We now return to the question:

» Suppose A, B are regular languages, then
*notA :={w:wisnotinA}
cAUB:={w:winAorwinB}

«AoB ={w;w,: wyinA and w,inB}

e A* ={wiwy...w, :k>0,w;inA foreveryi}
cANB:={w:winAandwin B}

are all regular



Big picture

*All languages
*Decidable
Turing machines
NP
P
*Context-free
Context-free grammars, push-down automata
*Regular
Automata, non-deterministic automata,
regular expressions



How to specify a regular language?

Write a picture — complicated

gt

Write down formal definition — complicated
6(dp ,0) =qp, ..

Use symbols from X and operations *, o, U — good

(10} U {1}) 0 {001}



Regular expressions: anything you can write with
&, €, symbols from X, and operations *, o, U

Conventions:

*\Write a instead of {a}

*\Write AB forAo B

Write ) for Uaez a Soif) ={a,b}then) =aUb
*Operation * has precedence over o, and o over U
so 1 U 01* means 1U(0(1)*)

Example: 110, 0%, ¥*, X*001%*, (%)%, 01 U 10



Definition Regular expressions RE over X are:
%,

€
a ifain >
R R If R, R'are RE

RUR'" IfR,R"are RE
R* If Ris RE



Definition The language described by RE:
L(D) =D

L(e) = {&}

L(a) = {a} ifain X
L(RR") =L(R) o L(R")

L(RUR'") =L(R) UL(R")

L(R*) = L(R)*



Example £ ={ a, b}
RE Language

 ab U ba ?

° a*

* (aUDb)”

* a*ba”

* X*bX*

* Y*aabXx*”

* (ZX)°

* (@a*ba*ba*)”

* a*baba*add



Example £ ={ a, b}

RE Language
 ab U ba {ab, ba}
° a*

* (aUDb)”

* a*ba”

* X*bX*

* Y*aabXx*”

* (ZX)°

* (@a*ba*ba*)”
* a*baba*add



Example X = { a, b}

RE Language
 ab U ba {ab, ba}
°a* {e,a,aa, ...} ={w:whasonly a}
* (aUDb)”

* a*ba”

* X*bX*

* Y*aabXx*”

* (ZX)°

* (@a*ba*ba*)*
* a*baba*add



Example X = { a, b}

RE Language
 ab U ba {ab, ba}
°a* {e,a,aa, ...} ={w:whasonly a}
* (aUDb)” all strings
* a*ba”
* X*bX*
* Y*aabXx*”
* (ZX)°

* (@a*ba*ba*)*
* a*baba*ad



Example X = { a, b}

RE Language
 ab U ba {ab, ba}
°a* {e,a,aa, ...} ={w:whasonly a}
* (aUDb)” all strings
* a*ba” {w : w has exactly one b}
* X*bX*
* Y*aabXx*”
* (ZX)°

* (@a*ba*ba*)*
* a*baba*ad



Example X = { a, b}

RE Language
 ab U ba {ab, ba}
°a* {e,a,aa, ...} ={w:whasonly a}
* (aUDb)” all strings
* a*ba” {w : w has exactly one b}
* X*pX* {w : w has at least one b}
* Y*aabXx*”
° (ZX)°

* (@a*ba*ba*)*
* a*baba*ad



Example X = { a, b}

RE Language
 ab U ba {ab, ba}
°a* {e,a,aa, ...} ={w:whasonly a}
* (aUDb)” all strings
* a*ba” {w : w has exactly one b}
* X*pX* {w : w has at least one b}
* Y*aabXx” {w : w contains the string aab}
° (ZX)°

* (@a*ba*ba*)*
* a*baba*ad



Example X = { a, b}

RE Language
 ab U ba {ab, ba}
°a* {e,a,aa, ...} ={w:whasonly a}
* (aUDb)” all strings
* a*ba” {w : w has exactly one b}
* X*pX* {w : w has at least one b}
* Y*aabXx” {w : w contains the string aab}
* (2X)" {w : w has even length}

* (@a*ba*ba*)*
* a*baba*ad



Example X = { a, b}

RE Language
 ab U ba {ab, ba}
°a* {e,a,aa, ...} ={w:whasonly a}
* (aUDb)” all strings
* a*ba” {w : w has exactly one b}
* X*pX* {w : w has at least one b}
* Y*aabXx” {w : w contains the string aab}
* (2X)" {w : w has even length}
* (@a*ba*ba*)* {w : w contains even number of b}

