Sub-quadratic reductions

Detecting triangles = cycles of length 3
Input : G=(V,E)
Output: True if there is a triangle in G, False otherwise.

Example: (a,b,d) is a triangle in: e

Using Matrix Multiplication
Input: Adjacency Matrix of G(V,E), M .

Recall: MY, ; = 2

Using Matrix Multiplication
Input: Adjacency Matrix of G(V,E), M .

Recall: Mti,j = number of paths of length t from i to j.

Algorithm:
?

Using Matrix Multiplication
Input: Adjacency Matrix of G(V,E), M .

Recall: Mti,j = number of paths of length t from i to j.

Algorithm:
e Compute M3
e Check M3 . forall1<i<n

If one of them is not zero return True
otherwise return False

Running time:
2 |VI® + O(|V]) = O(|V|W). Recall w < 2.37

Can we do better for sparse graphs?

Detecting triangles

Input : Adjacency List of G(V,E),

Output: True if there is a triangle in G, False otherwise.
Main idea of algorithm:

First we check for a triangle that has a node of degree < A.

Then we look for a triangle with three nodes of degree > A.

We can choose A as we please.

Algorithm
Let A = |0 @)
Triangles with some node with degree < A

For each edge (u,v) check if u or v has degree <A

If so go through that node's neighbors w, and check if
(u,v,w) is a triangle.

Time: ?

Algorithm ,
Let A = |0 @)

Triangles with some node with degree < A

For each edge (u,v) check if u or v has degree <A

If so go through that node's neighbors w, and check if
(u,v,w) is a triangle.

Time: O(|E| = A)

Triangles with every node with degree > A
Sum of degrees = ?

Algorithm ,
Let A = |0 @)

Triangles with some node with degree < A

For each edge (u,v) check if u or v has degree <A

If so go through that node's neighbors w, and check if
(u,v,w) is a triangle.

Time: O(|E| = A)

Triangles with every node with degree > A
Sum of degrees = 2|E]|.
So there are < ?7?7777%7 nodes with degree > A

Algorithm
Let A = |0 @)
Triangles with some node with degree < A

For each edge (u,v) check if u or v has degree <A

If so go through that node's neighbors w, and check if
(u,v,w) is a triangle.

Time: O(|E| = A)

Triangles with every node with degree > A

Sum of degrees = 2|E]|.

So there are < 2|E|/ A nodes with degree > A
Hence using matrix multiplication this takes ?7?

Algorithm
Let A = |0 @)
Triangles with some node with degree < A

For each edge (u,v) check if u or v has degree <A

If so go through that node's neighbors w, and check if
(u,v,w) is a triangle.

Time: O(|E| = A)

Triangles with every node with degree > A
Sum of degrees = 2|E]|.
So there are < 2|E|/ A nodes with degree > A

Hence using matrix multiplication this takes O((|E|/ A)Y).

Overall: O(|E| A + (|E|/ A) w) =
— |E| T+ (w-1)/(w+1) & |E| w(1-(w-1)/(w+1))

= |E)2wW/ (WD) < |E["*T using w < 2.38

Recap: Can detect triangles in time O(|E|2 @/ (w *+ 1))

So detecting triangles in time |E|*/3 reduces to multiplying
n x n matrices in time O(n?)

Before trying to prove w = 2 you may want to try to detect
triangles in time |E[#/3

3SUM

Input: A set of numbers S, [S|=n. Size of numbers = n©(1)
Output: 1, if there are a,b,c € S such that a+b+c=0,
0, otherwise.

How long to solve 3SUM?

3SUM

Input: A set of numbers S, [S|=n. Size of numbers = n©(1)
Output: 1, if there are a,b,c € S such that a+b+c=0,
0, otherwise.

We can solve 3SUM in time O(n2).

It is believed that n? is optimal

Next: detecting triangles in time t
reduces to solving 3SUM in time O(t).

So, solving 3SUM in time n'-4 would beat best-known
triangle-detection algorithms (which run in n1-41time)

Next: detecting triangles in time t reduces
to solving 3SUM in time O(t).
e The reduction is randomized.
e \We are going to give an algorithm R such that:
If there is a triangle, R accepts with probability 1,

otherwise R accepts with probability < 1/100

e This gap can be amplified arbitrarily by ?77?7

Next: detecting triangles in time t reduces
to solving 3SUM in time O(t).
e The reduction is randomized.
e \We are going to give an algorithm R such that:
If there is a triangle, R accepts with probability 1,

otherwise R accepts with probability < 1/100

e This gap can be amplified arbitrarily by repeating the
algorithm a few times and taking Or

e |t Is possible to make R deterministic; we sketch that later

Detecting Triangles
Input: Adjacency list of graph G(V,E). |E|=m.
Output: 1 if there is a triangle, O otherwise

Algorithm R:

1. Uniformly and independently assign a u-bit number to each
node: VacV, X, € {0,1}"

2. For each edge (a,b) € E, compute Y(a,b)=(Xa — Xp,) and
Y(b,a)=(Xb - X,).

3. Return answer of 3SUM on set Y:={Y(a,b),Y(b’a)| (a,b) € E}.

Analysis of R
* Suppose there is a triangle in G, say {(a,b), (c,b), (c,a)}.

* Note: graph is undirected, but the input is imposing an order
which we eliminate by computing both Y(a,b), Y(b,a).

e The 3SUM instance contains numbers
Y(a,b)+Y(b,C)+Y(C,a) = (Xa - Xb) T (Xc - Xb) T (XC - Xa)

What is the probability that the sum will be 07?

Analysis of R
* Suppose there is a triangle in G, say {(a,b), (c,b), (c,a)}.

