

● All languages
● Decidable

Turing machines
● NP
● P
● Context-free

Context-free grammars, push-down automata
● Regular

Automata, non-deterministic automata,

regular expressions

Big picture

DFA (Deterministic Finite Automata)

q0 qa

1

1

0

0

1

00
1

DFA (Deterministic Finite Automata)

q0 qa

1

1

0

0

● States , this DFA has 4 states

● Transitions

labelled with elements of the alphabet S = {0,1}

1

00
1

DFA (Deterministic Finite Automata)

q0 qa

 Computation on input w:
● Begin in start state
● Read input string in a one-way fashion
● Follow the arrows matching input symbols
● When input ends: ACCEPT if in accept state

 REJECT if not

1

1

0

0

q0

1

00
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0always start in start state

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011 ACCEPT

 because end in

 accept state

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010

1

1

1

0

0

0always start in start state

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010 REJECT

 because does not

 end in accept state

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string w = 01 ACCEPT

 w = 010 REJECT

 w = 0011 ACCEPT

 w = 00110 REJECT

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

M recognizes language

 L(M) = { w : w starts with 0 and ends with 1 }

L(M) is the language of strings causing M to accept

Example: 0101 is an element of L(M), 0101  L(M)

1

1

1

0

0

0
M :=

0
1

Example
M :=

● 00 causes M to accept, so 00 is in L(M) 00  L(M)
● 01 does not cause M to accept, so 01 not in L(M),

 01  L(M)
● 0101  L(M)
● 01101100  L(M)
● 011010  L(M)

S = {0,1}
q0 q1

1
0

0

1

Example
q0 q1

1

M :=

0

L(M) = {w : w has an even number of 1 }

Note: If there is no 1, then there are zero 1,

zero is an even number, so M should accept.

Indeed 0000000  L(M)

S = {0,1} 0

1

Example
M :=

0

● L(M) = ?

1

S = {0,1}

Example
M :=

0

● L(M) = every possible string over {0,1}

 = {0,1}*

1

S = {0,1}

Example

M :=
0

● L(M) = ?

1

S = {0,1}

0

1
q0

0

1

Example

M :=
0

● L(M) = all strings over {0,1} except empty string e

 = {0,1}* - { e }

1

S = {0,1}

0

1
q0

0

1

Example

M :=

0S = {0,1}

1

q0

0

1

1
1

0

0

1 0

● L(M) = ?

Example

M :=

● L(M) = { w : w starts and ends with same symbol }
● Memory is encoded in … what ?

0S = {0,1}

1

q0

0

1

1
1

0

0

1 0

Example

M :=

● L(M) = { w : w starts and ends with same symbol }
● Memory is encoded in states.

 DFA have finite states, so finite memory

0S = {0,1}

1

q0

0

1

1
1

0

0

1

Remember 0

Remember 1
0

Convention:

q0 qa

We already saw that

 L(M) = { w : w starts with 0 and ends with 1 }

The arrow leads to a “sink” state.

 If followed, M can never accept

1

1

1

0

0

0
M :=

q0

1

0
1

Convention:

q0 qa

Don't need to write such arrows:

If, from some state, read symbol with no

corresponding arrow, imagine M goes into “sink state”

that is not shown, and REJECT.

This makes pictures more compact.

1

1

0

0

0
M :=

Another convention:

List multiple transition on same arrow:

Means

This makes pictures more compact.

0,1,2

1
0

2

Example ∑ = {0,1}

M

=

L(M) = ?

0,10,1

Example ∑ = {0,1}

M

=

L(M) = ∑2 = {00,01,10,11}

0,10,1

Example from programming languages:

Recognize strings representing numbers:

S = {0,1,2,3,4,5,6,7,8,9, +, -, . }

0,...,9

+

-

.
0,...,9

0,...,9
0,...,9

Note: 0,...,9 means 0,1,2,3,4,5,6,7,8,9: 10 transitions

Example from programming languages:

Recognize strings representing numbers:

S = {0,1,2,3,4,5,6,7,8,9, +, -, . }

0,...,9

+

-

.
0,...,9

Possibly put sign (+, -)

Follow with arbitrarily many digits, but at least one

Possibly put decimal point

Follow with arbitrarily many digits, possibly none

0,...,9
0,...,9

Example from programming languages:

Recognize strings representing numbers:

S = {0,1,2,3,4,5,6,7,8,9, +, -, . }

0,...,9

+

-

.
0,...,9

Input w = 17 ACCEPT

Input w = + REJECT

Input w = -3.25 ACCEPT

Input w = +2.35-. REJECT

0,...,9
0,...,9

Example

● What about { w : w has same number of 0 and 1 }

● Can you design a DFA that recognizes that?

● It seems you need infinite memory

● We will prove later that

there is no DFA that recognizes that language !

S = {0,1}

Next: formal definition of DFA

● Useful to prove various properties of DFA

● Especially important to prove that things CANNOT

be

 recognized by DFA.

● Useful to practice mathematical notation

State diagram of a DFA:

● One or more states

● Exactly one start state

● Some number of accept states

● Labelled transitions exiting each state,

for every symbol in S

1

● Definition: A finite automaton (DFA)
 is a 5-tuple (Q, S, d, q0, F) where

● Q is a finite set of states
● S is the input alphabet
● d : Q X S → Q is the transition function
● q0 in Q is the start state

● F  Q is the set of accept states

Q X S is the set of ordered pairs (a,b) : a Q, b ∑∈ ∈
Example {q,r,s}X{0,1}={(q,0),(q,1),(r,0),(r,1),(s,0),(s,1)}

● Example: above DFA is 5-tuple (Q, S, d, q0, F) where

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = ?

q0 q1
1

0
0

1

● Example: above DFA is 5-tuple (Q, S, d, q0, F) where

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = q0 d(q0 ,1) = ?

q0 q1
1

0
0

1

● Example: above DFA is 5-tuple (Q, S, d, q0, F) where

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = q0 d(q0 ,1) = q1

d(q1 ,0) = q1 d(q1 ,1) = q0

● q0 in Q is the start state

● F = ?

q0 q1
1

0
0

1

● Example: above DFA is 5-tuple (Q, S, d, q0, F) where

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = q0 d(q0 ,1) = q1

d(q1 ,0) = q1 d(q1 ,1) = q0

● q0 in Q is the start state

● F = { q0}  Q is the set of accept states

q0 q1
1

0
0

1

● Definition: A DFA (Q, S, d, q0, F) accepts a string w if

● w = w1 w2 … wk where,  1  i  k, wi is in S

(the k symbols of w)

● The sequence of k+1 states r0, r1, .., rk such that:

(1) r0 = q0, and

(2) ri+1 = d(ri ,wi+1)  0  i < k

has rk in F

(ri = state DFA is in after reading i-th symbol in w)

● Above DFA (Q, S, d, q0, F) accepts w = 011

q0 q1
1

0
0

1
Example

● Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

q0 q1
1

0
0

1
Example

● Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

We must show that
● The sequence of 3+1=4 states r0, r1, r2, r3 such that:

(1) r0 = q0

 (2) ri+1 = d(ri ,wi+1)  0  i < 3

has r3 in F

q0 q1
1

0
0

1
Example

● Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

● r0 = q0

● r1 := ?

q0 q1
1

0
0

1
Example

● Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

● r0 = q0

● r1 = d(r0 ,w1)=d(q0 ,0) = q0

● r2 := ?

q0 q1
1

0
0

1
Example

● Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

● r0 = q0

● r1 = d(r0 ,w1)=d(q0 ,0) = q0

● r2 = d(r1 ,w2)=d(q0 ,1) = q1

● r3 := ?

q0 q1
1

0
0

1
Example

● Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

● r0 = q0

● r1 = d(r0 ,w1)=d(q0 ,0) = q0

● r2 = d(r1 ,w2)=d(q0 ,1) = q1

● r3 = d(r2 ,w3)=d(q1 ,1) = q0

● r3 = q0 in F OK DONE!

q0 q1
1

0
0

1
Example

● Definition: For a DFA M, we denote by L(M) the

set of strings accepted by M:

 L(M) := { w : M accepts w}

We say M accepts or recognizes the language L(M)

● Definition: A language L is regular

 if $ DFA M : L(M) = L

 In the next lectures we want to:

● Understand power of regular languages

● Develop alternate, compact notation to specify

regular languages

Example: Unix command grep '\<c.*h\>' file

selects all words starting with c and ending with h

in file

● Understand power of regular languages:

● Suppose A, B are regular languages, what about
● not A := { w : w is not in A }
● A U B := { w : w in A or w in B }
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

● Are these languages regular?