* a*baba*ad



Example X = { a, b}

RE Language
 ab U ba {ab, ba}
°a* {e,a,aa, ...} ={w:whasonly a}
* (aUDb)” all strings
* a*ba” {w : w has exactly one b}
* X*pX* {w : w has at least one b}
* Y*aabXx” {w : w contains the string aab}
* (2X)" {w : w has even length}
* (@a*ba*ba*)* {w : w contains even number of b}

* a*baba*add % (anything o @ = &)



Theorem: For every RE R there is NFAM: L(M) = L(R)



Theorem: For every RE R there is NFAM: L(M) = L(R)
Construction:
*R=0 M:="7



Theorem: For every RE R there is NFAM: L(M) = L(R)
Construction:

‘R=2  M:=—()

eR=¢ M:=7?



Theorem: For every RE R there is NFAM: L(M) = L(R)
Construction:
*R=0 M =

—)
LIRS ©

e R =12 M ="



Theorem: For every RE R there is NFAM: L(M) = L(R)
Construction:

*R=0 M =

*R=¢ M =

—)
—0)
‘R=a  M=—3( =0

*R=RUR" ?



Theorem: For every RE R there is NFAM: L(M) = L(R)
Construction:
*R=0 M =

*R=¢ M =

—)
—0)
‘R=a  M=—3( =0

e R=R UR" use construction for A U B seen earlier
*R=RoR' ?



Theorem: For every RE R there is NFAM: L(M) = L(R)
Construction:
*R=0 M =

*R=¢ M =

—)
—0)
‘R=a M= —()—O)

e R=R UR" use construction for A U B seen earlier

e R=Ro0R'" use construction for A o B seen earlier
e R =R* ?



Theorem: For every RE R there is NFAM: L(M) = L(R)
Construction:
*R=0 M =

eR=¢ M := _>©
a
e R=R UR" use construction for A U B seen earlier

e R=Ro0oR' use construction for A o B seen earlier
e R=R* use construction for A* seen earlier



Example: RE — NFA

RE =(ab U a)*



Example: RE — NFA

RE =(ab U a)*

L(M )=L(a)



Example: RE — NFA

RE = (ab U a)*
M = +-0%0 M, = -0>>0
L(M )=L(a) L(M, )=L(b)



Example: RE — NFA

RE =(ab U a)*

M =
ab

Oa OS Ob ©
L(M_ )=L(ab)



Example: RE — NFA

RE =(ab U a)*

M = M, = ~0%0

:a 38 Ob ®
L(M_)=L(ab) L(M,)=L(a)



Example: RE — NFA

RE =(ab U a)*

M =

ab U a

ga 8 Ob@
‘ a
“O=—>0

)=L(ab U a)

( ab U a



Example: RE — NFA

RE =(ab U a)*

i-——@

L(M L((ab U a)*)=L(RE)

(ab U a)* )



ANOTHER Example: RE — NFA

RE =(¢ U a)ba”



ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

M = —-0O

€

L(M )=L(e)



ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

M= -0 M, = -0>0

c d

L(M )=L(e) L(M )=L(a)



ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

SO0
L(M_, )=L(e U a)



ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

I\/IsUa - Mb - b
- ©
C L(M,)=L(b)
AOT©

L(M_, )=L(e U a)



ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

cUab
8

€ b
EO0+C

L(M_,..)=L((z U a)b)



ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

€ b
EO05+C

L(M_,..)=L((z U a)b)

L(M )=L(a)



ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

M(?,Ua)b - Ma* — »g a8
g O b
C &% tmeLe
a

L(M_,..)=L((z U a)b)



ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

Wﬂm

_.)=L((e U a)ba™)=L(RE)



Recap:

Here “=” means “can be converted to”

We have seen: RE = NFA < DFA

Next we see: DFA=RE

In two steps:  DFA = Generalized NFA = RE



Generalized NFA (GNFA)
a U Db*

@ a*b* ab
Nondeterministic
Transitions labelled by RE

Read blocks of input symbols at a time



Generalized NFA (GNFA)
a U Db*

@ a*b* ab

Convention:

