
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lectures 12-13, Scribe: Giorgos Zirdelis

In these lectures we study the communication complexity of some problems
on groups. We give the definition of a protocol when two parties are involved
and generalize later to more parties.

Definition 1. A 2-party c-bit deterministic communication protocol is a
depth-c binary tree such that:

• the leaves are the output of the protocol

• each internal node is labeled with a party and a function from that
party’s input space to {0, 1}

Computation is done by following a path on edges, corresponding to out-
puts of functions at the nodes.

A public-coin randomized protocol is a distribution on deterministic pro-
tocols.

2 2-party communication protocols

We start with a simple protocol for the following problem.
Let G be a group. Alice gets x ∈ G and Bob gets y ∈ G and their goal is

to check if x · y = 1G, or equivalently if x = y−1.
There is a simple deterministic protocol in which Alice simply sends her

input to Bob who checks if x·y = 1G. This requires O(log |G|) communication
complexity.

We give a randomized protocol that does better in terms on communica-
tion complexity. Alice picks a random hash function h : G → {0, 1}`. We
can think that both Alice and Bob share some common randomness and thus
they can agree on a common hash function to use in the protocol. Next, Alice
sends h(x) to Bob, who then checks if h(x) = h(y−1).

For ` = O(1) we get constant error and constant communication.

1

http://www.ccs.neu.edu/home/viola/classes/spepf17.html
http://www.ccs.neu.edu/home/viola/

3 3-party communication protocols

There are two ways to extend 2-party communication protocols to more par-
ties. We first focus on the Number-in-hand (NIH), where Alice gets x, Bob
gets y, Charlie gets z, and they want to check if x · y · z = 1G. In the NIH
setting the communication depends on the group G.

3.1 A randomized protocol for the hypercube

LetG = ({0, 1}n,+) with addition modulo 2. We want to test if x+y+z = 0n.
First, we pick a linear hash function h, i.e. satisfying h(x+ y) = h(x) +h(y).
For a uniformly random a ∈ {0, 1}n set ha(x) =

∑
aixi (mod 2). Then,

• Alice sends ha(x)

• Bob send ha(y)

• Charlie accepts if and only if ha(x) + ha(y)︸ ︷︷ ︸
ha(x+y)

= ha(z)

The hash function outputs 1 bit. The error probability is 1/2 and the
communication is O(1). For a better error, we can repeat.

3.2 A randomized protocol for Zm

Let G = (Zm,+) where m = 2n. Again, we want to test if x + y + z = 0
(mod m). For this group, there is no 100% linear hash function but there are
almost linear hash function families h : Zm → Z` that satisfy the following
properties:

1. ∀a, x, y we have ha(x) + ha(y) = ha(x+ y)± 1

2. ∀x 6= 0 we have Pra[ha(x) ∈ {±2,±1, 0}] ≤ 2−Ω(`)

3. ha(0) = 0

Assuming some random hash function h (from a family) that satisfies the
above properties the protocol works similar to the previous one.

• Alice sends ha(x)

2

• Bob sends ha(y)

• Charlie accepts if and only if ha(x) + ha(y) + ha(z) ∈ {±2,±1, 0}

We can set ` = O(1) to achieve constant communication and constant
error.

Analysis
To prove correctness of the protocol, first note that ha(x)+ha(y)+ha(z) =

ha(x+ y + z)± 2, then consider the following two cases:

• if x+ y + z = 0 then ha(x+ y + z)± 2 = ha(0)± 2 = 0± 2

• if x+ y + z 6= 0 then Pra[ha(x+ y + z) ∈ {±2,±1, 0}] ≤ 2−Ω(`)

It now remains to show that such hash function families exist.
Let a be a random odd number modulo 2n. Define

ha(x) := (a · x� n− `) (mod 2`)

where the product a · x is integer multiplication. In other words we output
the bits n− `+ 1, n− `+ 2, . . . , n of the integer product a · x.

We now verify that the above hash function family satisfies the three
properties we required above.

Property (3) is trivially satisfied.
For property (1) we have the following. Let s = a · x and t = a · y

and u = n − `. The bottom line is how (s � u) + (t � u) compares with
(s+ t)� u. In more detail we have that,

• ha(x+ y) = ((s+ t)� u) (mod 2`)

• ha(x) = (s� u) (mod 2`)

• ha(x) = (t� u) (mod 2`)

Notice, that if in the addition s+ t the carry into the u+ 1 bit is 0, then

(s� u) + (t� u) = (s+ t)� u

otherwise
(s� u) + (t� u) + 1 = (s+ t)� u

which concludes the proof for property (1).

3

Finally, we prove property (2). We start by writing x = s · 2c where s is
odd. Bitwise, this looks like (· · · · · · 1 0 · · · 0︸ ︷︷ ︸

c bits

).

The product a·x for a uniformly random a, bitwise looks like (uniform 1 0 · · · 0︸ ︷︷ ︸
c bits

).

