
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lecture 6-7, Scribe: Willy Quach

In these lectures, we introduce k-wise indistinguishability and link this notion
to the approximate degree of a function. Then, we study the approximate
degree of some functions, namely, the AND function and the AND-OR func-
tion. For the latter function we begin to see a proof that is different (either
in substance or language) from the proofs in the literature. We begin with
some LATEXtips.

1.1 Some LATEX tips.

• Mind the punctuation. Treat equations as part of the phrases; add
commas, colons, etc accordingly.

• In math mode, it is usually better to use \ell (`) rather than regular l.
The latter can be confused with 1.

• Align equations with \begin{align} · · · \end{align} with the alignment
character &.

• For set inclusion, use \subset (⊂) only if you mean proper inclusion
(which is uncommon). Otherwise use \subseteq (⊆). (Not everybody
agrees with this, but this seems the most natural convention by analogy
with < and ≤.)

1.2 Introducing k-wise indistinguishability.

We studied previously the following questions:

• What is the minimum k such that any k-wise independent distribution
P over {0, 1}n fools AC0 (i.e. EC(P ) ≈ EC(U) for all poly(n)-size
circuits C with constant depth)?

We saw that k = logO(d)(s/ε) is enough.

• What is the minimum k such that P fools the AND function?

Taking k = O(1) for ε = O(1) suffices (more precisely we saw that
k-wise independence fools the AND function with ε = 2−Ω(k)).
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Consider now P and Q two distributions over {0, 1}n that are k-wise
indistinguishable, that is, any projection over k bits of P and Q have the
same distribution. We can ask similar questions:

• What is the minimum k such that AC0 cannot distinguish P and Q (i.e.
EC(P ) ≈ EC(Q) for all poly(n)-size circuits C with constant depth)?

It turns out this requires k ≥ n1−o(1): there are some distributions that
are almost always distinguishable in this regime. (Whether k = Ω(n)
is necessary or not is an open question.)

Also, k = n
(

1− 1
polylog(n)

)
suffices to fool AC0 (in which case ε is

essentially exponentially small).

• What is the minimum k such that the AND function (on n bits) cannot
distinguish P and Q?

It turns out that k = Θ(
√
n) is necessary and sufficient. More precisely:

– There exists some P,Q over {0, 1}n that are c
√
n-wise indistin-

guishable for some constant c, but such that:∣∣∣∣Pr
P

[AND(P ) = 1]− Pr
Q

[AND(Q) = 1]

∣∣∣∣ ≥ 0.99 ;

– For all P,Q that are c′
√
n-wise indistinguishable for some bigger

constant c′, we have:∣∣∣∣Pr
P

[AND(P ) = 1]− Pr
Q

[AND(Q) = 1]

∣∣∣∣ ≤ 0.01 .

1.3 Duality.

Those question are actually equivalent to ones related about approximation
by real-valued polynomials:

Theorem 1. Let f : {0, 1}n → {0, 1} be a function, and k an integer. Then:

max
P,Qk-wise indist.

|Ef(P )− Ef(Q)| = min{ ε | ∃g ∈ Rk[X] : ∀x, |f(x)− g(x)| ≤ ε}.

Here Rk[X] denotes degree-k real polynomials. We will denote the right-
hand side εk(f).

Some examples:
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• f = 1: then Ef(P ) = 1 for all distribution P , so that both sides of the
equality are 0.

• f(x) =
∑

i xi mod 2 the parity function on n bits.

Then for k = n − 1, the left-hand side is at least 1/2: take P to be
uniform; and Q to be uniform on n − 1 bits, defining the nth bit to
be Qn =

∑
i<nQi mod 2 to be the parity of the first n − 1 bits. Then

Ef(P ) = 1/2 but Ef(Q) = 0.

Furthermore, we have:

Claim 2. εn−1(Parity) ≥ 1/2.

Proof. Suppose by contradiction that some polynomial g has degree k
and approximates Parity by ε < 1/2.

The key ingredient is to symmetrize a polynomial p, by letting

psym(x) :=
1

n!

∑
π∈Sn

f(πx),

where π ranges over permutations. Note that psym(x) only depends on
‖x‖ =

∑
i xi.

Now we claim that there is a univariate polynomial p′ also of degree k
such that

p′(
∑

xi) = psym(x1, x2, . . . , xn)

for every x.

To illustrate, let M be a monomial of p. For instance if M = X1, then
p′(i) = i/n, where i is the Hamming weight of the input. (For this we
think of the input as being ∈ {0, 1}. Similar calculations can be done
for ∈ {−1,−1}.)
If M = X1X2, then p′(i) = i

n
· i−1

n
which is quadratic in i.

And so on.

More generally psym(X1, . . . , Xn) is a symmetric polynomial. As {(
∑

j Xj)
`}`≤k

form a basis of symmetric polynomials of degree k, psym can be written
as a linear combination in this basis. Now note that {(

∑
j Xj)

`(x)}`≤k
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only depends on ‖x‖; substituting i =
∑

j Xj gives that p′ is of degree
≤ k in i.

