
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lecture 14, Scribe: Xuangui Huang

This lecture is given by Chin Ho Lee based on the paper [1]. In this lecture
he proved the upper bound of the approximate degree of the surjectivity
function. This upper bound matches the lower bound we have seen in this
class, so we get a tight result of the approximate degree of SURJ.

1.1 Upper Bound of d1/3(SURJ)

Theorem 1. d1/3(SURJR,N) = Õ(N3/4).

Recall that SURJR,N : [R]N → {0, 1} is the function that gets value 1 iff
for all range item r ∈ [R], r appears in input. Without loss of generality we
can assume R = O(N) because:

• if R > N , then this function is always 0;

• if R � N , then SURJR,N(x1, . . . , xN) = SURJR+N,2N(x1, . . . , xN , R +
1, . . . , R +N).

We will prove this theorem in a more general setting: let R ⊆ [R], define
SURJR(x) = 1 iff ∀r ∈ R, r appears in x. Then what we will actually prove
is:

Theorem 2. d1/3(SURJR) = Õ(N3/4).

We need the following lemma:

Lemma 3. Let T be a number. There exists a polynomial pR : {0, 1}N logR →
R of degree Õ(

√
NT ) such that

• pR(x) ∈ [ 9
10
, 1] if SURJR(x) = 1 and x ∈ GR,

• pR(x) ∈ [0, 1
10

] if SURJR(x) = 0 and x ∈ GR,

• |pR(x)| ≤ exp
(
Õ(
√
T · bR(x))

)
if x 6∈ GR,

where

• #r(x) = #{i : xi = r},
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• GR = {x : #r(x) ≤ T,∀r ∈ R},

• bR(x) = #{r ∈ R : #r(x) > T}.

Proof of Theorem 2 assuming Lemma 3. The algorithm corresponding to the
polynomial we get to approximate SURJR is:

1. Sample S ⊆ [N ] of size s;

2. Define R(xS) = {r ∈ R : r appears in xS}, where xS is the restriction
of input x on S;

3. Output pR(xS)
(x).

Therefore we get

r(x) = E|S|=s[pR(xS)
(x)]

=
1(
N
s

) ∑
|S|=s

pR(xS)
(x)

=
1(
N
s

) ∑
|S|=s

∑
y∈[R]S

1(xS = y) · pR(xS)
(x),

which can be written as a polynomial of degree

s · logR + deg(pR(xS)
(x)) = Õ(s+

√
NT ).

To see that this polynomial approximates SURJR, note that

E|S|=s[pR(xS)
(x)] =

1(
N
s

) ∑
|S|=s

N/T∑
b=0

1(bR(xS)
= b) · pR(xS)

(x)

=

N/T∑
b=1

1(
N
s

) ∑
|S|=s

1(bR(xS)
= b) · pR(xS)

(x)

+
1(
N
s

) ∑
|S|=s

1(bR(xS)
= 0) · pR(xS)

(x).
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We have

Pr
|S|=s

[bR(xS)
= b] ≤ Pr

|S|=s
[bR(xS)

≥ b]

≤
(
|BR(xS)

|
b

)
Pr[ri1 , . . . , rib appears in R(xS)]

≤
(
|R|
b

)(
1− T

N

)s·b

,

therefore

N/T∑
b=1

1(
N
s

) ∑
|S|=s

1(bR(xS)
= b) · pR(xS)

(x) ≤
N/T∑
b=1

(
exp

(
−bsT

N
+ b logR

)
|pR(xS)

(x)|
)

≤
N/T∑
b=1

exp

(
−b
(
sT

N
+ Õ(

√
T )

)
+ b logR

)
.

To balance all the terms we need to set sT
N

=
√
T and s =

√
NT , thus we

get T =
√
N and s = N3/4. Hence we get a degree-Õ(N3/4) polynomial

r(x) = o(1) + (1− o(1))SURJR(x).

�

Proof of Lemma 3. Recall the lemma in Justin Thaler’s lecture:

Claim 4. Let T be a number. There exists a polynomial O : {0, 1}N → R
of degree O(

√
T ) such that

• O(x) ∈ [1− ε, 1] if
∨

i xi = 1 and |x| ≤ T ,

• O(x) ∈ [0, ε] if
∨

i xi = 0 and |x| ≤ T ,

• |O(x)| ≤ exp(Õ(
√
T )) if |x| > T .

Notice that SURJR(x) =
∧

r∈R
∨

i∈[N ] 1(xi = r). We can composite the

degree-
√
N approximation polynomial A of AND, the O given above, and

the degree-logR polynomial of 1(xi = r). The degree of this polynomial is
Õ(
√
NT ), and we are done by the following claims.
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Claim 5. |A ◦O ◦ 1(xi = r)(x)| ≤ exp
(
Õ(
√
TbR(x))

)
for |x| ≥ T .

Claim 6. If f̃ : {0, 1}N → [0, 1] ε-approximates f : {0, 1}N → {0, 1},
g̃ : X → [0, 1] δ-approximates g : X → {0, 1}, then f̃ ◦ g̃ : XN → R (ε+ δN)-
approximates f ◦ g. �

Proof of Claim 5. A : {0, 1}|R| → [0, 1], thus we have

A(z) =
∑
S⊆R

AS

∏
i∈S

zi
∏
i 6∈S

(1− zi),

where |AS| ≤ 1. Therefore

|A(z)| ≤
∑
S⊆R

∏
i∈S

|zi|
∏
i 6∈S

|1− zi|

=
∏
i∈R

(|zi|+ |1− zi|)

=
(

exp(Õ(
√
T ))
)bR(x)

.

�

Proof of Claim 6. Fix any input x ∈ XN , let yi = g(xi) ∈ {0, 1}, zi = g̃(xi) ∈
[0, 1]. By triangle inequality, it suffices to show that |f̃(y)− f̃(z)| ≤ δN .

Define independent random variables Zi ∈ {0, 1} such that E[Zi] = zi.
Then

f̃(z) = E[f̃(Z)] = Pr[Z = y] · f̃(y) + Pr[Z 6= y] · E[f̃(Z)|Z 6= y].

Since g̃ δ-approximates g, we have |zi − yi| ≤ δ. Hence

Pr[Z = y] ≥ (1− δ)N ≥ 1− δN.

By the boundedness of f̃ we have

f̃(z) ≥ (1− δN) · f̃(y) + 0 ≥ f̃(y)− δN
f̃(z) ≤ 1 · f̃(y) + δN · 1 = f̃(y) + δN.

�
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