We consider the two following cases for the product a · x:

1. If a ·x = (uniform 1

2 bits︷︸︸︷
00︸ ︷︷ ︸

` bits

· · · 0), or equivalently c ≥ n−`+2, the output

never lands in the bad set {±2,±1, 0} (some thought should be given to
the representation of negative numbers – we ignore that for simplicity).

2. Otherwise, the hash function output has `−O(1) uniform bits. Again
for simplicity, let B = {0, 1, 2}. Thus,

Pr[output ∈ B] ≤ |B| · 2−`+O(1)

In other words, the probability of landing in any small set is small.

4 Other groups

What happens in other groups? Do we have an almost linear hash function
for 2× 2 matrices? The answer is negative. For SL2(q) and An the problem
of testing equality with 1G is hard.

We would like to rule out randomized protocols, but it is hard to reason
about them directly. Instead, we are going to rule out deterministic protocols
on random inputs. For concreteness our main focus will be SL2(q).

First, for any group element g ∈ G we define the distribution on triples,
Dg := (x, y, (x · y)−1g), where x, y ∈ G are uniformly random elements. Note
the product of the elements in Dg is always g.

Towards a contradiction, suppose we have a randomized protocol P for
the xyz =? 1G problem. In particular, we have

Pr[P (D1) = 1] ≥ Pr[P (Dh) = 1] +
1

10
.

This implies a deterministic protocol with the same gap, by fixing the ran-
domness.

4

We reach a contradiction by showing that for every deterministic proto-
cols P using little communication (will quantify later), we have

|Pr[P (D1) = 1]− Pr[P (Dh) = 1]| ≤ 1

100
.

We start with the following lemma, which describes a protocol using
product sets.

Lemma 1. (The set of accepted inputs of) A deterministic c-bit protocol
can be written as a disjoint union of 2c “rectangles,” that is sets of the form
A×B × C.

Proof. (sketch) For every communication transcript t, let St ⊆ G3 be the set
of inputs giving transcript t. The sets St are disjoint since an input gives
only one transcript, and their number is 2c, i.e. one for each communication
transcript of the protocol. The rectangle property can be proven by induction
on the protocol tree. �

Next, we show that these product sets cannot distinguish these two dis-
tributions D1, Dh, and for that we will use the pseudorandom properties of
the group G.

Lemma 2. For all A,B,C ⊆ G and we have

|Pr[A×B × C(D1) = 1]− Pr[A×B × C(Dh) = 1]| ≤ 1

dΩ(1)
.

Recall the parameter d from the previous lectures and that when the
group G is SL2(q) then d = |G|Ω(1).

Proof. Pick any h ∈ G and let x, y, z be the inputs of Alice, Bob, and Charlie
respectively. Then

Pr[A×B×C(Dh) = 1] = Pr[(x, y) ∈ A×B]·Pr[(x·y)−1 ·h ∈ C|(x, y) ∈ A×B]

If either A or B is small, that is Pr[x ∈ A] ≤ ε or Pr[y ∈ B] ≤ ε, then
also Pr[P (Dh) = 1] ≤ ε because the term Pr[(x, y) ∈ A × B] will be small.
We will choose ε later.

5

Otherwise, A and B are large, which implies that x and y are uniform over
at least ε|G| elements. Recall from Lecture 9 that this implies ‖x · y−U‖2 ≤
‖x‖2 · ‖y‖2 ·

√
|G|
d

, where U is the uniform distribution.

By Cauchy–Schwarz we obtain,

‖x · y − U‖1 ≤ |G| · ‖x‖2 · ‖y‖2 ·
√

1

d
≤ 1

ε
· 1√

d
.

The last inequality follows from the fact that ‖x‖2, ‖y‖2 ≤
√

1
ε|G| .

This implies that ‖(x · y)−1 − U‖1 ≤ 1
ε
· 1√

d
and ‖(x · y)−1 · h − U‖1 ≤

1
ε
· 1√

d
, because taking inverses and multiplying by h does not change anything.

These two last inequalities imply that,

Pr[(x · y)−1 ∈ C|(x, y) ∈ A×B] = Pr[(x · y)−1 ·h ∈ C|(x, y) ∈ A×B]± 2

ε

1√
d

and thus we get that,

Pr[P (D1) = 1] = Pr[P (Dh) = 1]± 2

ε

1√
d
.

To conclude, based on all the above we have that for all ε and independent
of the choice of h, it is either the case that

|Pr[P (D1) = 1]− Pr[P (Dh) = 1]| ≤ 2ε

or

|Pr[P (D1) = 1]− Pr[P (Dh) = 1]| ≤ 2

ε

1√
d

and we will now choose the ε to balance these two cases and finish the proof:

2

ε

1√
d

= 2ε⇔ 1√
d

= ε2 ⇔ ε =
1

d1/4
.

�

The above proves that the distribution Dh behaves like the uniform dis-
tribution for product sets, for all h ∈ G.

