

We now return to the question:
● Suppose A, B are regular languages, then
● not A := { w : w is not in A }
● A U B := { w : w in A or w in B }
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

● A ∩ B := { w : w in A and w in B }

are all regular

●All languages
●Decidable

Turing machines
●NP
●P
●Context-free

Context-free grammars, push-down automata
●Regular

Automata, non-deterministic automata,

regular expressions

Big picture

How to specify a regular language?

Write a picture → complicated

Write down formal definition → complicated
 d(q0 ,0) = q0, …

Use symbols from S and operations *, o, U → good

 ({0} * U {1}) o {001}

Regular expressions: anything you can write with

 , ε , symbols from S, and operations *, o, U

Conventions:
●Write a instead of {a}
●Write AB for A o B
●Write ∑ for Ua ∑ ∈ a So if ∑ = {a,b} then ∑ = a U b

●Operation * has precedence over o, and o over U

 so 1 U 01* means 1U(0(1)*)

Example: 110, 0*, S*, S*001S*, (SS)*, 01 U 10

Definition Regular expressions RE over S are:

 

 e

 a if a in S

 R R' if R, R' are RE

 R U R' if R, R' are RE

 R* if R is RE

Definition The language described by RE:

 L() = 

 L(e) = {e}

 L(a) = {a} if a in S

 L(R R') = L(R) o L(R')

 L(R U R') = L(R) U L(R')

 L(R*) = L(R)*

Example S = { a, b}

 RE Language
● ab U ba ?
● a*
● (a U b)*
● a*ba*
● S*bS*
● S*aabS*
● (SS)*
● (a*ba*ba*)*
● a*baba*a

Example S = { a, b}

 RE Language
● ab U ba {ab, ba}
● a*
● (a U b)*
● a*ba*
● S*bS*
● S*aabS*
● (SS)*
● (a*ba*ba*)*
● a*baba*a

Example S = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {e, a, aa, … } = { w : w has only a}
● (a U b)*
● a*ba*
● S*bS*
● S*aabS*
● (SS)*
● (a*ba*ba*)*
● a*baba*a

Example S = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {e, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba*
● S*bS*
● S*aabS*
● (SS)*
● (a*ba*ba*)*
● a*baba*a

Example S = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {e, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● S*bS*
● S*aabS*
● (SS)*
● (a*ba*ba*)*
● a*baba*a

Example S = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {e, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● S*bS* {w : w has at least one b}
● S*aabS*
● (SS)*
● (a*ba*ba*)*
● a*baba*a

Example S = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {e, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● S*bS* {w : w has at least one b}
● S*aabS* {w : w contains the string aab}
● (SS)*
● (a*ba*ba*)*
● a*baba*a

Example S = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {e, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● S*bS* {w : w has at least one b}
● S*aabS* {w : w contains the string aab}
● (SS)* {w : w has even length}
● (a*ba*ba*)*
● a*baba*a

Example S = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {e, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● S*bS* {w : w has at least one b}
● S*aabS* {w : w contains the string aab}
● (SS)* {w : w has even length}
● (a*ba*ba*)* {w : w contains even number of b}
● a*baba*a

Example S = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {e, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● S*bS* {w : w has at least one b}
● S*aabS* {w : w contains the string aab}
● (SS)* {w : w has even length}
● (a*ba*ba*)* {w : w contains even number of b}
● a*baba*a  (anything o  = )

Theorem: For every RE R there is NFA M: L(M) = L(R)

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M := ?

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M := ?

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M :=

● R = a M := ?

