
CSG399: Gems of Theoretical Computer Science. Spring 2009
Instructor: Emanuele Viola

Problems

Problem 1 [generator for P = BPP]: Suppose that for every n there is a generator
G : {0, 1}c log n → {0, 1}n that fools circuits of size n with error 1/n, where c is an absolute
constant. Suppose that there is an algorithm that, given x ∈ {0, 1}c log n, computes G(x) ∈
{0, 1}n in time polynomial in n = |G(x)|. (This time requirement to compute the generator
is more relaxed than the one seen in class, and is sufficient for this problem.)

Prove that P = BPP.
Where is your proof using that the generator fools circuits, as opposed to polynomial-time

algorithms?

Problem 2 [parameters of the generator for constant-depth circuits]: Assuming
(1) the Nisan-Wigderson theorem (together with the remark that the reduction in the proof
of correctness increases the depth by a constant at most), (2) the design construction via
polynomials, and (3) the correlation bound for parity, prove (i.e., work out the parameters

establishing) that for every d there is an explicit generator G : {0, 1}logc·d n → {0, 1}n that
fools circuits of size n and depth d with error 1/n, where c is an absolute constant.

Problem 3 [application of the generator for constant-depth circuits]: Somebody
hands you an algorithm M : ({0, 1}a)b → {0, 1} that on input (x1, . . . , xb) ∈ ({0, 1}a)b

evaluates to 1 if and only if for every i, xi ∈ Ai, where A1, . . . , Ab are subsets of {0, 1}a.
Exhibit a trivial algorithm that makes 2a·b queries to M and computes an approximation

ε to the volume
∏b

i=1 |Ai|/2a such that |ε−
∏b

i=1 |Ai|/2a| ≤ 1/100.
Now derive an algorithm that gives the same approximation but makes 2poly(a,log b) queries

to M (which for b� a is much less). Hint: Use Problem 2.

Problem 4 [constant-depth vs. majority]:
(1) Prove that the majority function on n bits requires (unbounded fan-in) circuits of

depth d and size w ≥ exp(nΩ(1/d)) (i.e., qualitatively the same bound we obtained in class
for the parity function). Hint: If you could compute majority with these resources, then you
could compute parity as well.

(2) Exhibit a circuit of depth O(1) and size O(1) that has correlation at least 1/nO(1)

with the majority function. Hint: The circuit is simple.
(3) Construct a circuit C of depth d = O(1) and size nO(1) that computes approximate

majority, i.e., for any input x ∈ {0, 1}n whose hamming weight is at least 2n/3, C(x) = 1,
while for any input x ∈ {0, 1}n whose hamming weight is at most n/3, C(x) = 0. The value
of the circuit can be arbitrary on inputs whose hamming weight is between n/3 and 2n/3.
Hint: Build C incrementally and using the probabilistic method. As a first step, consider
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the AND of c · log n randomly selected input variables. Analyze the probability that this
AND evaluates to 1 in the two cases. Flip the answer and repeat.

Problem 5 [branching programs vs. circuits]:
(1) Prove that any function f : {0, 1}n → {0, 1} computable by branching programs of

length n and width n can be computed by fan-in 2 circuits of depth O(log2 n).
(2) Strengthen (1) to obtain unbounded fan-in circuits of depth O(log n).

Problem 6 [universal traversal sequences]: Let d be a fixed constant. Prove that for
every n there is a sequence U = (u1, . . . , u`) ∈ [d]` such that for any d-regular undirected
graph G on n nodes and any starting node s, walking from s in G according to U will touch
every node connected to s in G. Explain why this implies that undirected reachability can
be computed by branching programs of polynomial width and polynomial length.
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