CS G713: Advanced Algorithms Problem Set 1

Assigned: September 26, 2008 Due: October 10, 2008 before class

Guidelines (different from those on problem set 0) If you write “I do not know how
to solve this problem” then you get 1/4 of the score for the problem. If you write nonsense
then you get 0.

As we are going to learn in this class, time and space are very valuable resources. Strive
to give effective, compact solutions. Your solutions should touch on all the main points, but
long calculations or discussions are not required nor sought.

Do not worry if you sometimes “do not get it.” The problems are meant to stimulate
you, not to overwork you. Unless specified otherwise, you can collaborate, but you must
acknowledge all your collaborators in your solutions. To hand in your solutions: Give it to
me, slide it under my door West Village H (246), or email it to csg713-instructor@ccs.neu.edu.

Problem 1. Puzzle: Find the missing elements You are given as input a permutation
of (1,2,...,n), except that exactly one element is replaced with 0 (say the permutation is
stored in an array A[l], A[2], A[3], ..., A[n] where A[j] = 0 for exactly one j).

Give an algorithm to find the missing element that runs in linear time and uses constant
space. For this problem you should think of any operation involving a,b < n'% as taking
constant time and space.

Now solve the variant in which exactly two elements are set to 0, and you want an
algorithm that finds them both and runs in linear time and constant space.

If you are unable to solve this problem, you can obtain partial credit by dropping the
space requirement and simply developing algorithms that find the missing elements in linear
time.

Problem 2. Bit-complexity of iterated operations In this problem we are going
to count the bit-complexity of operations. You can assume throughout that performing
arithmetic on ¢-bit integers requires time ¢ - poly log .

You are given as input a sequence of n numbers ay, as, ..., a, where |a;| < ¢ for every
i, where ¢ is an absolute constant (e.g. ¢ = 17). Show how to compute the product of the
numbers in time n - poly logn.

Now instead of integers you are given as input n ¢ X ¢ matrices Ay, Ao, ..., A, whose
entries are again bounded in absolute value by the absolute constant c¢. (Note the input
length has again bit-length that is O(n).) Show how to compute the product of the matrices
in time n - poly logn.

Now you are given as input n 2x2 matrices Ay, ..., A, as well as n vectors V1, V5, ..., V,, of
2 coordinates, where all coordinates (both in the matrices and in the vectors) have absolute
value at most ¢ again. You are interested in computing x, where zo := (1,1) € R? and
x; .= A;x;_1 + V;. Show how to compute z,, in time n - poly log n.



Problem 3. CLRS Problem 15-2. Consider the problem of neatly printing a paragraph
on a printer. The input text is a sequence of n words of lengths Iy, [, ..., [,, measured
in characters. We want to print this paragraph neatly on a number of lines that hold a
maximum of M characters each. Our criterion of “neatness” is as follows. If a given line
contains words ¢ through j, where ¢ < 7, and we leave exactly one space between words, the
number of extra space characters at the end of the line is

J
M—j+i=> I,
k=1

which must be nonnegative so that the words fit on the line. We wish to minimize the sum,
over all lines except the last, of the cubes of the numbers of extra space characters at the
ends of the lines. Give a dynamic-programming algorithm to print a paragraph of n words
neatly on a printer. Analyze the running time of your algorithm.

Problem 4. CLRS Problem 16-1.b. Consider the problem of making change for n cents
using the fewest number of coins. We have seen in class a dynamic programming solution to
this problem.

Prove that the greedy algorithm works correctly when you have (an infinite supply of) &k
types of coins with values °,c!, ..., c* respectively, where c, k are integers bigger than 1.