(Note that the degree of p′ can be strictly less than the degree of p (e.g.
for p(X1, X2) = X1 −X2: we have psym = p′ = 0).)

Then, applying symmetrization on g, if g is a real polynomial ε-close
to Parity (in `∞ norm), then g′ is also ε-close to Parity’ (as a convex
combination of close values).

Finally, remark that for every integer k ∈ {0, . . . , bn/2c}, we have:
Parity′(2k) = 0 and Parity′(2k + 1) = 1. In particular, as ε < 1/2,
g′− 1/2 must have at least n zeroes, and must therefore be zero, which
is a contradiction.

�

We will now focus on proving the theorem.
Note that one direction is easy: if a function f is closely approximated by

a polynomial g of degree k, it cannot distinguish two k-wise indistinguishable
distributions P and Q:

E[f(P )] = E[g(P )]± ε
(∗)
= E[g(Q)]± ε
= E[f(Q)]± 2ε ,

where (∗) comes from the fact that P and Q are k-wise indistinguishable.
The general proof goes by a Linear Programming Duality (aka finite-

dimensional Hahn-Banach theorem, min-max, etc.). This states that:
If A ∈ Rn×m, x ∈ Rm, b ∈ Rn and c ∈ Rm, then:

min〈c, x〉 =
∑

i≤m cixi

subject to: Ax = b
x ≥ 0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
max〈b, y〉

subject to: ATy ≤ c

We can now prove the theorem:

Proof. The proof will consist in rewriting the sides of the equality in the
theorem as outputs of a Linear Program. Let us focus on the left side of the
equality: maxP,Qk-wise indist. |Ef(P )− Ef(Q)|.
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We will introduce 2n+1 variables, namely Px and Qx for every x ∈ {0, 1}n,
which will represent Pr[D = x] for D = P,Q.

We will also use the following, which can be proved similarly to the Vazi-
rani XOR Lemma:

Claim 3. Two distributions P and Q are k-wise indistinguishable if and
only if: ∀S ⊆ {1, . . . , n} with |S| ≤ k,

∑
x PxχS(x) −

∑
xQxχS(x) = 0,

where χS(X) =
∏

S Xi is the Fourier basis of boolean functions.

The quantity maxP,Qk-wise indist. |Ef(P )− Ef(Q)| can then be rewritten:

−min
∑

x Pxf(x)−
∑

xQxf(x)

subject to:
∑

x Px = 1∑
xQx = 1

∀S ⊆ {1, . . . , n} s.t. |S| ≤ k,
∑

x(Px −Qx)χS(x) = 0

Following the syntax of LP Duality stated above, we have:

cT =

2n︷ ︸︸ ︷
· · · f(x) · · ·

2n︷ ︸︸ ︷
· · · − f(x) · · · ∈ R2n, (where x goes over {0, 1}n),

xT =

2n︷ ︸︸ ︷
· · ·Px · · ·

2n︷ ︸︸ ︷
· · ·Qx · · · ∈ R2n,

bT = 11

#S︷ ︸︸ ︷
0 · · · 0,

A =



2n︷ ︸︸ ︷
1 · · · · · · 1

2n︷ ︸︸ ︷
0 · · · · · · 0

0 · · · · · · 0 1 · · · · · · 1
· · · · · · · · · · · ·

... · · · · · · ... ... · · · · · · ...
· · ·χS(x) · · · · · · − χS(x) · · ·

... · · · · · · ... ... · · · · · · ...
· · · · · · · · · · · ·


,

where the rows ofA except the first two correspond to some S ⊆ {1, . . . , n}
such that |S| ≤ k.

We apply LP duality. We shall denote the new set of variables by

yT = d d′
#S︷ ︸︸ ︷

· · · dS · · ·.
We have the following program:
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−max d+ d′

subject to: ∀x, d+
∑

x dSχS(x) ≤ f(x)
∀x, d′ −

∑
x dSχS(x) ≤ −f(x)

Writing d′ = −d − ε, the objective becomes to minimize ε, while the
second set of constraints can be rewritten:

∀x, d+ ε+
∑
S

dSχS(x) ≥ f(x) .

The expression d+
∑

S dSχS(X) is an arbitrary degree-k polynomial which
we denote by g(X). So our constrains become

g(x) ≤ f(x)

g(x) + ε ≥ f(x).

Where g ranges over all degree-k polynomials, and we are trying to min-
imize ε. Because g is always below f , but when you add ε it becomes bigger,
g is always within ε of f . �

1.4 Approximate Degree of AND.

Let us now study the AND function on n bits. Let us denote dε(f) the
minimal degree of a polynomial approximating f with error ε.

We will show that d1/3(AND) = Θ(
√
n).

Let us first show the upper bound:

Claim 4. We have:
d1/3(AND) = O(

√
n).