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M :=

● R = a M :=

● R = R U R' ?

a

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M :=

● R = a M :=

● R = R U R' use construction for A U B seen earlier
● R = R o R' ?

a

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M :=

● R = a M :=

● R = R U R' use construction for A U B seen earlier
● R = R o R' use construction for A o B seen earlier
● R = R* ?

a

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M :=

● R = a M :=

● R = R U R' use construction for A U B seen earlier
● R = R o R' use construction for A o B seen earlier
● R = R* use construction for A* seen earlier

a

Example: RE → NFA

RE = (ab U a)*

Example: RE → NFA

aM
a

=

L(M
a
)=L(a)

RE = (ab U a)*

Example: RE → NFA

RE = (ab U a)*

aM
a

=

L(M
a
)=L(a)

bM
b

=

L(M
b
)=L(b)

Example: RE → NFA

M
ab

=

L(M
ab

)=L(ab)

a be

RE = (ab U a)*

Example: RE → NFA

M
ab

=

L(M
ab

)=L(ab)

a be

RE = (ab U a)*

aM
a

=

L(M
a
)=L(a)

Example: RE → NFA

M
ab U a

=

L(M
ab U a

)=L(ab U a)

a be

RE = (ab U a)*

e

e a

Example: RE → NFA

M
(ab U a)*

=

L(M
(ab U a)*

)=L((ab U a)*)=L(RE)

RE = (ab U a)*

a be

a

e

e
e

e

e

ANOTHER Example: RE → NFA

RE =(e U a)ba*

ANOTHER Example: RE → NFA

M
e

=

L(M
e
)=L(e)

RE =(e U a)ba*

ANOTHER Example: RE → NFA

M
e

=

L(M
e
)=L(e)

aM
a

=

L(M
a
)=L(a)

RE =(e U a)ba*

ANOTHER Example: RE → NFA

M
e U a

=

L(M
e U a

)=L(e U a)

RE =(e U a)ba*

e

e
a

ANOTHER Example: RE → NFA

M
e U a

=

L(M
e U a

)=L(e U a)

bM
b

=

L(M
b
)=L(b)

RE =(e U a)ba*

e

e
a

ANOTHER Example: RE → NFA

L(M
(e U a)b

)=L((e U a)b)

e

e
a

b
e

e

M
(e U a)b

=

RE =(e U a)ba*

ANOTHER Example: RE → NFA

L(M
(e U a)b

)=L((e U a)b)

e

e
a

b
e

e

aM
a

=

L(M
a
)=L(a)

M
(e U a)b

=

RE =(e U a)ba*

ANOTHER Example: RE → NFA

L(M
(e U a)b

)=L((e U a)b)

e

e
a

b
e

e

M
a*

=
e

e

a

L(M
a*
)=L(a*)

M
(e U a)b

=

RE =(e U a)ba*

ANOTHER Example: RE → NFA

RE =(e U a)ba*

M
(e U a)ba*

=

L(M
(e U a)ba*

)=L((e U a)ba*)=L(RE)

e

e
a

b
e

e e a

e e

Recap:

Here “” means “can be converted to”

We have seen: RE  NFA  DFA

Next we see: DFA  RE

In two steps: DFA  Generalized NFA  RE

Generalized NFA (GNFA)

q0 qa

a*b*

a U b*

ab

Nondeterministic

Transitions labelled by RE

Read blocks of input symbols at a time

Generalized NFA (GNFA)

q0 qa

a*b*

a U b*

ab

Convention:

Unique final state

Exactly one transition between each pair of states

except nothing going into start state

 nothing going out of final state

If arrow not shown in picture, label = 

●Definition: A generalized finite automaton (GNFA)
● is a 5-tuple (Q, S, d, q0, qa) where

●Q is a finite set of states
●S is the input alphabet
●d : (Q - {qa}) X (Q – {q0}) → Regular Expressions

●q0 in Q is the start state

●qa in Q is the accept state

●Definition: GNFA (Q, S, d, q0, qa) accepts a string w if

● ∃ integer k, k strings w∃ 1 , w2 , …, wk  S*

 such that w = w1 w2 … wk

(divide w in k strings)

●$ sequence of k+1 states r0, r1, .., rk in Q such that:

● r0 = q0

● wi+1 L(d(ri ,ri+1))  0  i < k
● rk = qa

●Differences with NFA are in green

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=?

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=aaa w2=?

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=aaa w2=bb w3=ab

r0=q0 r1=?