Unique final state

Exactly one transition between each pair of states
except nothing going into start state

nothing going out of final state
If arrow not shown in picture, label = &



*Definition: A generalized finite automaton (GNFA)
- is a 5-tuple (Q, Z, 8, qg, q,) where
Q is a finite set of states

> Is the input alphabet
3 : (Q-{q,}) X (Q-{q,}) — Regular Expressions

(o in Q is the start state
g, in Q is the accept state



«Definition: GNFA (Q, %, 9, qp, q,) accepts a string w if

« Jinteger k, dk stringsw,,w,, ..., w, € Z*
such thatw =w; w, ... w;

(divide w in Kk strings)

3 sequence of k+1 states ry, ryq, .., , In Q such that:
*To=Cp
* Wi+ EL(8(ri ) )) VO0<i<Kk

Differences with NFA are in green



Example Ob*
@ a” @ ab

Accepts w = aaabbab
w, ="



b*

@ a* @ ab

Accepts w = aaabbab
w,=aaa Ww,=?

Example



b*

@ a* @ ab

Accepts w = aaabbab
w,=aaa Ww,=bb w,;=ab

r=do r=?

Example



b*

@ a* @ ab

Accepts w = aaabbab
w,=aaa Ww,=bb w,;=ab

r0=dg r4=qq ry=7

Example

w, =aaa € L(d(ry,rq)) = L(3(qy,94)) = L(a%)



Example
@

Accepts w = aaabbab
w,=aaa Ww,=bb w,;=ab

0=0p =0y r=Qq rz =7

w, = aaa € L(6(ry,rq)) = L(5
w, =bb e L(d(rq,r,)) = L(S

b*



Example

)

Accepts w = aaabbab

w,=aaa w2=bb w3=ab

',=Qqq I3 =0,

=490 =9

w, = aaa € L(6(ry,r))

W, =bb €

W3=ab =

L(

(

(

b*

(dp,94))
(94,94))
(94,9,))



Theorem: V DFAM 3 GNFAN : L(N) = L(M)
Construction:
To ensure unique transition between each pair:

Oi_:OQ ‘ :1uoo

To ensure unique final state, no transitions ingoing
start state, no transitions outgoing final state:




Theorem: ¥V GNFAN 3 RE R : L(R) =L(N)
Construction:

If N has 2 states, then N = S
thus R:=S @

If N has > 2 states, eliminate some state q, # q,, q., :

for every ordered pair g, q (possibly equal)
that are connected through q.

@@ =)

Repeat until 2 states remain




Example: DFA — GNFA — RE
DFA

a b
\_» (_y
Q b,C



Example: DFA — GNFA — RE

GNFA a

8 5 bUc



Example: DFA — GNFA — RE

a b

\_» «
8 Q bUc g

Eliminate g : re-draw GNFA with all other states



Example: DFA — GNFA — RE

a b

\_» o
8 Q bUc g

Eliminate q_: find a path through q.



Example: DFA — GNFA — RE

Eliminate g : add edge to new GNFA
Don't forget: no arrow means label @

b

: ¥
@ ca*"(bUc)Ud g



Example: DFA — GNFA — RE

a b

\_» o
8 Q bUc g

Eliminate q_: simplify RE on new edge

@ a* (b U c)



Example: DFA — GNFA — RE

a b

( y «
8 Q bUc g

Eliminate q_: If no more paths through q,, start over

b
* (
@ a* (b U c) g



Example: DFA — GNFA — RE

b

* «
@ a* (b Uc) g

Eliminate g : re-draw GNFA with all other states



Example: DFA — GNFA — RE

b

: «
@ a* (b U c) 8

Eliminate q: find a path through q,



Example: DFA — GNFA — RE

b

* «
@ a* (b Uc) 8

Eliminate g,: add edge to new GNFA

. a*(bUc)b*eUJ .



Example: DFA — GNFA — RE

b

* «
@ a* (b Uc) 8

Eliminate qg,: simplify RE on new edge

. a* (b Uc)b* .



Example: DFA — GNFA — RE

b

* «
@ a* (b Uc) g

Eliminate q. If no more paths through q,, start over

. a* (b Uc)b* .



Example: DFA — GNFA — RE

. a* (b Uc)b* .