* Note: graph is undirected, but the input is imposing an order
which we eliminate by computing both Y(a,b), Y(b,a).

e The 3SUM instance contains numbers
Y(a,b)+Y(b,c:)+Y(C,a) = (Xa - Xb) T (Xc - Xb) T (XC - Xa)
PrIR(G)=1] =1

That is, if there is a triangle we catch it.

Analysis of R
e Assume G does not have triangle
We want to show Pr[R(G)=1] <1/100

SO ‘= some 3 numbers in Y sum to zero.

« S(€4,6,,65) := the values corresponding to three distinct
edges e1=(a1,b1).€,=(a, b,),e5=(az by), sum to zero.

Pr{R(G)=1] = Pr[S,]=
= Prlexists e,,e,,e5 € E, S(e4,65,63)] SZ PriS(eq,e5,e5)]

©1,€2,€3

Pr[S(e1 65,64)] = Pr [Ye1+Ye2+Ye3=O]
= Pr[Xg1+X g0t X 3= X1+ Xt X3l

There are no triangles in G =» some node appears only once
=> one of the variables in X_;+X_,+X_3=X_;+X »,*+X, 5

appears only once. Let that variable be X_,

For any fixed choices of the other variables,
there is < 1 choice for X_,that satisfies the equation.

So Pr[S(eq,e,.e;)] < 1/2Y
Hence, Pr[Sy]s) Pr[S(eq.e ;)] < |E3/2¢

Setting u = 3 log |E| + 7 we have Pr[R(G)=1] = 1/100

Making the reduction deterministic.

Need to construct m numbers X such that
(X5 = Xp) + (X, —X4) + (X, — X)) =0
=» each number is repeated twice, with opposite signs

This guarantees that they correspond to a triangle.

Note, numbers must have magnitude < poly(m)
Otherwise, both easy and uninteresting (exercise: why?)

We are going to sketch the idea and leave details to exercises

Need to construct m numbers Xa such that
(Xa —Xb) + (XC —Xd) + (Xe - X)) =0
=» each number is repeated twice, with opposite signs

e Construct msets S, ,S,, ..., 5, <{1,2,...,ulogm}:
IS, =clogm, Va
1S, NS, [<(c/d)logm, Vaz#b,
for some constants u and c

e Then set X_ to be the number with u digits in base 10,
where digitiis 1ifi € S, , 0 otherwise

e Exercise: Show that such X satisfy above (hint: no carry)

e Exercise: Construct such sets in time exponential in m
(can be made time O(m), which is what is needed)

Recall

All-pairs shortest paths
Dynamic programming approach:
d j(m) = shortest paths of lengths < m

d;;™ = miny {d; ™+ w(k,j) }
(Includes k =, w(j,j) = 0)
Compute [V| x [V| matrix d™) from d(™-1) in time |V/|3.

= dIVl computables in time [V|*

How to speed up?

Recall

All-pairs shortest paths
Note:

d; (M = min, {d; (™D + w(k,j)}

Is just like matrix multiplication; d(™) = d(M-1) yw,
except + —» min
X— +

Like matrix multiplication, this is associative. So,
instead of doing d!VI = (...)W)W)W can do ?

Recall

All-pairs shortest paths
Note:

di,j<m> =min, { d; (™1 +w(k,j) }

Is just like matrix multiplication: d(™) = d(m-1) y,
except + — min
X— +

Like matrix multiplication, this is associative. So,
instead of doing d!Vl = (...)W)W)W can do repeated squaring:

Compute d(2) = W?

d(4) = d(2) X d(2) = W2 X W2
d@) = g4) x 4(4)

To get d/Vl need ?

Recall

All-pairs shortest paths
Note:

di,j<m> =min, { d; (™1 +w(k,j) }

Is just like matrix multiplication: d(™) = d(m-1) y,
except + — min
X— +

Like matrix multiplication, this is associative. So,
instead of doing d!Vl = (...)W)W)W can do repeated squaring:

Compute d(2) = W?

d(4) = d(2) X d(2) = W2 X W2
d@) = g4) x 4(4)

To get d!Vl need log |V| multiplications only = [V|3 log [V| time

e \We used (Min,+) Matrix product in time t to solve APSP in
time t log |V|

In particular, computing APSP in time |V|? log |V| reduces to
computing (Min,+) Matrix product in time [V|?

e Next: Use APSP to solve (Min, +) Matrix product.

(Min, +) Matrix product:
Input: Matrices A - and B _ .

Output: C,, , such that C;; = min {A; | + By }.

We need to convert A and B to an instance of APSP.

1. Let entries of Aand B € [-M,M]
create a tripartite graph G (I,J,K , E), with n nodes in each
part |, J and K,

Viel, kek,(ij) €Eand w(ik)=A +6M.
vk ek jeJ, (k) € Eand wikj)= B, +6M.

2.Run the algorithm for APSP on G.

3.set Ci,j .= {length of the shortest path from]; to j}-12M.

Why 7?

Note:
Any path of length = 3 weights = 3(-M + 6M) = 15M,
Any path of length < 2 weights < 2(M + 6M) < 14M.

VvV iel,]edthereis a path of length 2 from i to .
Therefore the shortest path fromitojis:
min, {w(i,k)+w(k,j) },
= min, {A I(+6M+Bk’j+6M},
= min, {A k+Bkj}+12M

e Running time:
Creating graph G : Takes O(n?)

So we compute (Min,+) Matrix product of nxn matrices in time
O(n?) + APSP-TIME(3n).
e Putting both reductions together:

APSP and (Min,+) Matrix product are basically the same
problem.

Either both of them can be solved in time n3'€, or neither can