● Understand power of regular languages:

● Suppose A, B are regular languages, what about
● not A := { w : w is not in A }
● A U B := { w : w in A or w in B }
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

● Terminology: Are regular languages closed

 under not, U, o, * ?

● Theorem:

 If A is a regular language, then so is (not A)

● Theorem:

 If A is a regular language, then so is (not A)

● Proof idea: ?????????? the set of accept states

● Theorem:

 If A is a regular language, then so is (not A)

● Proof idea: Complement the set of accept states
● Example

● Theorem:

 If A is a regular language, then so is (not A)

● Proof idea: Complement the set of accept states
● Example:

q0 q1

1
0 0

1

L(M) =

{ w : w has even number of 1}

M :=

● Theorem:

 If A is a regular language, then so is (not A)

● Proof idea: Complement the set of accept states
● Example:

q0 q1

1
0 0

1

L(M) =

{ w : w has even number of 1}

M :=

q0 q1

10 0

1
M' :=

L(M') = not L(M) =

{ w : w has odd number of 1}

● Theorem: If A is a regular language, then so is (not A)
● Proof:
Given DFA M = (Q, S, d, q0, F) such that L(M) = A.

Define DFA M' = ??????????????????????????

This definition is the creative step of this proof,

the rest is (perhaps complicated but) mechanical

“unwrapping definitions”

● Theorem: If A is a regular language, then so is (not A)
● Proof:
Given DFA M = (Q, S, d, q0, F) such that L(M) = A.

Define DFA M' = (Q, S, d, q0, F'), where F' := not F.

● We need to show L(M') = not L(M), that is:

for any w, ??????????????????????????

● Theorem: If A is a regular language, then so is (not A)
● Proof:
Given DFA M = (Q, S, d, q0, F) such that L(M) = A.

Define DFA M' = (Q, S, d, q0, F'), where F' := not F.

● We need to show L(M') = not L(M), that is:

for any w, M' accepts w M does not accept w.

● So let w be any string of length k, and consider the
k+1 states r0, r1, .., rk from the definition of accept:

(1) r0 = q0, and

(2) ri+1 = d(ri ,wi+1)  0  i < k.

How do we conclude?

● Theorem: If A is a regular language, then so is (not A)
● Proof:
Given DFA M = (Q, S, d, q0, F) such that L(M) = A.

Define DFA M' = (Q, S, d, q0, F'), where F' := not F.

● We need to show L(M') = not L(M), that is:

for any w, M' accepts w M does not accept w

● So let w be any string of length k, and consider the
k+1 states r0, r1, .., rk from the definition of accept:

(1) r0 = q0, and

(2) ri+1 = d(ri ,wi+1)  0  i < k.

Note that rk in F' r k not in F, since F' = not F. 

What is a proof?

● A proof is an explanation, written in English, of why

something is true.

● Every sentence must be logically connected to the

previous ones, often by “so”, “hence”, “since”, etc.

● Your audience is a human being, NOT a machine.

● Theorem: If A is a regular language, then so is (not A)
● Proof:

DFA M = (Q, S, d, q0, F) such that L(M) = A.

DFA M' = (Q, S, d, q0, F'), where F' := not F.

L(M') = not L(M)

 M' accepts w M does not accept w

k+1 states r0, r1, .., rk

(1) r0 = q0, and

(2) ri+1 = d(ri ,wi+1)  0  i < k.

rk in F' r k not in F, F' = not F. 

What is a proof?

Complement the set of accept states

Given DFA M = (Q, S, d, q0, F) such that L(M) = A.

Define DFA M' = (Q, S, d, q0, F'), where F' := not F.
● We need to show L(M') = not L(M), that is:

for any w, M' accepts w M does not accept w
● Consider the k+1 states r0, r1, .., rk such that:

(1) r0 = q0, and

(2) ri+1 = d(ri ,wi+1)  0  i < k.
Note that rk in F' r k not in F, since F' = not F. 

To know a proof means to know all the pyramid

Example ∑ = {0,1}

M

=

L(M) = ∑2 = {00,01,10,11}

What is a DFA M' :

L(M') = not ∑2 = all strings except those of length 2 ?

0,10,1

Example ∑ = {0,1}

M'

=

L(M') = not ∑2 = {0,1}* - {00,01,10,11}

Do not forget the convention about the sink state!

0,10,1 0,10,1 0,10,1

● Suppose A, B are regular languages, what about
● not A := { w : w is not in A } REGULAR
● A U B := { w : w in A or w in B }
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

● Theorem: If A, B are regular, then so is A U B

● Proof idea: Take Cartesian product of states

 In a pair (q,q'),

 q tracks DFA for A,

 q' tracks DFA for B.

● Next we see an example.

 In it we abbreviate

 with

1

1

1

a b
1

0 0

L(MA) = A = ?

MA := c d

1 1

0MB :=

L(MB) = B = ?

Example

a b
1

0 0

L(MA) = A =

{ w : w has even number of 1}

MA := c d

1 1

0MB :=

L(MB) = B =

{ w : w has odd number of 0}

MAUB := How many states?

Example

a b
1

0 0

L(MA) = A =

{ w : w has even number of 1}

MA := c d

1 1

0MB :=

L(MB) = B =

{ w : w has odd number of 0}

MAUB := a,c

0

a,d

b,c
1

0

1

Example

b,d

L(MAUB) = AUB =

{ w : w has even number of 1,

 or odd number of 0}

● Theorem: If A, B are regular, then so is A U B
● Proof:
Given DFA MA = (QA,S, δA,qA, FA) such that L(M) = A,

 DFA MB = (QB,S, δB,qB, FB) such that L(M) = B.

Define DFA M = (Q, S, d, q0, F), where

Q := ?

● Theorem: If A, B are regular, then so is A U B
● Proof:
Given DFA MA = (QA,S, δA,qA, FA) such that L(M) = A,

 DFA MB = (QB,S, δB,qB, FB) such that L(M) = B.

Define DFA M = (Q, S, d, q0, F), where

Q := QA X QB

q0 := ?

● Theorem: If A, B are regular, then so is A U B
● Proof:
Given DFA MA = (QA,S, δA,qA, FA) such that L(M) = A,

 DFA MB = (QB,S, δB,qB, FB) such that L(M) = B.

Define DFA M = (Q, S, d, q0, F), where

Q := QA X QB

q0 := (qA , qB)

F := ?

● Theorem: If A, B are regular, then so is A U B
● Proof:
Given DFA MA = (QA,S, δA,qA, FA) such that L(M) = A,

 DFA MB = (QB,S, δB,qB, FB) such that L(M) = B.

Define DFA M = (Q, S, d, q0, F), where

Q := QA X QB

q0 := (qA , qB)

F := {(q,q') Q : q F∈ ∈ A or q' F∈ B }

δ((q,q'), v) := (?, ?)

● Theorem: If A, B are regular, then so is A U B
● Proof:
Given DFA MA = (QA,S, δA,qA, FA) such that L(M) = A,

 DFA MB = (QB,S, δB,qB, FB) such that L(M) = B.

