| for any x. So we set

the interval I = [−2σ2e−ck/ρ, 2σ2e−ck/ρ], and then
∫
I
h(x)dx ≥ 2σ2(e−ck/ρ)2. Finally, note the

assumption that a = 0 can be made without loss of generality.

6.1 Proof of Lemma 25

The main technical result we need is the following.

Lemma 26. Let α,D > 0 be fixed. Let

∆(k) := inf
g
∥eαx2 − g(x)∥∞

where the infimum is over g that are a linear combination of k exponential functions, and the
norm ∥ · ∥∞ is the supremum over the interval [−D

√
k,D

√
k]. Then we have

∆(k) ≥ exp
(−ck

D2α

)
.

11



Proof of Lemma 25 assuming Lemma 26. Without loss of generality we may assume that
f(x) is the PDF of the standard normal distribution with mean 0 and variance 1. Define
f(x) = ex

2/2σ2
f(x) = eαx

2
with α = 1

2σ2 − 1
2
, and g(x) = ex

2/2σ2
g(x). Now g(x) is a linear

combination of k exponential functions. If we choose some D > 0 then Lemma 26 gives us

∆(k) ≥ exp
(−ck

D2α

)
,

where ∆(k) is the supremum of |f − g| over the interval [−D
√
k,D

√
k]. It follows that

∥f − g∥∞ = ∥e−x2/2σ2

(f − g)∥∞ ≥ exp
(−D2k

2σ2

)
∆(k) = exp

(
− k

(D2

2σ2
+

c

D2α

))
,

Then if we set D2 = c
√
σ2/α we have

∥f − g∥∞ ≥ exp
( −ck√

σ2α

)
= exp

( −ck√
1− σ2

)
.

6.2 Proof of Lemma 26

Definition 27. For a function f : Z → R define the (k + 1) × (k + 1) matrix Mk(f) by
Mk(f)i,j = f(i+ j − k − 2). For example,

M3(f) =


f(−3) f(−2) f(−1) f(0)
f(−2) f(−1) f(0) f(1)
f(−1) f(0) f(1) f(2)
f(0) f(1) f(2) f(3)


Fact 28. If f(x) =

∑k
i=1 aie

bix, then detMk(f) = 0.

Proof. We can write f(x) =
∑k

i=1 aiλ
x
i where λi = eβi . Consider the polynomial

p(x) = (x− λ1)(x− λ2) · · · (x− λk) = xk + ck−1x
k−1 + · · ·+ c1x+ c0.

Because λ1, λ2, . . . , λk are roots of p(x), we have

0 =
k∑

i=1

aiλ
x
i p(λi) =

k∑
i=1

ai(λ
x+k
i + ck−1λ

x+k−1
i + · · ·+ c0λ

n
i ) =

= f(x+ k) + ck−1f(x+ k − 1) + · · ·+ c1f(x+ 1) + c0f(x).

For the vector c = [c0 c1 · · · ck−1 1] we get cMk(f) = 0, so detMk(f) = 0. We claim the
sequence . . . , f(−1), f(0), f(1), f(2), . . . satisfies a linear recurrence of order k, which implies
the columns of Mk(f) are linearly dependent.

To prove the claim, we show the existence of c1, . . . , ck such that

f(x) = c1f(x− 1) + · · ·+ ckf(x− k).

Solving for c1, . . . , ck, we get

1 =
c1
eb1

+ · · ·+ ck
ekb1

, . . . , 1 =
c1
ebk

+ · · ·+ ck
ekbk

.

There exists a solution to this system.

12



Fact 29. If |x| < 1 then
∞∏
i=1

(1− xi) ≥ exp
( −c

1− x

)
.

Proof. Using absolute convergence, and the inequality (1− xj) ≥ jxj(1− x), we get

∞∑
i=1

log(1−xi) = −
∞∑
i=1

∞∑
j=1

xij

j
= −

∞∑
j=1

∞∑
i=1

xij

j
= −

∞∑
j=1

xj

j(1− xj)
≥ −

∞∑
j=1

1

j2(1− x)
= − π2

6(1− x)
.

Then apply the exponential function to both sides.

Lemma 30. Suppose that q > 1 and k is a positive integer. Let A := Mk(q
x2
)−1. Then

|Ai,j| ≤

(
k

i− 1

)(
k

j − 1

)
∏k

i=1(1− q−2i)
.

Proof of Lemma 26. Let f(x) = eαx
2
and g(x) =

∑
i=1 aie

bix. Define f̃(x) = f(Dx/
√
k) =

qx
2
, where q = eD

2α/k and g̃(x) = g(Dx/
√
k). By Fact 28, Mk(g̃) is singular. Let A be the

inverse of Mk(f̃). The matrix

AMk(g̃) = AMk(f̃)− AMk(f̃ − g̃) = I − AMk(f̃ − g̃)

is singular. It follows that

∥A∥σ∥Mk(f̃ − g̃)∥σ ≥ ∥AMk(f̃ − g̃)∥σ ≥ 1

where ∥A∥σ is the spectral norm of A. The matrix A is positive definite symmetric and the
sum of the singular values is the sum of the eigenvalues which is equal to the trace of A. By
Lemma 30 we get

∥A∥σ ≤ trace(A) ≤

k∑
i=0

(
k

i

)2

∏k
i=1(1− q−2i)

=
4k∏k

i=1(1− q−2i)
.

