Chaperones and Impersonators
Run-time Support for Reasonable Interposition

T. Stephen Strickland
Univ. of Maryland, College Park

Sam Tobin-Hochstadt
Northeastern Univ.

Robert Bruce Findler
Northwestern Univ.

Matthew Flatt
Univ. of Utah

OOPSLA, October 25, 2012 1

Contract Systems

EIFPEL '8

BERTRAND MEYER

JavaScnpt

Recent Uses of Contract Systems

Static Analysis

Cousot et al. An Abstract Interpretation Framework for Refactoring with
Application to Extract Methods with Contracts. OOPSLA 2012.

Leino. Staged Program Development. OOPSLA 2012 Keynote.

Tobin-Hochstadt and Van Horn. Higher-order Symbolic Execution via
Contracts. OOPSLA 2012.

Type Systems

Chugh et al. Dependent Types for JavaScript. OOPSLA 2012.
Takikawa et al. Gradual Typing for First-Class Classes. OOPSLA 2012.

Higher-order Contracts
Contracts specified separately from values
Specifications may describe higher-order behavior

Contract system provides blame tracking

server client

(-> prime? string?)

Higher-order Contracts

Contracts specified separately from values
Specifications may describe higher-order behavior

Contract system provides blame tracking

server client

4
/

(-> prime? string?)

client broke the contract, expected prime?, got 4

Higher-order Contracts

Contracts specified separately from values
Specifications may describe higher-order behavior

Contract system provides blame tracking

server client

5
—

~
8

(-> prime? string?)

server broke the contract, expected string?, got 8

Prior Support for Higher-order Contracts

Functions

v
Immutable containers
Mutable containers X

X

Generative structures

Prior Support for Higher-order Contracts

Functions
Immutable containers

Mutable containers

x XX <

Generative structures

Let's use proxies!

The Problem with Proxies

The Problem with Proxies

10

The Problem with Proxies

11

The Problem with Proxies

12

Our System of Proxies

Chaperones

Restricted in changing behavior

Applicable to more values

Impersonators

Freer to change behavior

Applicable to fewer values

13

Current Support for Higher-order Contracts

Functions
Immutable containers

Mutable containers

D S

Generative structures

14

Vector Chaperones

(define vec; (vector 2 3 5 7))

15

Vector Chaperones

(define vec; (vector 2 3 5 7))
(define vec;
(chaperone-vector vec;

)

16

Vector Chaperones

(define vec: (vector 2 3 5 7))
(define vec;
(chaperone-vector vec;
; Interpose for vector-ref
(A Cvec 1 v) (contract prime? v srv clt))

T

)

17

Vector Chaperones

(define vec; (vector 2 3 5 7))

(define vec;
(chaperone-vector vec;
; Interpose for vector-ref
(A Cvec 1 v) (contract prime? v srv clt))
; Interpose for vector-set!
(A C(vec 1 v) (contract prime? v clt srv))))

8

clt broke its contract, expected prime?, got 8

18

Vector Chaperones

(define vec: (vector 2 3 5 7))
(define vec;
(chaperone-vector vec;
; Interpose for vector-ref
(A (vec 1 v) 10)
; Interpose for vector-set!
(A Cvec 1 v) (contract prime? v clt srv))))

X

12]3]5]7]

10

non-chaperone result, original: 5, received: 10

19

Chaperone Restriction

Results of interposition functions must be a chaperone of
the appropriate input.

(chaperone-of? vi vz)
* If viisequal to v, true.

* If viis a chaperone of vs;, then check
(chaperone-of? vs v;).

* Otherwise, false.

20

Structure Chaperones

(struct fish (name weight))
(define f; (fish "Dory" 14))
(define f;
(chaperone-struct f;
; Operation to interpose
fish-weight
; Interposing function
(A (s v) (contract prime? v srv clt))

cee))

21

Structure Chaperones

(struct fish (name weight))
(define f; (fish "Dory" 14))
(define f;
(chaperone-struct f;
; Operation to interpose
fish-weight
; Interposing function
(A (s v) (contract prime? v srv clt))

cee))

srv broke its contract, expected prime?, got 14

22

Chaperone Limitations

Inputs and results of operations must behave like originals.