Define DFA M = (Q, S, d, q0, F), where

Q := QA X QB

q0 := (qA , qB)

F := {(q,q') Q : q F∈ ∈ A or q' F∈ B }

δ((q,q'), v) := (δA (q,v), δB (q',v))

● We need to show L(M) = A U B that is, for any w:
M accepts w M A accepts w or MB accepts w

● Proof M accepts w M A accepts w or MB accepts w

● Suppose that M accepts w of length k.
● From the definitions of accept and M, the sequence
(s0 , t0) = q0 = (qA , qB),

(si+1,ti+1)=d((si,ti) ,wi+1)=(δA(si,wi+1), δB(ti,wi+1) 0i<

k has (sk,tk) ∈?

● Proof M accepts w M A accepts w or MB accepts w

● Suppose that M accepts w of length k.
● From the definitions of accept and M, the sequence
(s0 , t0) = q0 = (qA , qB),

(si+1,ti+1)=d((si,ti) ,wi+1)=(δA(si,wi+1), δB(ti,wi+1) 0i<

k has (sk,tk) F.∈
● By our definition of F, what can we say about (sk,tk) ?

● Proof M accepts w M A accepts w or MB accepts w

● Suppose that M accepts w of length k.
● From the definitions of accept and M, the sequence
(s0 , t0) = q0 = (qA , qB),

(si+1,ti+1)=d((si,ti) ,wi+1)=(δA(si,wi+1), δB(ti,wi+1) 0i<

k has (sk,tk) F.∈
● By our definition of F, sk F∈ A or tk F∈ B.

● Without loss of generality, assume sk F∈ A.

● Then MA accepts w because the sequence

s0 = qA , si+1 = δA (si , wi+1) 0 ≤ i < k,∀
has sk F∈ A .

● Proof M accepts w M A accepts w or MB accepts w

● W/out loss of generality, assume MA accepts w, |w|

=k.
● From the definition of MA accepts w, the sequence

r0 := qA, ri+1 := δA (ri ,wi+1)  0  i < k, has rk in ?

● Proof M accepts w M A accepts w or MB accepts w

● W/out loss of generality, assume MA accepts w, |w|

=k.
● From the definition of MA accepts w, the sequence

r0 := qA, ri+1 := δA (ri ,wi+1)  0  i < k, has rk in FA .

● Define the sequence of k+1 states
 t0 := qB , ti+1 := δB (ti ,wi+1)  0  i < k.

● M accepts w because the sequence

 ?????????? (recall states in M are pairs)

● Proof M accepts w M A accepts w or MB accepts w

● W/out loss of generality, assume MA accepts w, |w|

=k.
● From the definition of MA accepts w, the sequence

r0 := qA, ri+1 := δA (ri ,wi+1)  0  i < k, has rk in FA .

● Define the sequence of k+1 states
 t0 := qB , ti+1 := δB (ti ,wi+1)  0  i < k.

● M accepts w because the sequence
(r0 , t0) = q = (qA , qB),

(ri+1,ti+1) =d((ri,ti) ,wi+1)=(δA(ri,wi+1),δB(ti,wi+1) 0i< k

has (rk,tk) in F, by our definition of F. 

● Suppose A, B are regular languages, what about
● not A := { w : w is not in A } REGULAR
● A U B := { w : w in A or w in B } REGULAR
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

● Other two are more complicated!

● Plan: we introduce NFA

 prove that NFA are equivalent to DFA

 reprove A U B, prove A o B, A* regular, using NFA

● All languages
● Decidable

Turing machines
● NP
● P
● Context-free

Context-free grammars, push-down automata
● Regular

Automata, non-deterministic automata,

regular expressions

Big picture

Non deterministic finite automata (NFA)

● DFA: given state and input symbol,

 unique choice for next state,

deterministic:

● Next we allow multiple choices,

non-deterministic

● We also allow e-transitions:

can follow without reading anything

1

1

1

e

Example of NFA

Intuition of how it computes:
● Accept string w if there is a way to follow transitions

that ends in accept state
● Transitions labelled with symbol in S = {a,b}

 must be matched with input
● e transitions can be followed without matching

q0

q1
q2

e

a,b

b

a

a

Example of NFA

Example:
● Accept a (first follow e-transition)
● Accept baaa

q0

q1
q2

e

a,b

b

a

a

ANOTHER Example of NFA

q0

q1

q2

q3
e

b

b

a,b

a

b

Example:
● Accept bab (two accepting paths, one

 uses the e-transition)
● Reject ba (two possible paths, but neither
 has final state = q

1
)

● Definition: A non-deterministic finite automaton (NFA)
 is a 5-tuple (Q, S, d, q0, F) where

● Q is a finite set of states
● S is the input alphabet
● d : Q X (S U {e}) → Powerset(Q)
● q0 in Q is the start state

● F  Q is the set of accept states

● Recall: Powerset(Q) = set of all subsets of Q

Example: Powerset({1,2}) = ?

● Definition: A non-deterministic finite automaton (NFA)
 is a 5-tuple (Q, S, d, q0, F) where

● Q is a finite set of states
● S is the input alphabet
● d : Q X (S U {e}) → Powerset(Q)
● q0 in Q is the start state

● F  Q is the set of accept states

● Recall: Powerset(Q) = set of all subsets of Q

Example: Powerset({1,2}) = {, {1}, {2}, {1,2} }

● Example: above NFA is 5-tuple (Q, S, d, q0, F)

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = ?

q0 q1
e0, 1

1

● Example: above NFA is 5-tuple (Q, S, d, q0, F)

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = {q0} d(q0 ,1) = ?

q0 q1
e0, 1

1

● Example: above NFA is 5-tuple (Q, S, d, q0, F)

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = ?

q0 q1
e0, 1

1

● Example: above NFA is 5-tuple (Q, S, d, q0, F)

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = 

d(q1 ,0) = ?

q0 q1
e0, 1

1

● Example: above NFA is 5-tuple (Q, S, d, q0, F)

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = 

d(q1 ,0) =  d(q1 ,1) = ?

q0 q1
e0, 1

1

● Example: above NFA is 5-tuple (Q, S, d, q0, F)

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = 

d(q1 ,0) =  d(q1 ,1) =  d(q1 ,e) = ?

q0 q1
e0, 1

1

● Example: above NFA is 5-tuple (Q, S, d, q0, F)

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = 

d(q1 ,0) =  d(q1 ,1) =  d(q1 ,e) = {q0}

● q0 in Q is the start state

● F = ?

q0 q1
e0, 1

1

● Example: above NFA is 5-tuple (Q, S, d, q0, F)

● Q = { q0, q1}

● S = {0,1}
● d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = 

d(q1 ,0) =  d(q1 ,1) =  d(q1 ,e) = {q0}

● q0 in Q is the start state

● F = { q1}  Q is the set of accept states

q0 q1
e0, 1

1

● Definition: A NFA (Q, S, d, q0, F) accepts a string w if

$ integer k, k strings ∃ w1 , w2 , …, wk such that

● w = w1 w2 … wk where  1  i  k, wi  S U {e}

(the symbols of w, or e)

● $ sequence of k+1 states r0, r1, .., rk in Q such that:

● r0 = q0

● ri+1  d(ri ,wi+1)  0  i < k
● rk is in F

● Differences with DFA are in green

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = ?

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = ?

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = q

1
, r

2
 = ?

Transitions:
r1  d(r

0
,b) = {q

1
}

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = q

1
, r

2
 = q

2
, r

3
 = ?

Transitions:
r1  d(r

0
,b) = {q

1
} r2  d(r

1
,a) = {q

1
,q

2
}

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = q

1
, r

2
 = q

2
, r

3
 = q

0
, r

4
 = ?