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=aaa w2=bb w3=ab

r0=q0 r1=q1 r2=?

w1 = aaa  L(d(r0,r1)) = L(d(q0,q1)) = L(a*)

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=aaa w2=bb w3=ab

r0=q0 r1=q1 r2=q1 r3 = ?

w1 = aaa  L(d(r0,r1)) = L(d(q0,q1)) = L(a*)

w2 = bb  L(d(r1,r2)) = L(d(q1,q1)) = L(b*)

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=aaa w2=bb w3=ab

r0=q0 r1=q1 r2=q1 r3 = qa

w1 = aaa  L(d(r0,r1)) = L(d(q0,q1)) = L(a*)

w2 = bb  L(d(r1,r2)) = L(d(q1,q1)) = L(b*)

w3 = ab  L(d(r2,r3)) = L(d(q1,qa)) = L(ab)

Theorem:  DFA M  GNFA N : L(N) = L(M)

Construction:

To ensure unique transition between each pair:

To ensure unique final state, no transitions ingoing

start state, no transitions outgoing final state:

1 1 U 0

0

e

e
ee

Theorem:  GNFA N  RE R : L(R) = L(N)

Construction:

If N has 2 states, then N =

 thus R := S
q0 qa

S

qi qj

R1R2*R3 U R4

If N has > 2 states, eliminate some state qr  q0, qa :

 for every ordered pair qi, qj (possibly equal)

 that are connected through q
r

qr qi qj

R1 R3

R4

 Repeat until 2 states remain

R2

Example: DFA → GNFA → RE

q
2q

1

a b

b,c

DFA

Example: DFA → GNFA → RE

q
2q

1

a b

b U c

GNFA

q
0

q
a

e e

Example: DFA → GNFA → RE

q
2q

1

a b

q
0

q
a

e e

q
2

b

q
0

q
a

e

b U c

Eliminate q
1
: re-draw GNFA with all other states

Example: DFA → GNFA → RE

q
2q

1

a b

q
0

q
a

e e

q
2

b

q
0

q
a

e

b U c

Eliminate q
1
: find a path through q

1

Example: DFA → GNFA → RE

q
2q

1

a b

q
0

q
a

e e

q
2

b

q
0

q
a

e

Eliminate q
1
: add edge to new GNFA

b U c

e a* (b U c) U Ø

Ø

Don't forget: no arrow means label Ø

Example: DFA → GNFA → RE

q
2q

1

a b

q
0

q
a

e e

q
2

b

q
0

q
a

e

Eliminate q
1
: simplify RE on new edge

a* (b U c)

b U c

Example: DFA → GNFA → RE

q
2q

1

a b

q
0

q
a

e e

q
2

b

q
0

q
a

e

Eliminate q
1
: if no more paths through q

1
, start over

a* (b U c)

b U c

Example: DFA → GNFA → RE

q
2

b

q
0

q
a

ea* (b U c)

Eliminate q
2
: re-draw GNFA with all other states

q
0

q
a

Example: DFA → GNFA → RE

q
2

b

q
0

q
a

ea* (b U c)

q
0

q
a

Eliminate q
2
: find a path through q

2

Example: DFA → GNFA → RE

q
2

b

q
0

q
a

ea* (b U c)

q
0

q
a

Eliminate q
2
: add edge to new GNFA

a* (b U c) b* e U Ø

Example: DFA → GNFA → RE

q
2

b

q
0

q
a

ea* (b U c)

q
0

q
a

Eliminate q
2
: simplify RE on new edge

a* (b U c) b*

Example: DFA → GNFA → RE

q
2

b

q
0

q
a

ea* (b U c)

q
0

q
a

Eliminate q
2
: if no more paths through q

2
, start over

a* (b U c) b*

Example: DFA → GNFA → RE

q
0

q
a

Only two states remain:

RE = a* (b U c) b*

a* (b U c) b*

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q3

DFA

c

c

b

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3 a

GNFA

c

c

b

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

re-draw GNFA with

all other states

a

q
0

q
2

a

qeq
3 a

b

c

c

b

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

find a path
through q

1

a

q
0

q
2

a

qeq
3 a

c

c

b

b

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

add edge to

new GNFA

a

q
0

q
2

a

qeq
3 a

c

c

e a*b U Ø

b

b

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

find another
path through q

1

a

q
0

q
2

a

qeq
3 a

c

c

b

b

e a*b U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

add edge to

new GNFA

a

b

q
0

q
2

a

qeq
3 a

c

c

e a*c U Ø

b

e a*b U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

find another
path through q

1

a

q
0

q
2

a

qeq
3 a

c

c

b

b

e a*b U Ø

e a*c U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

add edge to

new GNFA

a

q
0

q
2

ca*b U a

qeq
3 a

c

c

b

b

don't forget current
q

2
 → q

3
 edge!