On the other hand,
∥Mk(f̃ − g̃)∥∞ ≤ (k + 1)∥f − g∥∞.

Combining everything and using Fact 29, we get

∥f − g∥∞ ≥
∏k

i=1(1− q−2i)

4k(k + 1)
≥ exp

( −c

1− q−2
− log(4)k − log(k + 1)

)
= exp

(−ck

D2α

)
.
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6.3 Proof of Lemma 30

First we define Vandermonde matrices.

Definition 31.

Vand(1, x1, x2, . . . , xk) =


1 1 1 · · · 1
1 x1 x2 · · · xk

1 x2
1 x2

2 · · · x2
k

...
...

...
...

1 xk
1 xk

2 · · · xk
k

 .

Proof. We can transform Mk(q
x2
) into Vand(1, q2, q4, . . . , q2k) by multiplying the rows and

columns ofMk(q
x2
) with powers of q. Thus by Proposition 32, stated at the end, (−1)i+jAi,j

∏k
b=1(q

2b−
1) is a sum of

(
k

i−1

)(
k

j−1

)
powers of q. This implies (−1)i+jAi,j

∏k
b=1(1− q−2b) is also a sum

of
(

k
i−1

)(
k

j−1

)
powers of q.

Next we claim no positive powers of q appear in the aforementioned sum. We define

Bk(q) :=


q(−k)2/2

q(2−k)2/2

. . .

qk
2/2


so that we can write

Mk(q
x2

) = Bk(q)Ck(q)Bk(q)

where Ck(q) is a matrix with 1 on the diagonal and negative powers of q outside of the
diagonal. In particular, Ck(q) converges to the identity matrix as q → ∞. So

A = A(q) = Mk(q
x2

)−1 = Bk(q)
−1Ck(q)

−1Bk(q)
−1

converges as q → ∞ because bothBk(q)
−1 and Ck(q)

−1 converge. This shows thatAi,j

∏k
b=1(1−

q−2b) cannot have positive powers of q in its corresponding sum. Since

|Ai,j|
k∏

b=1

(1− q−2b)

is a sum of
(

k
i−1

)(
k

j−1

)
non-positive powers of q and q > 1 we get

|Ai,j|
k∏

b=1

(1− q−2b) ≤
(

k

i− 1

)(
k

j − 1

)
.

Proposition 32. Let V = Vand(1, q, q2, . . . , qk). Then

(−1)i+j(V −1)i,j

k∏
b=1

(qb − 1)

is a sum of
(

k
i−1

)(
k

j−1

)
powers of q.
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Proof. Note that det(V ) =
∏

0≤a<b≤k(q
b − qa). Let Ṽi be the matrix V with the i-th column

removed, and Ṽj,i be the matrix V with the j-th row and i-th column removed. By the
formula of V −1 from Cramer’s rule we get

(V −1)i,j =
(−1)i+j det(Ṽj,i)

det(V )
.

Note that Ṽk+1,i = Vand(1, q, · · · , qi−2, qi, . . . , qk+1), so

det(Ṽk+1,i) =
∏

0≤a<b≤k
a,b ̸=i−1

(qb − qa).

So we have ∏k
b=1(q

b − 1) det(Ṽk+1,i)

det(V )
=

∏k
b=1(q

b − 1)∏k
j=i(q

j − qi−1)
∏i−2

j=0(q
i−1 − qj)

which is up to a power of q factor equal to∏k
j=1(q

j − 1)∏k−i+1
j=1 (qj − 1)

∏i−1
j=1(q

j − 1)
=

(
k

i− 1

)
q

,

where the right-hand side is a Gaussian q-binomial coefficient which is a sum of
(

k
i−1

)
powers

of q. To see this, consider the generating function
∏k−1

j=0(1 + qjt) =
∑k

j=0 q
j(j−1)/2

(
k
j

)
q
tj . This

implies that
(

k
i−1

)
q
is a sum of

(
k

i−1

)
powers of q.

The quotient

det



1 1 · · · 1
x1 x2 · · · xk

...
...

...

xj−2
1 xj−2

2 · · · xj−2
k

xj
1 xj

2 · · · xj
k

...
...

...
xk
1 xk

2 · · · xk
k



det


1 1 · · · 1
x1 x2 · · · xk

x2
1 x2

2 · · · x2
k

...
...

...
xk−1
1 xk−1

2 · · · xk
k−1


is equal to the elementary symmetric polynomial ek+1−j(x1, x2, . . . , xk) which is the sum of
all

(
k

k+1−j

)
=

(
k

j−1

)
squarefree monomials in x1, x2, . . . , xk.

1

1This can be seen as follows. We start by repeating a proof for the determinant of the regular Vandermonde.
Note (xj − xi) is a factor of the determinant, since if we replace xj with xi the determinant becomes 0. Thus
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If we apply this to the case where x1, x2, . . . , xk are 1, q, . . . , qi−2, qi, . . . , qk then we see
that

det(Ṽj,i)

det(Ṽk+1,i)
= ek+1−j(1, q, . . . , q

i−2, qi, . . . , qk)

is a sum of
(

k
j−1

)
powers of q. We conclude that

(−1)i+j(V −1)i,j

k∏
b=1

(qb − 1) =
det(Ṽj,i)

det(Ṽk+1,i)
·
∏k

b=1(q
b − 1) det(Ṽk+1,i)

det(V )
.

is a sum of
(

k
i−1

)(
k

j−1

)
powers of q.
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