Transitions:
r1  d(r

0
,b) = {q

1
} r2  d(r

1
,a) = {q

1
,q

2
}

r3  d(r
2
,a) = {q

0
}

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = q

1
, r

2
 = q

2
, r

3
 = q

0
, r

4
 = q

2
, r

5
 = ?

Transitions:
r1  d(r

0
,b) = {q

1
} r2  d(r

1
,a) = {q

1
,q

2
}

r3  d(r
2
,a) = {q

0
} r4  d(r

3
,e) = {q

2
}

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = q

1
, r

2
 = q

2
, r

3
 = q

0
, r

4
 = q

2
, r

5
 = q

0

Transitions:
r1  d(r

0
,b) = {q

1
} r2  d(r

1
,a) = {q

1
,q

2
}

r3  d(r
2
,a) = {q

0
} r4  d(r

3
,e) = {q

2
} r5  d(r

4
,a) = {q

0
}

● NFA are at least as powerful as DFA,

 because DFA are a special case of NFA

● Are NFA more powerful than DFA?

● Surprisingly, they are not:

● Theorem:

For every NFA N there is DFA M : L(M) = L(N)

● Theorem:

For every NFA N there is DFA M : L(M) = L(N)

● Construction without e transitions
● Given NFA N (Q, S, d, q, F)
● Construct DFA M (Q', S, d', q', F') where:
● Q' := Powerset(Q)
● q' = {q}
● F' = { S : S  Q' and S contains an element of F}
● d'(S, a) := Us  S d(s,a)

 = { t : t  d (s,a) for some s  S }

● It remains to deal with e transitions

● Definition: Let S be a set of states.

E(S) := { q : q can be reached from some state

 s in S traveling along 0 or more e transitions }

● We think of following e transitions at beginning, or

right after reading an input symbol in S

● Theorem:

For every NFA N there is DFA M : L(M) = L(N)

● Construction including e transitions
● Given NFA N (Q, S, d, q, F)
● Construct DFA M (Q', S, d', q', F') where:
● Q' := Powerset(Q)
● q' = E({q})
● F' = { S : S  Q' and S contains an element of F}
● d'(S, a) := E(Us  S d(s,a))

 = { t : t  E(d (s,a)) for some s  S }

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1
{1,3}

{2} {2,3}

{3} 

{1,2,3}

{1} {1,2}

Q
DFA

 = Powerset(Q
NFA

)

 = Powerset({1,2,3})

 = {,{1},{2},{3},{1,2}...}

Example: NFA → DFA conversion

e

a,b

b
a

a

1

2 3

NFA DFA

q
DFA

 = E({q
NFA

})

 = E({1})

 = {1,3}

{1,3}

{2} {2,3}

{3} 

{1,2,3}

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

F
DFA

 = {S : S contains

 an element of F
NFA

}

DFA

{1,3}

{2} {2,3}

{3} 

{1,2,3}

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({1}, a)

= E(d
NFA

(1, a))

= E() = 

DFA

{1,3}

{2} {2,3}

{3} 

{1,2,3}

a{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({1}, b)

= E(d
NFA

(1, b))

= E({2}) = {2}

DFA

{1,3}

{2} {2,3}

{3} 

{1,2,3}

a

b

{1} {1,2}

a

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({2}, a)

= E(d
NFA

(2, a))

= E({2,3}) = {2,3}

DFA

{1,3}

{2} {2,3}

{3} 

{1,2,3}

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({2}, b)

= E(d
NFA

(2, b))

= E({3}) = {3}

DFA

{1,3}

{2} {2,3}
a

{3}

b



{1,2,3}

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({3}, a)

= E(d
NFA

(3, a))

= E({1}) = {1,3}

DFA

{1,3}

{2} {2,3}
a

{3}

b

a


{1,2,3}

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({3}, b)

= E(d
NFA

(3, b))

= E() = 

DFA

{1,3}

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({2,3}, a)

= E(d
NFA

(2,a) U d
NFA

(3,a))

= E({2,3} U {1}) = {1,2,3}

DFA

{1,3}

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

a

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({2,3}, b)

= E(d
NFA

(2,b) U d
NFA

(3,b))

= E({3} U ) = {3}

DFA

{1,3}

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({1,3}, a)

= E(d
NFA

(1,a) U d
NFA

(3,a))

= E( U {1}) = {1,3}

DFA

{1,3}

a

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({1,3}, b)

= E(d
NFA

(1,b) U d
NFA

(3,b))

= E({2} U ) = {2}

DFA

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

d
DFA

({1,2}, a)

= E(d
NFA

(1,a) U d
NFA

(2,a))

= E( U {2,3}) = {2,3}

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a
ab

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

d
DFA

({1,2}, b)

= E(d
NFA

(1,b) U d
NFA

(2,b))

= E({2} U {3}) = {2,3}

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a
a,bb

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

d
DFA

({1,2,3}, a)

=E(d
NFA

(1,a) U d
NFA

(2,a) U d
NFA

(3,a))

=E( U {2,3} U {1}) = {1,2,3}

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a

a
a,bb

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

d
DFA

({1,2,3}, b)

=E(d
NFA

(1,b) U d
NFA

(2,b) U d
NFA

(3,b))

=E({2} U {3} U ) = {2,3}

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

b

a

a
a,bb

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

d
DFA

(, a) = 

d
DFA

(, b) = 

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

b

a

a
a,bb

{1} {1,2}

a,b

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

We can delete the

unreachable states.

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

b

a

a,b

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

Q
DFA

 = Powerset(Q
NFA

)

 = Powerset({1,2,3})

 = {,{1},{2},{3},{1,2}...}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

q
DFA

 = E({q
NFA

})

 = E({1})

 = {1}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

F
DFA

 = {S : S contains

 an element of F
NFA

}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

a

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1}, a)

= E(d
NFA

(1, a))

= E() = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

ba

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1}, b)

= E(d
NFA

(1, b))

= E({2,3}) = {1,2,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

ba

a

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({2}, a)

= E(d
NFA

(2, a))

= E({3}) = {1,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

ba

b

a

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({2}, b)

= E(d
NFA

(2, b))

= E() = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa

b

a

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({3}, a)

= E(d
NFA

(3, a))

= E() = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

b

a

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({3}, b)

= E(d
NFA

(3, b))

= E() = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

b

a

3

1 2

e
a

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,2}, a)

= E(d
NFA

(1,a) U d
NFA

(2,a))

= E( U {3}) = {1,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

b

a

3

1 2

e
a

b

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,2}, b)

= E(d
NFA

(1,b) U d
NFA

(2,b))

= E({2,3} U ) = {1,2,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

ab

a

3

1 2

e
a

b

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,3}, a)

= E(d
NFA

(1,a) U d
NFA

(3,a))

= E( U ) = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a bb

a

3

1 2

e
a

b

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,3}, b)

= E(d
NFA

(1,b) U d
NFA

(3,b))

= E({2,3} U ) = {1,2,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a bb

a

3

1 2

e
a

b

b

a

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({2,3}, a)

= E(d
NFA

(2,a) U d
NFA

(3,a))

= E({3} U ) = {1,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a bb

a

3

1 2

e
a

b

b

b

a

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({2,3}, b)

= E(d
NFA

(2,b) U d
NFA

(3,b))

= E( U ) = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a a
bb

a

3

1 2

e
a

b

b

b

a

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,2,3}, a)

=E(d
NFA

(1,a) U d
NFA

(2,a) U d
NFA

(3,a))

=E( U {3} U ) = {1,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a a
bb

a

3

1 2

e
a

b

b

b

a

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,2,3}, b)

=E(d
NFA

(1,b) U d
NFA

(2,b) U d
NFA

(3,b))

=E({2,3} U  U ) = {1,2,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a a
bb

a

3

1 2

a

b

a

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

e

b

b

d
DFA

(, a) = 

d
DFA

(, b) = 

a,b

{1}

 {1,2,3}

{1,3}

ba

a a
b

3

1 2

e
a

b

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

We can delete the

unreachable states.

a,b

Summary: NFA and DFA recognize the same

languages

We now return to the question:
● Suppose A, B are regular languages, what about
● not A := { w : w is not in A } REGULAR
● A U B := { w : w in A or w in B } REGULAR
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

Theorem: If A, B are regular languages, then so is

 A U B := { w : w in A or w in B }

● Proof idea: Given DFA MA : L(MA) = A,

 DFA MB : L(MB) = B,

● Construct NFA N : L(N) = A U B

U =

e

e

M

A

M

B

N

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := ?