Only two states remain:

RE = a* (b U ¢) b*



ANOTHER Example: DFA — GNFA — RE
DFA




ANOTHER Example: DFA — GNFA — RE




ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

re-draw GNFA with
all other states




ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

find a path
through q,




ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

add edge to
new GNFA




ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

find another
path through q,




ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

add edge to
new GNFA




ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

find another
path through q,




ANOTHER Example: DFA — GNFA — RE

don't forget current

Eliminate q_: ; 0. edge!
2 3 '

add edge to

o . '
“ew GNEA This time is not G |




ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

find another
path through q,




ANOTHER Example: DFA — GNFA — RE

don't forget current

Eliminate q_: ; 0. edge!
2 2 '

add edge to
new GNFA




ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

when no more paths
through q,, start over

(and simplify
RES)




ANOTHER Example: DFA — GNFA — RE

Eliminate q.

re-draw GNFA with
all other states

O—= op



ANOTHER Example: DFA — GNFA — RE

Eliminate q.
find a path through q,

O—= op



ANOTHER Example: DFA — GNFA — RE

Eliminate q.

add edge to new GNFA

a*c(ca*c U b)*(ca*b U a) U a*b

O (=@



ANOTHER Example: DFA — GNFA — RE

Eliminate q. ‘ catc U b

when no more paths
through d,, start over

a*c(ca*c U b)*(ca™ U a) U a*b

O (=@



ANOTHER Example: DFA — GNFA — RE

a*c(ca*c U b)*(ca*™b U a) U a*b
(%) On
Eliminate q_:

re-draw GNFA with
all other states



ANOTHER Example: DFA — GNFA — RE

a*c(ca*c U b)*(ca*™b U a) U a*b

(%) ()@

EIimim 2 £
%

find a path through q,

don't forget: no arrow means J



ANOTHER Example: DFA — GNFA — RE

a *c(ca*c U b)*(ca*b U a) U a*b

Enmum 5 /

add edge to new GNFA

(a*c(ca*cUb)*(ca*bUa)Ua*b)F*cU

O



ANOTHER Example: DFA — GNFA — RE

a*c(ca*c U b)*(ca*™b U a) U a*b
(%) O
Eliminate q_:
when no more paths through q, start over

(and simplify RESs) don't forget: &= ¢

. a*c(ca*c U b)*(ca*b U a) U a™b @



ANOTHER Example: DFA — GNFA — RE

. a*c(ca*c U b)*(ca®b U a) U a™b @

Only two states remain:

RE = a*c(ca*c U b)*(ca™ U a) U a*b



Recap:

Here “=” means “can be converted to”

RE

Any of the t
the regular

< DFA © NFA

nree recognize exactly

anguages (initially defined using DFA)



These conversions are used every time you enter
an RE, for example for pattern matching using grep

The RE is converted to an NFA
Then the NFA is converted to a DFA
*The DFA representation is used to pattern-match

Optimizations have been devised,
but this is still the general approach.



What language is NOT regular?

s{0"1":n>0}={g, 01, 0011, 000111, ... } regular?



Pumping lemma:

L regular language = |3 p >0
Vwel,|wl=2p
= vavz . W= XyZ, |y|> O’ ‘Xy‘ﬁ p

Vi>0:xyzel

Recall y° =, y! =y, y? = yy, y3 = yyy, ...



Pumping lemma:

L regular language = |3 p >0
Vwel,|wl=2p
= vavz . W= XyZ, |y|> O’ ‘Xy‘ﬁ p

Vi>0:xyzel
We will not see the proof. But here's the idea:

p = |Q| for DFA recognizing L
If w e L, |w| 2> p, then during computation
2 states must be the same g €Q
y = portion of w that brings back to g
can repeat y and still accept string



Pumping lemma:

L regular language = |3 p >0 A
Vwel,|wl=2p
= vavz . W= XyZ, |y|> O’ ‘Xy‘ﬁ p

Vi>0:xyzel

Useful to prove L NOT regular. Use contrapositive:
L regular language = A
same as
(not A) = L not regular



Pumping lemma (contrapositive

V p=0 not A
dwel,|wl2p = L not regular

vava:szyza ‘y‘ >O! ‘Xyl Sp
Ji>0:xyze L

To prove L not regular it is enough to prove not A

Not A Is the stuff in the box.



Proving something like
V bla 3 bla V bla 3 bla bla
means winning a game

Theory is all about winning games!