Sealing contracts
Guha et al. Relationally-Parametric Polymorphic Contracts. DLS 2007.

Matthews and Ahmed. Parametric polymorphism through run-time
sealing. ESOP 2008.

Takikawa et al. Gradual Typing for First-Class Classes. OOPSLA 2012.

23

Chaperone Limitations
vector-map: (V/c [A B] (CA . -> . B)

(Vectorof A) . -> .

(Vectorof B)))

24

Chaperone Limitations
vector-map: (V/c [AB] (CA. -> . B)

(Vectorof A) . -> .

(Vectorof B)))

addl

25

Vector Impersonators

(define vec; (vector 2 3 5 7))

(define vec;
(impersonate-vector vec;
; Interpose for vector-ref
(A C(vec 1 v) (contract prime? v srv clt))
; Interpose for vector-set!
(A Cvec 1 v) (contract prime? v clt srv))))

[2]3]5]7]
5

26

Vector Impersonators

(define vec: (vector 2 3 5 7))
(define vec;
(impersonate-vector vec;
; Interpose for vector-ref
(A (vec 1 v) 10)
; Interpose for vector-set!
(A C(vec 1 v) (contract prime? v clt srv))))

!ﬂ@?ﬁ{___ab
10

27

Impersonator Restrictions
No impersonators for immutable containers.

No impersonators for immutable fields of generative
structures.

(struct fish (name weight))
(define f; (fish "Dory" 12))
(deﬁne >
(let ([counter (fish-weight fi)])
(impersonate-struct f;
fish-weight
A (f V)
(begin®@ counter (set! counter 1))))))

28

Impersonator Restrictions
No impersonators for immutable containers.

No impersonators for immutable fields of generative
structures.

(struct fish (name weight))

(define f; (fish "Dory" 12))

(deﬁne >

(let ([counter (fish-weight f1)])
(impersonate-struct f;
fish-weight
(A CF Vv)
(begin®@ counter (set! counter 1))))))

222

Impersonator Restrictions
No impersonators for immutable containers.

No impersonators for immutable fields of generative
structures.

ct fish (name weight))
(definé (fish "Dory" 12))
(de'F'l. ne f,
(let ([counter wah-we®oht 1))
(impersonate-sh#lc
fish-weg
A V)

(begin®@ counter (set! counter 1)

30

Contract Hierarchy

Flat

1

Flat

eq?’

C

-

Higher Order

7

Chaperones ¢

chaperone-of?

Impersonators

No restriction

31

A General Proxying System

Revocable Membranes

Mark Miller. Robust Composition: Towards a Unified Approach to
Access Control and Concurrency Control. PhD Thesis.

L ocal views on remote data

SMTP server access that appears like local hash tables and vectors

32

Performance (in seconds)

benchmark
make guide
render guide
keyboard
slideshow
plot
typecheck

ode-apply

10.467

1.889

5.182

4.663

1.854

22.610

7.794

no proxy no checks

10.606

2.044

5.231

4.776

1.886

24.144

9.265

impersonate chaperone

10.818 10.792

3.741 3.727
/.253 /.258
5.168 5.180
2.362 2.394

47.302 47.816

10.236 10.632

33

benchmark
make guide

render guide

keyboard
slideshow
plot
typecheck

ode-apply

10.467

1.889

5.182

4.663

1.854

22.610

7.794

Performance (in seconds)

no proxy no checks

10.606

2.044

5.231

4.776

1.886

24.144

9.265

impersonate chaperone
10.818 10.792
3.741 3.727

7.253 7.258
5.168 5.180
2.362 2.394
47.302 47.816
10.236 10.632

overhead
0%
0%
0%
0%
1%

1%

4%

34

Conclusion

Unrestricted proxies break programmer and compiler
Invariants.

Providing restricted proxies avoids this issue.

We now provide both via chaperones and impersonators
in Racket.

http://racket-lang.org/

35