U =

e

e

MA M

B

N

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := {q} U QA U QB , F := ?

U =

e

e

MA M

B

N

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := {q} U QA U QB , F := FA U FB

● d(r,x) := { dA(r,x) } if r in QA and x  e
● d(r,x) := ? if r in QB and x  e

U =

e

e

MA M

B

N

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := {q} U QA U QB , F := FA U FB

● d(r,x) := { dA(r,x) } if r in QA and x  e
● d(r,x) := { dB(r,x) } if r in QB and x  e
● d(q,e) := ?

U =

e

e

MA M

B

N

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := {q} U QA U QB , F := FA U FB

● d(r,x) := { dA(r,x) } if r in QA and x  e
● d(r,x) := { dB(r,x) } if r in QB and x  e
● d(q,e) := {qA, qB}

● We have L(N) = A U B

U =

e

e

MA M

B

N

Example

Is L = {w in {0,1}* : |w| is divisible by 3 OR

 w starts with a 1} regular?

Example

Is L = {w in {0,1}* : |w| is divisible by 3 OR

 w starts with a 1} regular?

OR is like U, so try to write L = L
1
 U L

2

 where L
1
, L

2
 are regular

Example

Is L = {w in {0,1}* : |w| is divisible by 3 OR

 w starts with a 1} regular?

OR is like U, so try to write L = L
1
 U L

2

 where L
1
, L

2
 are regular

L
1
 = {w : |w| is div. by 3} L

2
 = {w : w starts with a 1}

Example

Is L = {w in {0,1}* : |w| is divisible by 3 OR

 w starts with a 1} regular?

OR is like U, so try to write L = L
1
 U L

2

 where L
1
, L

2
 are regular

L
1
 = {w : |w| is div. by 3} L

2
 = {w : w starts with a 1}

0,1 0,1

0,1M
1
=

L(M
1
) = L

1

Example

Is L = {w in {0,1}* : |w| is divisible by 3 OR

 w starts with a 1} regular?

OR is like U, so try to write L = L
1
 U L

2

 where L
1
, L

2
 are regular

L
1
 = {w : |w| is div. by 3} L

2
 = {w : w starts with a 1}

0,1 0,1

0,1M
1
=

L(M
1
) = L

1

0,1
1

M
2
=

L(M
2
) = L

2

Example

Is L = {w in {0,1}* : |w| is divisible by 3 OR

 w starts with a 1} regular?

OR is like U, so try to write L = L
1
 U L

2

 where L
1
, L

2
 are regular

L
1
 = {w : |w| is div. by 3} L

2
 = {w : w starts with a 1}

0,1 0,1

0,1

0,11
e

e

M

= L(M) = L(M

1
) U L(M

2
)

 = L
1
 U L

2

 = L

 L is regular.

We now return to the question:
● Suppose A, B are regular languages, then
● not A := { w : w is not in A } REGULAR
● A U B := { w : w in A or w in B } REGULAR
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

Theorem: If A, B are regular languages, then so is

 A o B := { w : w = xy for some

 x in A and y in B }.
● Proof idea: Given DFAs MA, MB for A, B

 construct NFA N : L(N) = A o B.

M

A

M

Bo

N

=

e

e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := ?

M

A

MB

o

N

=
e
e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := QA U QB , q := ?

M

A

MB

o

N

=
e
e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := QA U QB , q := q

A
 , F := ?

M

A

MB

o

N

=
e
e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := QA U QB , q := q

A
 , F := FB

● d(r,x) := ? if r in QA and x  e

M

A

MB

o

N

=
e
e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := QA U QB , q := q

A
 , F := FB

● d(r,x) := { dA(r,x) } if r in QA and x  e
● d(r,e) := ? if r in F

A

M

A

MB

o

N

=
e
e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := QA U QB , q := q

A
 , F := FB

● d(r,x) := { dA(r,x) } if r in QA and x  e
● d(r,e) := { qB } if r in F

A

● d(r,x) := ? if r in QB and x  e

M

A

MB

o

N

=
e
e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

 DFA MB = (QB, S, dB, qB, FB) : L(MB) = B,

● Construct NFA N = (Q, S, d, q, F) where:
● Q := QA U QB , q := q

A
 , F := FB

● d(r,x) := { dA(r,x) } if r in QA and x  e
● d(r,e) := { qB } if r in F

A

● d(r,x) := { dB(r,x) } if r in QB and x  e

● We have L(N) = A o B

M

A

MB

o

N

=
e
e
e

Example

Is L = {w in {0,1}* : w contains a 1 after a 0}

regular?

Note: L = {01, 0001001, 111001, … }

Example

Is L = {w in {0,1}* : w contains a 1 after a 0}

regular?

Let L
0
 = {w : w contains a 0}

 L
1
 = {w : w contains a 1}. Then L = L

0
 o L

1
.

Example

Is L = {w in {0,1}* : w contains a 1 after a 0}

regular?

Let L
0
 = {w : w contains a 0}

 L
1
 = {w : w contains a 1}. Then L = L

0
 o L

1
.

0

M
0
=

L(M
0
) = L

0

1 0,1

Example

Is L = {w in {0,1}* : w contains a 1 after a 0}

regular?

Let L
0
 = {w : w contains a 0}

 L
1
 = {w : w contains a 1}. Then L = L

0
 o L

1
.

0

M
0
=

L(M
0
) = L

0

1 0,1

1

M
1
=

L(M
1
) = L

1

0 0,1

Example

0

M

=

L(M) = L(M
0
) o L(M

1
) = L

0
o L

1
 = L

1 0,1

1

0 0,1

e

 L is regular.

Is L = {w in {0,1}* : w contains a 1 after a 0}

regular?

Let L
0
 = {w : w contains a 0}

 L
1
 = {w : w contains a 1}. Then L = L

0
 o L

1
.

We now return to the question:
● Suppose A, B are regular languages, then
● not A := { w : w is not in A } REGULAR
● A U B := { w : w in A or w in B } REGULAR
● A o B := { w1 w2 : w1 A and w∈ 2 B } REGULAR∈
● A* := { w1 w2 … wk : k  0 , wi in A for every i }

Theorem: If A is a regular language, then so is
 A* := { w : w = w

1
...w

k
, w

i
 in A for i=1,...,k }

● Proof idea: Given DFA MA : L(MA) = A,

Construct NFA N : L(N) = A*

=
e

M

A

N

* e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

Construct NFA N = (Q, S, d, q, F) where:
● Q := ?

=
e

MA

N

* e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

Construct NFA N = (Q, S, d, q, F) where:
● Q := {q} U QA , F := ?

=
e

MA

N

* e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

Construct NFA N = (Q, S, d, q, F) where:
● Q := {q} U QA , F := {q} U FA

● d(r,x) := ? if r in QA and x  e

=
e

MA

N

* e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

Construct NFA N = (Q, S, d, q, F) where:
● Q := {q} U QA , F := {q} U FA

● d(r,x) := { dA(r,x) } if r in QA and x  e
● d(r,e) := ? if r in {q} U FA

=
e

MA

N

* e
e

Construction:
● Given DFA MA = (QA, S, dA, qA, FA) : L(MA) = A,

Construct NFA N = (Q, S, d, q, F) where:
● Q := {q} U QA , F := {q} U FA

● d(r,x) := { dA(r,x) } if r in QA and x  e
● d(r,e) := { qA } if r in {q} U FA

● We have L(N) = A*

=
e

MA

N

* e
e

Example

Is L = {w in {0,1}* : w has even length}

regular?