Example NAME THE BIGGEST NUMBER GAME

* Two players:
You, Adversary.
* Rules:
First Adversary says a number.
Then You say a number.
You win if your number is bigger.

Can you win this game?



Example NAME THE BIGGEST NUMBER GAME

* Two players:
You, Adversary.
* Rules:
First Adversary says a number.
Then You say a number.
You win if your number is bigger.

You have winning strategy:
if adversary says X, you say x+1



Example NAME THE BIGGEST NUMBER GAME

* Two players:
You, Adversary. 4,V
* Rules:
First Adversary says a number. V x3y:y>X
Then You say a number.
You win if your number is bigger.

You have winning strategy: Claim is true
if adversary says X, you say x+1



Another example:

heorem: YV NFAN 3 DFAM : L(M) = L(N)

We already saw a winning strategy for this game
What is it?



Another example:

heorem: YV NFAN 3 DFAM : L(M) = L(N)

We already saw a winning strategy for this game
The power set construction.



Games with more moves:
Chess, Checkers, Tic-Tac-Toe

You can win if

V¥ move of the Adversary
4 move You can make

V¥ move of the Adversary
4 move You can make

: YOu checkmate



Pumping lemma (contrapositive

V p =0
dwel,|wl=2p = L not regular

\4 va’z . W = XYZ, ‘y‘ > O! ‘Xyl < p
FJi>20:xyze L
Rules of the game:

Adversary picks p,

You pick w €L of length > p,

Adversary decomposes w in xyz, where |y| > 0, |xy|<p
You pick 1 =0

Finally, you win if xy'z & L



Theorem: L :={0" 1" : n > 0} is not regular

Proof: vV p =0
Use pumping lemma Jwel,|w/>p
Adversary moves p V X,y,z W =xyz, |y| > 0, [xy| <p

You move w ;= 0P 1P 3i>0:xy'z gL

Adversary moves X,y,Z

You move | ;= 2

You must show xyyz ¢ L.

Since |xy|<p and w = xyz=0P 1P |y only has 0

So xyyz = 0P * vl 1P

Since |y| > 0, this is not of the form 0" 1" DONE



Theorem: L :={w : w has as many 0 as 1} not regular

Same Proof: V p >0

Use pumping lemma Jwel,|w==p

Adversary moves p V X,y,z W =xyz, |y| > 0, [xy| <p
You move w =7 Fi>0:xyzegl



Theorem: L :={w : w has as many 0 as 1} not regular

Same Proof: V p =0

Use pumping lemma Jwel,|w/>p

Adversary moves p V X,y,z W =xyz, |y| > 0, [xy| <p
You move w = 0P 1P Ji>0:xylzeL

Adversary moves X,y,Z

You move | :=7?



Theorem: L :={w : w has as many 0 as 1} not regular

Same Proof: V p >0

Use pumping lemma TJwel, |w/=p

Adversary moves p V X,y,z:w=xyz |y| >0, [xy| <p
You move w ;= 0P 1P 3i>0:xy'z gL

Adversary moves X,y,Z

You move | ;=2

You must show xyyz ¢ L.

Since |xy|<p and w = xyz=0P 1P |y only has 0

So xyyz =7



Theorem: L :={w : w has as many 0 as 1} not regular

Same Proof: V p >0

Use pumping lemma TJwel, |w/=p

Adversary moves p V X,y,z:w=xyz |y| >0, [xy| <p
You move w ;= 0P 1P 3i>0:xy'z gL

Adversary moves X,y,Z

You move | ;=2

You must show xyyz ¢ L.

Since |xy|<p and w = xyz=0P 1P |y only has 0

So xyyz = 0P * vl 1P

Since |y| > 0, not as many O as 1 DONE



Theorem: L :={0! 1% : j > k} is not regular
Proof: V p =0
Use pumping lemma Iwel, |w/>p

Adversary moves p V X,y,z 1w =xyz, |y| >0, [xy| <p
You move w = ? 3i>0:xyzel




Theorem: L :={0! 1% : j > k} is not regular
Proof: V p =0
Use pumping lemma Iwel, |w/>p

Adversary moves p V X,y,z 1w =xyz, |y| >0, [xy| <p
You mOveW:=Op+1 1P E|i20:xyizg|_

Adversary moves X,y,z
You move i =7



Theorem: L :={0! 1% : j > k} is not regular

Proof: V p >0
Use pumping lemma Iwel,|w/=p
Adversary moves p V X,y,z 1w =xyz, |y| >0, [xy| <p

You move w :=0P*1 1P [5i50:xyiz gL

Adversary moves X,y,z

You movei:=0

You must show xz ¢ L.