This time is not Ø !

e a*b U Ø

e a*c U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

find another
path through q

1

a

q
0

q
2

qeq
3 a

c

c

b

b

ca*b U a

e a*b U Ø

e a*c U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3 a

q
0

q
2

qeq
3 a

c

c

b

ca*c U b

ca*b U a

Eliminate q
1
:

add edge to

new GNFA

don't forget current
q

2
 → q

2
 edge!

e a*b U Ø

e a*c U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

when no more paths
through q

1
, start over

(and simplify

REs)

a

q
0

q
2

qeq
3 a

c

c

a*b

b

a*c ca*b U a

ca*c U b

ANOTHER Example: DFA → GNFA → RE

qeq
3 a

Eliminate q
2
:

re-draw GNFA with

all other states

q
0

q
2

qeq
3 aa*b

a*c ca*b U a

ca*c U b

q
0

a*b

ANOTHER Example: DFA → GNFA → RE

qeq
3 a

Eliminate q
2
:

find a path through q
2

q
0

q
2

qeq
3 aa*b

a*c ca*b U a

ca*c U b

q
0

a*b

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
2
:

add edge to new GNFA

q
0

q
2

qeq
3 aa*b

a*c ca*b U a

ca*c U b

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
2
:

when no more paths
through q

2
, start over

q
0

q
2

qeq
3 aa*b

a*c ca*b U a

ca*c U b

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
3
:

re-draw GNFA with

all other states

q
0 qa

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
3
:

find a path through q
3

q
0 qa

don't forget: no arrow means Ø

Ø

Ø

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
3
:

add edge to new GNFA

q
0 qa

(a*c(ca*c U b)*(ca*b U a) U a*b) Ø* ε U Ø

Ø

Ø

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
3
:

when no more paths through q
3
, start over

(and simplify REs)

q
0 qa

a*c(ca*c U b)*(ca*b U a) U a*b

don't forget: Ø*= ε

ANOTHER Example: DFA → GNFA → RE

q
0 qa

a*c(ca*c U b)*(ca*b U a) U a*b

Only two states remain:

RE = a*c(ca*c U b)*(ca*b U a) U a*b

Recap:

Here “” means “can be converted to”

 RE  DFA  NFA

Any of the three recognize exactly

the regular languages (initially defined using DFA)

These conversions are used every time you enter

an RE, for example for pattern matching using grep

●The RE is converted to an NFA
●Then the NFA is converted to a DFA
●The DFA representation is used to pattern-match

Optimizations have been devised,

but this is still the general approach.

What language is NOT regular?

Is { 0n 1n : n  0 } = {ε, 01, 0011, 000111, … } regular?

Pumping lemma:

L regular language 

Recall y0 = e, y1 = y, y2 = yy, y3 = yyy, ...

 p 0

 w  L, |w|  p

 x,y,z : w= xyz, |y|> 0, |xy| p

 i  0 : xyiz  L

Pumping lemma:

L regular language 

We will not see the proof. But here's the idea:

p := |Q| for DFA recognizing L

If w  L, |w|  p, then during computation

 2 states must be the same q Q∈
y = portion of w that brings back to q

can repeat y and still accept string

 p 0

 w  L, |w|  p

 x,y,z : w= xyz, |y|> 0, |xy| p

 i  0 : xyiz  L

Pumping lemma:

L regular language 

Useful to prove L NOT regular. Use contrapositive:

L regular language  A

 same as

 (not A)  L not regular

 p 0

 w  L, |w|  p

 x,y,z : w= xyz, |y|> 0, |xy| p

 i  0 : xyiz  L

A

Pumping lemma (contrapositive)

  L not regular

To prove L not regular it is enough to prove not A

Not A is the stuff in the box.