Example

Is L = {w in {0,1}* : w has even length}

regular?

Let L
0
 = {w : w has length = 2}. Then L = L

0
*.

Example

Is L = {w in {0,1}* : w has even length}

regular?

Let L
0
 = {w : w has length = 2}. Then L = L

0
*.

M
0
=

L(M
0
) = L

0

0,10,1

Example

Is L = {w in {0,1}* : w has even length}

regular?

Let L
0
 = {w : w has length = 2}. Then L = L

0
*.

M

=

L(M) = L(M
0
)* = L

0
* = L

0,10,1e

e

 L is regular.

We now return to the question:
● Suppose A, B are regular languages, then
● not A := { w : w is not in A }
● A U B := { w : w in A or w in B }
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

are all regular!

We now return to the question:
● Suppose A, B are regular languages, then
● not A := { w : w is not in A }
● A U B := { w : w in A or w in B }
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

What about A ∩ B := { w : w in A and w in B } ?

We now return to the question:
● Suppose A, B are regular languages, then
● not A := { w : w is not in A }
● A U B := { w : w in A or w in B }
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

De Morgan's laws: A ∩ B = not ((not A) U (not B))

By above, (not A) is regular, (not B) is regular,

 (not A) U (not B) is regular,

 not ((not A) U (not B)) = A ∩ B regular

We now return to the question:
● Suppose A, B are regular languages, then
● not A := { w : w is not in A }
● A U B := { w : w in A or w in B }
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

● A ∩ B := { w : w in A and w in B }

are all regular

● All languages
● Decidable

Turing machines
● NP
● P
● Context-free

Context-free grammars, push-down automata
● Regular

Automata, non-deterministic automata,

regular expressions

Big picture

How to specify a regular language?

Write a picture → complicated

Write down formal definition → complicated
 d(q0 ,0) = q0, …

Use symbols from S and operations *, o, U → good

 ({0} * U {1}) o {001}

Regular expressions: anything you can write with

 , ε , symbols from S, and operations *, o, U

Conventions:
● Write a instead of {a}
● Write AB for A o B
● Write ∑ for Ua ∑ ∈ a So if ∑ = {a,b} then ∑ = a U b

● Operation * has precedence over o, and o over U

 so 1 U 01* means 1U(0(1)*)

Example: 110, 0*, S*, S*001S*, (SS)*, 01 U 10

Definition Regular expressions RE over ∑ are:

 Ø

 ε

 a if a in S

 R R' if R, R' are RE

 R U R' if R, R' are RE

 R* if R is RE

Definition The language described by RE:

 L(Ø) = Ø

 L(ε) = { ε }

 L(a) = {a} if a in ∑

 L(R R') = L(R) o L(R')

 L(R U R') = L(R) U L(R')

 L(R*) = L(R)*

Example ∑ = { a, b}

 RE Language
● ab U ba ?
● a*
● (a U b)*
● a*ba*
● ∑*b∑*
● ∑*aab∑*
● (∑∑)*
● (a*ba*ba*)*
● a*baba*a Ø

Example ∑ = { a, b}

 RE Language
● ab U ba {ab, ba}
● a*
● (a U b)*
● a*ba*
● ∑*b∑*
● ∑*aab∑*
● (∑∑)*
● (a*ba*ba*)*
● a*baba*a Ø

Example ∑ = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {ε, a, aa, … } = { w : w has only a}
● (a U b)*
● a*ba*
● ∑*b∑*
● ∑*aab∑*
● (∑∑)*
● (a*ba*ba*)*
● a*baba*a Ø

Example ∑ = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {ε, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba*
● ∑*b∑*
● ∑*aab∑*
● (∑∑)*
● (a*ba*ba*)*
● a*baba*a Ø

Example ∑ = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {ε, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● ∑*b∑*
● ∑*aab∑*
● (∑∑)*
● (a*ba*ba*)*
● a*baba*a Ø

Example ∑ = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {ε, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● ∑*b∑* {w : w has at least one b}
● ∑*aab∑*
● (∑∑)*
● (a*ba*ba*)*
● a*baba*a Ø

Example ∑ = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {ε, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● ∑*b∑* {w : w has at least one b}
● ∑*aab∑* {w : w contains the string aab}
● (∑∑)*
● (a*ba*ba*)*
● a*baba*a Ø

Example ∑ = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {ε, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● ∑*b∑* {w : w has at least one b}
● ∑*aab∑* {w : w contains the string aab}
● (∑∑)* {w : w has even length}
● (a*ba*ba*)*
● a*baba*a Ø

Example ∑ = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {ε, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● ∑*b∑* {w : w has at least one b}
● ∑*aab∑* {w : w contains the string aab}
● (∑∑)* {w : w has even length}
● (a*ba*ba*)* {w : w contains even number of b}
● a*baba*a Ø

Example ∑ = { a, b}

 RE Language
● ab U ba {ab, ba}
● a* {ε, a, aa, … } = { w : w has only a}
● (a U b)* all strings
● a*ba* {w : w has exactly one b}
● ∑*b∑* {w : w has at least one b}
● ∑*aab∑* {w : w contains the string aab}
● (∑∑)* {w : w has even length}
● (a*ba*ba*)* {w : w contains even number of b}
● a*baba*a Ø Ø (anything o Ø = Ø)

Theorem: For every RE R there is NFA M: L(M) = L(R)

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M := ?

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M := ?

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M :=

● R = a M := ?

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M :=

● R = a M :=

● R = R U R' ?

a

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M :=

● R = a M :=

● R = R U R' use construction for A U B seen earlier
● R = R o R' ?

a

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M :=

● R = a M :=

● R = R U R' use construction for A U B seen earlier
● R = R o R' use construction for A o B seen earlier
● R = R* ?

a

Theorem: For every RE R there is NFA M: L(M) = L(R)

 Construction:
● R =  M :=

● R = e M :=

● R = a M :=

● R = R U R' use construction for A U B seen earlier
● R = R o R' use construction for A o B seen earlier
● R = R* use construction for A* seen earlier

a

Example: RE → NFA

RE = (ab U a)*

Example: RE → NFA

aM
a

=

L(M
a
)=L(a)

RE = (ab U a)*

Example: RE → NFA

RE = (ab U a)*

aM
a

=

L(M
a
)=L(a)

bM
b

=

L(M
b
)=L(b)

Example: RE → NFA

M
ab

=

L(M
ab

)=L(ab)

a be

RE = (ab U a)*

Example: RE → NFA

M
ab

=

L(M
ab

)=L(ab)

a be

RE = (ab U a)*

aM
a

=

L(M
a
)=L(a)

Example: RE → NFA

M
ab U a

=

L(M
ab U a

)=L(ab U a)

a be

RE = (ab U a)*

e

e a

Example: RE → NFA

M
(ab U a)*

=

L(M
(ab U a)*

)=L((ab U a)*)=L(RE)

RE = (ab U a)*

a be

a

e

e
e

e

e

ANOTHER Example: RE → NFA

RE =(e U a)ba*

ANOTHER Example: RE → NFA

M
e

=

L(M
e
)=L(e)

RE =(e U a)ba*

ANOTHER Example: RE → NFA

M
e

=

L(M
e
)=L(e)

aM
a

=

L(M
a
)=L(a)

RE =(e U a)ba*

ANOTHER Example: RE → NFA

M
e U a

=

L(M
e U a

)=L(e U a)

RE =(e U a)ba*

e

e
a

ANOTHER Example: RE → NFA

M
e U a

=

L(M
e U a

)=L(e U a)

bM
b

=

L(M
b
)=L(b)