Since |xy|<p and w = xyz = 0P*1 1P y only has 0O
Soxz=0P*1- Iyl qp

Since |y| > 0, this is not of the form 0! 1k with j > k



Theorem: L :={uu:u e {0,1}" } is not regular
Proof: V p =0
Use pumping lemma Iwel, |w/>p

Adversary moves p V X,y,z 1w =xyz, |y| >0, [xy| <p
You move w = ? 3i>0:xyzel




Theorem: L :={uu:u e {0,1}" } is not regular
Proof: V p =0
Use pumping lemma Iwel, |w/>p

Adversary moves p V X,y,z 1w =xyz, |y| >0, [xy| <p
You move w := 0P1 0P 1 HiZO:XinEL

Adversary moves X,y,z
You move i =7



Theorem: L :={uu:u e {0,1}" } is not regular

Proof: V p >0
Use pumping lemma Iwel,|w/=p
Adversary moves p V X,y,z 1w =xyz, |y| >0, [xy| <p

Youmove w:=0P10P1 |3i>0:xyizel
Adversary moves X,Y,z

You move | ;= 2

You must show xyyz ¢ L.:

Since |xy|<pandw=xyz=0P10P1,yonly has 0
So xyyz = 0P * ¥l 1 OP 1

Since |y| > 0, first half of xyyz only 0, so xyyz ¢ L



2
Theorem: L:={1" :n>0}is notregular

Proof: vV p =0
Use pumping lemma Jwel, |w/>p

Adversary moves p V X,y,z:w=xyz, |y| >0, [xy| <p
You move w =7 3i>0:xylz gL




2
Theorem: L:={1" :n>0}is notregular

Proof: vV p =0

Use pumping lemma TJwel, |w>p

Adversary moves 2p V X,y,z:w=xyz, |y| >0, [xy| <p
You move w = 1P 3i>0:xy'z gL

Adversary moves X,y,z
You move | :=?



2
Theorem: L:={1" :n>0}is notregular

Proof: vV p =0

Use pumping lemma TJwel, |w>p

Adversary moves 2p V X,y,z:w=xyz, |y| >0, [xy| <p
You move w = 1P 3i>0:xy'z gL

Adversary moves X,y,z
You move | ;= 2

You must show xyyz ¢ L.
Since |xy|<p, |xyyz| £ 7?



2
Theorem: L:={1" :n>0}is notregular

Proof: vV p =0

Use pumping lemma TJwel, |w>p

Adversary moves 2p V X,y,z:w=xyz, |y| >0, [xy| <p
You move w = 1P 3i>0:xy'z gL

Adversary moves X,y,z

You move | ;= 2

You must show xyyz ¢ L.

Since |xy|<p, |xyyz| < p? + p < (p+1)?

Since |y| > 0, [xyyz| > ?



2
Theorem: L:={1" :n>0}is notregular

Proof: vV p =0

Use pumping lemma TJwel, |w>p

Adversary moves 2p V X,y,z:w=xyz, |y| >0, [xy| <p
You move w = 1P 3i>0:xy'z gL

Adversary moves X,y,z

You move | ;= 2

You must show xyyz ¢ L.

Since |xy|<p, |xyyz| < p? + p < (p+1)?

Since |y| > 0, |xyyz| > p?
So |xyyz| cannot be ... what ?



2
Theorem: L:={1" :n>0}is notregular

Proof: vV p =0
Use pumping lemma Iwel,|w=p
Adversary moves p V X,y,z:w=xyz, |y| >0, [xy| <p

2
You move w = 1P 3i>0:xy'z gL

Adversary moves X,y,z

You move | ;= 2

You must show xyyz ¢ L.

Since |xy|<p, |xyyz| < p? + p < (p+1)?

Since |y| > 0, |xyyz| > p?
S0 [Xyyz| cannot be a square. xyyz ¢ L



Big picture

*All languages
*Decidable
Turing machines
NP
P
«Context-free
Context-free grammars, push-down automata
*Regular
Automata, non-deterministic automata,
regular expressions