To prove this claim, we will consider a special family of polynomials:

Definition 5. (Chebychev polynomials of the first kind.)
The Chebychev polynomials (of the first kind) are a family {Tk}k∈N of

polynomials defined inductively as:

• T0(X) := 1,

• T1(X) := X,

• ∀k ≥ 1, Tk+1(X) := 2XTk − Tk−1.
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Those polynomials satisfy some useful properties:

1. ∀x ∈ [−1, 1], Tk(x) = cos(k arccos(x)) ,

2. ∀x ∈ [−1, 1],∀k, |Tk(x)| ≤ 1 ,

3. ∀x such that |x| ≥ 1, |T ′k(x)| ≥ k2 ,

4. ∀k, Tk(1) = 1 .

Property 2 follows from 1, and property 4 follows from a direct induction.
For a nice picture of these polynomials you should have come to class (or I
guess you can check wikipedia). We can now prove our upper bound:

Proof. Proof of Claim:
We construct a univariate polynomial p : {0, 1, . . . , n} → R such that:

• deg p = O(
√
n);

• ∀i < n, |P (i)| ≤ 1/3;

• |P (n)− 1| ≤ 1/3.

In other words, p will be close to 0 on [0, n−1], and close to 1 on n. Then,
we can naturally define the polynomial for the AND function on n bits to be
q(X1, . . . , Xn) := p(

∑
iXi), which also has degree O(

√
n). Indeed, we want

q to be close to 0 if X has Hamming weight less than n, while being close to
1 on X of Hamming weight n (by definition of AND). This will conclude the
proof.

Let us define p as follows:

∀i ≤ n, p(i) :=
Tk
(

i
n−1

)
Tk
(

n
n−1

) .
Intuitively, this uses the fact that Chebychev polynomials are bounded in
[−1, 1] (Property 2.) and then increase very fast (Property 3.).

More precisely, we have:

• p(n) = 1 by construction;
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• for i < n, we have:

Tk
(

i
n−1

)
≤ 1 by Property 2.;

Tk
(

n
n−1

)
= Tk

(
1 + 1

n−1

)
≥ 1+ k2

n−1
by Property 3. and 4., and therefore

for some k = O(
√
n), we have: Tk

(
n
n−1

)
≥ 3.

�

Let us now prove the corresponding lower bound:

Claim 6. We have:
d1/3(AND) = Ω(

√
n).

Proof. Let p be a polynomial that approximates the AND function with error
1/3. Consider the univariate symmetrization p′ of p.

We have the following result from approximation theory:

Theorem 7. Let q be a real univariate polynomial such that:

1. ∀i ∈ {0, . . . , n}, |q(i)| ≤ O(1);

2. q′(x) ≥ Ω(1) for some x ∈ [0, n].

Then deg q = Ω(
√
n).

To prove our claim, it is therefore sufficient to check that p′ satisfies
conditions 1. and 2., as we saw that deg p ≥ deg p′:

1. We have: ∀i ∈ {0, . . . , n}, |p′(i)| ≤ 1 + 1/3 by assumption on p;

2. We have p′(n− 1) ≤ 1/3 and p′(n) ≥ 2/3 (by assumption), so that the
mean value theorem gives some x such that p′(x) ≥ Ω(1).

This concludes the proof. �
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1.5 Approximate Degree of AND-OR.

Consider the AND function on R bits and the OR function on N bits. Let
AND-OR: {0, 1}R×N → {0, 1} be their composition (which outputs the AND
of the R outputs of the OR function on N -bits (disjoint) blocks).

It is known that d1/3(AND-OR) = Θ(
√
RN). To prove the upper bound,

we will need a technique to compose approximating polynomials which we
will discuss later.

Now we focus on the lower bound. This lower bound was recently proved
independently by Sherstov and by Bun and Thaler. We present a proof
that is different (either in substance or in language) and which we find more
intuitive. Our proof replaces the “dual block method” with the following
lemma.

Lemma 8. Suppose that
distributions A0, A1 over {0, 1}nA are kA-wise indistinguishable distribu-

tions; and
distributions B0, B1 over {0, 1}nB are kB-wise indistinguishable distribu-

tions.
Define C0, C1 over {0, 1}nA·nB as follows: Cb: draw a sample x ∈ {0, 1}nA

from Ab, and replace each bit xi by a sample of Bxi (independently).
Then C0 and C1 are kA · kB-wise indistinguishable.

Proof. Consider any set S ⊆ {1, . . . , nA · nB} of kA · kB bit positions; let us
show that they have the same distribution in C0 and C1.

View the nA ·nB as nA blocks of nB bits. Call a block K of nB bits heavy
if |S ∩K| ≥ kB; call the other blocks light.

There are at most kA heavy blocks by assumption, so that the distri-
bution of the (entire) heavy blocks are the same in C0 and C1 by kA-wise
indistinguishability of A0 and A1.

Furthermore, conditioned on any outcome for the Ab samples in Cb, the
light blocks have the same distribution in both C0 and C1 by kB-wise indis-
tinguishability of B0 and B1.

Therefore C0 and C1 are kA · kB-wise indistinguishable. �
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