RE =(e U a)ba*

e

e
a

ANOTHER Example: RE → NFA

L(M
(e U a)b

)=L((e U a)b)

e

e
a

b
e

e

M
(e U a)b

=

RE =(e U a)ba*

ANOTHER Example: RE → NFA

L(M
(e U a)b

)=L((e U a)b)

e

e
a

b
e

e

aM
a

=

L(M
a
)=L(a)

M
(e U a)b

=

RE =(e U a)ba*

ANOTHER Example: RE → NFA

L(M
(e U a)b

)=L((e U a)b)

e

e
a

b
e

e

M
a*

=
e

e

a

L(M
a*
)=L(a*)

M
(e U a)b

=

RE =(e U a)ba*

ANOTHER Example: RE → NFA

RE =(e U a)ba*

M
(e U a)ba*

=

L(M
(e U a)ba*

)=L((e U a)ba*)=L(RE)

e

e
a

b
e

e e a

e e

Recap:

Here “” means “can be converted to”

We have seen: RE  NFA  DFA

Next we see: DFA  RE

In two steps: DFA  Generalized NFA  RE

Generalized NFA (GNFA)

q0 qa

a*b*

a U b*

ab

Nondeterministic

Transitions labelled by RE

Read blocks of input symbols at a time

Generalized NFA (GNFA)

q0 qa

a*b*

a U b*

ab

Convention:

Unique final state

Exactly one transition between each pair of states

except nothing going into start state

 nothing going out of final state

If arrow not shown in picture, label = 

● Definition: A generalized finite automaton (GNFA)
● is a 5-tuple (Q, S, d, q0, qa) where

● Q is a finite set of states
● S is the input alphabet
● d : (Q - {qa}) X (Q – {q0}) → Regular Expressions

● q0 in Q is the start state

● qa in Q is the accept state

● Definition: GNFA (Q, S, d, q0, qa) accepts a string w if

● ∃ integer k, k strings w∃ 1 , w2 , …, wk  S*

 such that w = w1 w2 … wk

(divide w in k strings)

● $ sequence of k+1 states r0, r1, .., rk in Q such that:

● r0 = q0

● wi+1 L(d(ri ,ri+1))  0  i < k
● rk = qa

● Differences with NFA are in green

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=?

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=aaa w2=?

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=aaa w2=bb w3=ab

r0=q0 r1=?

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=aaa w2=bb w3=ab

r0=q0 r1=q1 r2=?

w1 = aaa  L(d(r0,r1)) = L(d(q0,q1)) = L(a*)

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=aaa w2=bb w3=ab

r0=q0 r1=q1 r2=q1 r3 = ?

w1 = aaa  L(d(r0,r1)) = L(d(q0,q1)) = L(a*)

w2 = bb  L(d(r1,r2)) = L(d(q1,q1)) = L(b*)

Example

q0 q1 qa

a*

b*

ab

Accepts w = aaabbab
w1=aaa w2=bb w3=ab

r0=q0 r1=q1 r2=q1 r3 = qa

w1 = aaa  L(d(r0,r1)) = L(d(q0,q1)) = L(a*)

w2 = bb  L(d(r1,r2)) = L(d(q1,q1)) = L(b*)

w3 = ab  L(d(r2,r3)) = L(d(q1,qa)) = L(ab)

Theorem:  DFA M  GNFA N : L(N) = L(M)

Construction:

To ensure unique transition between each pair:

To ensure unique final state, no transitions ingoing

start state, no transitions outgoing final state:

1 1 U 0

0

e

e
ee

Theorem:  GNFA N  RE R : L(R) = L(N)

Construction:

If N has 2 states, then N =

 thus R := S
q0 qa

S

qi qj

R1R2*R3 U R4

If N has > 2 states, eliminate some state qr  q0, qa :

 for every ordered pair qi, qj (possibly equal)

 that are connected through q
r

qr qi qj

R1 R3

R4

 Repeat until 2 states remain

R2

Example: DFA → GNFA → RE

q
2q

1

a b

b,c

DFA

Example: DFA → GNFA → RE

q
2q

1

a b

b U c

GNFA

q
0

q
a

e e

Example: DFA → GNFA → RE

q
2q

1

a b

q
0

q
a

e e

q
2

b

q
0

q
a

e

b U c

Eliminate q
1
: re-draw GNFA with all other states

Example: DFA → GNFA → RE

q
2q

1

a b

q
0

q
a

e e

q
2

b

q
0

q
a

e

b U c

Eliminate q
1
: find a path through q

1

Example: DFA → GNFA → RE

q
2q

1

a b

q
0

q
a

e e

q
2

b

q
0

q
a

e

Eliminate q
1
: add edge to new GNFA

b U c

e a* (b U c) U Ø

Ø

Don't forget: no arrow means label Ø

Example: DFA → GNFA → RE

q
2q

1

a b

q
0

q
a

e e

q
2

b

q
0

q
a

e

Eliminate q
1
: simplify RE on new edge

a* (b U c)

b U c

Example: DFA → GNFA → RE

q
2q

1

a b

q
0

q
a

e e

q
2

b

q
0

q
a

e

Eliminate q
1
: if no more paths through q

1
, start over

a* (b U c)

b U c

Example: DFA → GNFA → RE

q
2

b

q
0

q
a

ea* (b U c)

Eliminate q
2
: re-draw GNFA with all other states

q
0

q
a

Example: DFA → GNFA → RE

q
2

b

q
0

q
a

ea* (b U c)

q
0

q
a

Eliminate q
2
: find a path through q

2

Example: DFA → GNFA → RE

q
2

b

q
0

q
a

ea* (b U c)

q
0

q
a

Eliminate q
2
: add edge to new GNFA

a* (b U c) b* e U Ø

Example: DFA → GNFA → RE

q
2

b

q
0

q
a

ea* (b U c)

q
0

q
a

Eliminate q
2
: simplify RE on new edge

a* (b U c) b*

Example: DFA → GNFA → RE

q
2

b

q
0

q
a

ea* (b U c)

q
0

q
a

Eliminate q
2
: if no more paths through q

2
, start over

a* (b U c) b*

Example: DFA → GNFA → RE

q
0

q
a

Only two states remain:

RE = a* (b U c) b*

a* (b U c) b*

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q3

DFA

c

c

b

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3 a

GNFA

c

c

b

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

re-draw GNFA with

all other states

a

q
0

q
2

a

qeq
3 a

b

c

c

b

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

find a path
through q

1

a

q
0

q
2

a

qeq
3 a

c

c

b

b

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

add edge to

new GNFA

a

q
0

q
2

a

qeq
3 a

c

c

e a*b U Ø

b

b

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

find another
path through q

1

a

q
0

q
2

a

qeq
3 a

c

c

b

b

e a*b U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

add edge to

new GNFA

a

b

q
0

q
2

a

qeq
3 a

c

c

e a*c U Ø

b

e a*b U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

find another
path through q

1

a

q
0

q
2

a

qeq
3 a

c

c

b

b

e a*b U Ø

e a*c U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

add edge to

new GNFA

a

q
0

q
2

ca*b U a

qeq
3 a

c

c

b

b

don't forget current
q

2
 → q

3
 edge!