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

not A

Proving something like

 bla  bla  bla  bla bla

means winning a game

Theory is all about winning games!

Example NAME THE BIGGEST NUMBER GAME

● Two players:

 You, Adversary.
● Rules:

First Adversary says a number.

 Then You say a number.

 You win if your number is bigger.

 Can you win this game?

Example NAME THE BIGGEST NUMBER GAME

● Two players:

 You, Adversary.
● Rules:

First Adversary says a number.

 Then You say a number.

 You win if your number is bigger.

 You have winning strategy:

 if adversary says x, you say x+1

Example NAME THE BIGGEST NUMBER GAME

● Two players:

 You, Adversary. , 
● Rules:

First Adversary says a number.  x  y : y > x

 Then You say a number.

 You win if your number is bigger.

 You have winning strategy: Claim is true

 if adversary says x, you say x+1

Another example:

Theorem:  NFA N  DFA M : L(M) = L(N)

We already saw a winning strategy for this game

What is it?

Another example:

Theorem:  NFA N  DFA M : L(M) = L(N)

We already saw a winning strategy for this game

The power set construction.

Games with more moves:

Chess, Checkers, Tic-Tac-Toe

You can win if

 move of the Adversary

 move You can make

 move of the Adversary

 move You can make

…

: You checkmate

Pumping lemma (contrapositive)

  L not regular

Rules of the game:

Adversary picks p,

You pick w L of length ∈  p,

Adversary decomposes w in xyz, where |y| > 0, |xy|p

You pick i  0

Finally, you win if xyiz  L

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {0n 1n : n  0} is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 0p 1p

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p and w = xyz = 0p 1p , y only has 0

So xyyz = 0p + |y| 1p

Since |y| > 0, this is not of the form 0n 1n DONE

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {w : w has as many 0 as 1} not regular

Same Proof:

Use pumping lemma

Adversary moves p

You move w := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {w : w has as many 0 as 1} not regular

Same Proof:

Use pumping lemma

Adversary moves p

You move w := 0p 1p

Adversary moves x,y,z

You move i := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {w : w has as many 0 as 1} not regular

Same Proof:

Use pumping lemma

Adversary moves p

You move w := 0p 1p

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p and w = xyz = 0p 1p , y only has 0

So xyyz = ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {w : w has as many 0 as 1} not regular

Same Proof:

Use pumping lemma

Adversary moves p

You move w := 0p 1p

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p and w = xyz = 0p 1p , y only has 0

So xyyz = 0p + |y| 1p

Since |y| > 0, not as many 0 as 1 DONE

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {0j 1k : j > k} is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {0j 1k : j > k} is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 0p+1 1p

Adversary moves x,y,z

You move i := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {0j 1k : j > k} is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 0p+1 1p

Adversary moves x,y,z

You move i := 0

You must show xz  L:

Since |xy|p and w = xyz = 0p+1 1p , y only has 0

So xz = 0p + 1 - |y| 1p

Since |y| > 0, this is not of the form 0j 1k with j > k

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {uu : u  {0,1}* } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {uu : u  {0,1}* } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 0p1 0p 1

Adversary moves x,y,z

You move i := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {uu : u  {0,1}* } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 0p 1 0p 1

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p and w = xyz = 0p 1 0p 1 , y only has 0

So xyyz = 0p + |y| 1 0p 1

Since |y| > 0, first half of xyyz only 0, so xyyz  L

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 1p2

Adversary moves x,y,z

You move i := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 1p2

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p, |xyyz|  ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 1p2

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p, |xyyz|  p2 + p < (p+1)2

Since |y| > 0, |xyyz| > ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 1p2

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p, |xyyz|  p2 + p < (p+1)2

Since |y| > 0, |xyyz| > p2

So |xyyz| cannot be … what ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 1p2

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p, |xyyz|  p2 + p < (p+1)2

Since |y| > 0, |xyyz| > p2

So |xyyz| cannot be a square. xyyz  L

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

●All languages
●Decidable

Turing machines
●NP
●P
●Context-free

Context-free grammars, push-down automata
●Regular

Automata, non-deterministic automata,

regular expressions

Big picture