Returning to arbitrary deterministic protocols P , write P as a union of
2c disjoint rectangles by the first lemma. Applying the second lemma and

6

summing over all rectangles we get that the distinguishing advantage of P
is at most 2c/d1/4. For c ≤ (1/100) log d the advantage is at most 1/100 and
thus we get a contradiction on the existence of such a correct protocol. We
have concluded the proof of this theorem.

Theorem 3. Let G be a group, and d be the minimum dimension of an
irreducible representation of G. Consider the 3-party, number-in-hand com-
munication protocol f : G3 → {0, 1} where f(x, y, z) = 1 ⇔ x · y · z = 1G.
Its randomized communication complexity is Ω(log d).

For SL2(q) the communication is Ω(log |G|). This is tight up to constants,
because Alice can send her entire group element.

For the groupAn the known bounds on d yield communication Ω(log log |G|).
This bound is tight for the problem of distinguishing D1 from Dh for h 6= 1,
as we show next. The identity element 1G for the group An is the identity per-
mutation. If h 6= 1G then h is a permutation that maps some element a ∈ G
to h(a) = b 6= a. The idea is that the parties just need to “follow” a, which is
logarithmically smaller than G. Specifically, let x, y, z be the permutations
that Alice, Bob and Charlie get. Alice sends x(a) ∈ [n]. Bob gets x(a) and
sends y(x(a)) ∈ [n] to Charlie who checks if z(y(x(a))) = 1. The communi-
cation is O(log n). Because the size of the group is |G| = Θ(n!) = Θ

((
n
e

)n)
,

the communication is O(log log |G|).
This is also a proof that d cannot be too large for An, i.e. is at most

(log |G|)O(1).

5 More on 2-party protocols

We move to another setting where a clean answer can be given. Here we only
have two parties. Alice gets x1, x2, . . . , xn, Bob gets y1, y2, . . . , yn, and they
want to know if x1 · y1 · x2 · y2 · · ·xn · yn = 1G.

When G is abelian, the elements can be reordered as to check whether
(x1 · x2 · · · xn) · (y1 · y2 · · · yn) = 1G. This requires constant communication
(using randomness) as we saw in Lecture 12, since it is equivalent to the
check x · y = 1G where x = x1 · x2 · · · xn and y = y1 · y2 · · · yn.

We will prove the next theorem for non-abelian groups.

Theorem 1. For every non-abelian group G the communication of deciding
if x1 · y1 · x2 · y2 · · · xn · yn = 1G is Ω(n).

7

Proof. We reduce from unique disjointness, defined below. For the reduction
we will need to encode the And of two bits x, y ∈ {0, 1} as a group product.
(This question is similar to a puzzle that asks how to hang a picture on the
wall with two nails, such that if either one of the nails is removed, the picture
will fall. This is like computing the And function on two bits, where both bits
(nails) have to be 1 in order for the function to be 1.) Since G is non-abelian,
there exist a, b ∈ G such that a · b 6= b · a, and in particular a · b · a−1 · b−1 = h
with h 6= 1. We can use this fact to encode And as

ax · by · a−x · b−y =

{
1, if And(x,y)=0

h, otherwise
.

In the disjointness problem Alice and Bob get inputs x, y ∈ {0, 1}n respec-
tively, and they wish to check if there exists an i ∈ [n] such that xi ∧ yi = 1.
If you think of them as characteristic vectors of sets, this problem is asking if
the sets have a common element or not. The communication of this problem
is Ω(n). Moreover, in the variant of this problem where the number of such
i’s is 0 or 1 (i.e. unique), the same lower bound Ω(n) still applies. This is like
giving Alice and Bob two sets that either are disjoint or intersect in exactly
one element, and they need to distinguish these two cases.

Next, we will reduce the above variant of the set disjointness to group
products. For x, y ∈ {0, 1}n we product inputs for the group problem as
follows:

x→ (ax1 , a−x1 , . . . , axn , a−xn)

y → (by1 , b−y1 , . . . , byn , b−yn).

Now, the product x1 ·y1 ·x2 ·y2 · · · xn ·yn we originally wanted to compute
becomes

ax1 · by1 · a−x1 · b−y1︸ ︷︷ ︸
1 bit

· · · · · · axn · byn · a−xn · b−yn .

If there isn’t an i ∈ [n] such that xi ∧ yi = 1, then each product term
axi · byi · a−xi · b−yi is 1 for all i, and thus the whole product is 1.

Otherwise, there exists a unique i such that xi ∧ yi = 1 and thus the
product will be 1 · · · 1 · h · 1 · · · 1 = h, with h being in the i-th position. If
Alice and Bob can test if the above product is equal to 1, they can also solve
the unique set disjointness problem, and thus the lower bound applies for the
former. �

8

We required the uniqueness property, because otherwise we might get a
product hc that could be equal to 1 in some groups.

9

	Lectures 12-13, Scribe: Giorgos Zirdelis
	2-party communication protocols
	3-party communication protocols
	A randomized protocol for the hypercube
	A randomized protocol for Zm

	Other groups
	More on 2-party protocols