This time is not Ø !

e a*b U Ø

e a*c U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

find another
path through q

1

a

q
0

q
2

qeq
3 a

c

c

b

b

ca*b U a

e a*b U Ø

e a*c U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3 a

q
0

q
2

qeq
3 a

c

c

b

ca*c U b

ca*b U a

Eliminate q
1
:

add edge to

new GNFA

don't forget current
q

2
 → q

2
 edge!

e a*b U Ø

e a*c U Ø

ANOTHER Example: DFA → GNFA → RE

q
1

a

b

q
2

a

q
0

qe eq
3

Eliminate q
1
:

when no more paths
through q

1
, start over

(and simplify

REs)

a

q
0

q
2

qeq
3 a

c

c

a*b

b

a*c ca*b U a

ca*c U b

ANOTHER Example: DFA → GNFA → RE

qeq
3 a

Eliminate q
2
:

re-draw GNFA with

all other states

q
0

q
2

qeq
3 aa*b

a*c ca*b U a

ca*c U b

q
0

a*b

ANOTHER Example: DFA → GNFA → RE

qeq
3 a

Eliminate q
2
:

find a path through q
2

q
0

q
2

qeq
3 aa*b

a*c ca*b U a

ca*c U b

q
0

a*b

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
2
:

add edge to new GNFA

q
0

q
2

qeq
3 aa*b

a*c ca*b U a

ca*c U b

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
2
:

when no more paths
through q

2
, start over

q
0

q
2

qeq
3 aa*b

a*c ca*b U a

ca*c U b

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
3
:

re-draw GNFA with

all other states

q
0 qa

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
3
:

find a path through q
3

q
0 qa

don't forget: no arrow means Ø

Ø

Ø

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
3
:

add edge to new GNFA

q
0 qa

(a*c(ca*c U b)*(ca*b U a) U a*b) Ø* ε U Ø

Ø

Ø

ANOTHER Example: DFA → GNFA → RE

q
0 qeq

3 a

a*c(ca*c U b)*(ca*b U a) U a*b

Eliminate q
3
:

when no more paths through q
3
, start over

(and simplify REs)

q
0 qa

a*c(ca*c U b)*(ca*b U a) U a*b

don't forget: Ø*= ε

ANOTHER Example: DFA → GNFA → RE

q
0 qa

a*c(ca*c U b)*(ca*b U a) U a*b

Only two states remain:

RE = a*c(ca*c U b)*(ca*b U a) U a*b

Recap:

Here “” means “can be converted to”

 RE  DFA  NFA

Any of the three recognize exactly

the regular languages (initially defined using DFA)

These conversions are used every time you enter

an RE, for example for pattern matching using grep

● The RE is converted to an NFA
● Then the NFA is converted to a DFA
● The DFA representation is used to pattern-match

Optimizations have been devised,

but this is still the general approach.

What language is NOT regular?

Is { 0n 1n : n  0 } = {ε, 01, 0011, 000111, … } regular?

Pumping lemma:

L regular language 

Recall y0 = e, y1 = y, y2 = yy, y3 = yyy, ...

 p 0

 w  L, |w|  p

 x,y,z : w= xyz, |y|> 0, |xy| p

 i  0 : xyiz  L

Pumping lemma:

L regular language 

We will not see the proof. But here's the idea:

p := |Q| for DFA recognizing L

If w  L, |w|  p, then during computation

 2 states must be the same q Q∈
y = portion of w that brings back to q

can repeat y and still accept string

 p 0

 w  L, |w|  p

 x,y,z : w= xyz, |y|> 0, |xy| p

 i  0 : xyiz  L

Pumping lemma:

L regular language 

Useful to prove L NOT regular. Use contrapositive:

L regular language  A

 same as

 (not A)  L not regular

 p 0

 w  L, |w|  p

 x,y,z : w= xyz, |y|> 0, |xy| p

 i  0 : xyiz  L

A

Pumping lemma (contrapositive)

  L not regular

To prove L not regular it is enough to prove not A

Not A is the stuff in the box.

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

not A

Proving something like

 bla  bla  bla  bla bla

means winning a game

Theory is all about winning games!

Example NAME THE BIGGEST NUMBER GAME

● Two players:

 You, Adversary.
● Rules:

First Adversary says a number.

 Then You say a number.

 You win if your number is bigger.

 Can you win this game?

Example NAME THE BIGGEST NUMBER GAME

● Two players:

 You, Adversary.
● Rules:

First Adversary says a number.

 Then You say a number.

 You win if your number is bigger.

 You have winning strategy:

 if adversary says x, you say x+1

Example NAME THE BIGGEST NUMBER GAME

● Two players:

 You, Adversary. , 
● Rules:

First Adversary says a number.  x  y : y > x

 Then You say a number.

 You win if your number is bigger.

 You have winning strategy: Claim is true

 if adversary says x, you say x+1

Another example:

Theorem:  NFA N  DFA M : L(M) = L(N)

We already saw a winning strategy for this game

What is it?

Another example:

Theorem:  NFA N  DFA M : L(M) = L(N)

We already saw a winning strategy for this game

The power set construction.

Games with more moves:

Chess, Checkers, Tic-Tac-Toe

You can win if

 move of the Adversary

 move You can make

 move of the Adversary

 move You can make

…

: You checkmate

Pumping lemma (contrapositive)

  L not regular

Rules of the game:

Adversary picks p,

You pick w L of length ∈  p,

Adversary decomposes w in xyz, where |y| > 0, |xy|p

You pick i  0

Finally, you win if xyiz  L

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {0n 1n : n  0} is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 0p 1p

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p and w = xyz = 0p 1p , y only has 0

So xyyz = 0p + |y| 1p

Since |y| > 0, this is not of the form 0n 1n DONE

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {w : w has as many 0 as 1} not regular

Same Proof:

Use pumping lemma

Adversary moves p

You move w := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {w : w has as many 0 as 1} not regular

Same Proof:

Use pumping lemma

Adversary moves p

You move w := 0p 1p

Adversary moves x,y,z

You move i := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {w : w has as many 0 as 1} not regular

Same Proof:

Use pumping lemma

Adversary moves p

You move w := 0p 1p

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p and w = xyz = 0p 1p , y only has 0

So xyyz = ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {w : w has as many 0 as 1} not regular

Same Proof:

Use pumping lemma

Adversary moves p

You move w := 0p 1p

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p and w = xyz = 0p 1p , y only has 0

So xyyz = 0p + |y| 1p

Since |y| > 0, not as many 0 as 1 DONE

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {0j 1k : j > k} is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {0j 1k : j > k} is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 0p+1 1p

Adversary moves x,y,z

You move i := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {0j 1k : j > k} is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 0p+1 1p

Adversary moves x,y,z

You move i := 0

You must show xz  L:

Since |xy|p and w = xyz = 0p+1 1p , y only has 0

So xz = 0p + 1 - |y| 1p

Since |y| > 0, this is not of the form 0j 1k with j > k

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {uu : u  {0,1}* } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {uu : u  {0,1}* } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 0p1 0p 1

Adversary moves x,y,z

You move i := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := {uu : u  {0,1}* } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 0p 1 0p 1

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p and w = xyz = 0p 1 0p 1 , y only has 0

So xyyz = 0p + |y| 1 0p 1

Since |y| > 0, first half of xyyz only 0, so xyyz  L

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 1p2

Adversary moves x,y,z

You move i := ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 1p2

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p, |xyyz|  ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 1p2

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p, |xyyz|  p2 + p < (p+1)2

Since |y| > 0, |xyyz| > ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 1p2

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p, |xyyz|  p2 + p < (p+1)2

Since |y| > 0, |xyyz| > p2

So |xyyz| cannot be … what ?

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

Theorem: L := { 1n2
 : n  0 } is not regular

Proof:

Use pumping lemma

Adversary moves p

You move w := 1p2

Adversary moves x,y,z

You move i := 2

You must show xyyz  L:

Since |xy|p, |xyyz|  p2 + p < (p+1)2

Since |y| > 0, |xyyz| > p2

So |xyyz| cannot be a square. xyyz  L

 p 0

 w  L, |w|  p

 x,y,z : w = xyz, |y| > 0, |xy|  p

 i  0 : xyiz  L

● All languages
● Decidable

Turing machines
● NP
● P
● Context-free

Context-free grammars, push-down automata
● Regular

Automata, non-deterministic automata,

regular expressions

Big picture

