
Foreground-Background Separation on GPU using order
based approaches

Raj Gupta
∗

Indian Institute of Technology
†

Madras, Chennai,India
gupta.raj@gmail.com

Sailaja Reddy M

Indian Institute of Technology
‡

Madras, Chennai, India
sailu.frns@gmail.com

Swagatika Panda

Indian Institute of Technology
§

Madras, Chennai, India
swagatika.panda.rpnnss@gmail.com

Sushant Sharma
Indian Institute of Technology

¶

Madras, Chennai, India
sushantsha@gmail.com

Anurag Mittal
Indian Institute of Technology

Madras, Chennai, India
amittal@cse.iitm.ac.in

ABSTRACT
Background modeling has been a challenging task in com-
puter vision applications. Most of the approaches use the
intensity space to do the background modeling. This basic
assumption is not valid in the case of illumination changes.
So, we have changed from the intensity space to the order
space. We look on the patch (neighborhood of pixels) and
build the model using the order among the pixels in it. The
model built by us has more impact on the center part of
the patch. Hence we have used the concept of overlapping
of patches to make it more robust. The results have been
shown on the standard PETS dataset as well as dataset col-
lected by us using the camera setup in the outdoor envi-
ronment. We have implemented it on GPU(NVIDIA Tesla
C1060 Processor) to increase the throughput and we are able
to achieve the 25X speed compared to CPU.

1. INTRODUCTION
Foreground-background separation is a very crucial step

in the field of computer vision with very wide range of ap-
plication area, especially in tracking and surveillance. This
is essentially a preprocessing task which precedes other high
level tasks such as blob detection, tracking, object detection
and recognition etc. Hence efficiency and accuracy of the

∗Corresponding author
†IBM India Research Lab, New Delhi, India
‡National Informatics Center, New Delhi, India
§International Institute of Information Technology, Hyder-
abad, India
¶PEC University of Technology, Chandigarh(UT), India

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’10, December 12-15, 2010, Chennai, India
Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

Foreground-background separation method implemented has
a lot of significance. Here, we propose an illumination-
invariant background subtraction algorithm in which every
frame is divided into two sets of multiple patches. Each
patch is compared to the corresponding patch of the back-
ground model in order to classify it as foreground or back-
ground. Then the overlapped region of two patches is se-
lected as foreground if either of the patches are classified as
foreground. We have further implemented our algorithm in
GPU (Tesla C1060 Processor), in order to improve the per-
formance in terms of speed and stability, and to offload the
CPU at the same time.

The paper is organized as follows. Section 2 describes
the algorithm for foreground-background separation. Sec-
tion 3 focuses on the GPU-based implementation and sec-
tion 4 gives the results on the proposed algorithm. Finally,
we conclude the work in section 5.

1.1 Related Work
The idea of using ranks rather than raw intensities has

been studied for some time now. The Census algorithm[21]
transforms the intensity space to an “order” space, where
a bit pattern is formed by looking at the orders of a given
pixel with its neighbors. This is quite similar to the Local
Binary Patterns [12][5][15][19] approach. In order to match a
block, this algorithm essentially counts the number of flipped
points pairs in the block. Bhat and Nayar[6] use an improved
version of this algorithm where they somewhat alleviate the
problem of counting even one salt-and-pepper error in a pixel
multiple times. Mittal and Ramesh[16] proposed a method
in which the penalty for an order flip is proportional to the
intensity difference between the two flipped pixels. This
reduces the error due to pixels whose order may have got
flipped due to Gaussian noise. Singh et al[17] present a
statistically better approach for matching image patches.

We have looked at previous methods for foreground back-
ground separation using a range of HPC architectures in-
cluding symmetric multiprocessing (SMP), massively multi-
processing (MMP) and architectures with distributed mem-
ory (DM) and non-uniform memory access (NUMA). The
majority of recent research in multi-core adaptation of fore-
ground background separation has focused on GPUs [7][9].

448

There are several reasons for the interest in GPUs. Thanks
to fierce competition and driven by the gaming industry,
GPUs today provide some of the highest performance and
the lowest power consumption per FLOPS of any computing
platform. GPU implementations tend to be more challeng-
ing than multi-core CPU implementations and are more re-
warding in terms of achievable performance gains. The mod-
ern software platforms for general purpose programming on
the GPU currently are NVIDIA’s CUDA and AMD/ATI’s
Brook+[4][1]. While the exposure of architecture validates
the argument in favor of using the graphics pipeline for
general purpose programming, this has given better perfor-
mance gains.

2. THE ALGORITHM
The algorithm for foreground background separation is de-

scribed in the following order. The subsection 2.1 describes
the matching technique algorithm to classify a particular
region of the frame as foreground or background. The sub-
section 2.2 describes the method that the background model
uses to learn and adapt dynamically.

2.1 Foreground/Background Classification
The frame is divided into a grid of blocks or patches and

the following algorithm is applied for each patch of the frame
in order to match it with the corresponding patch in the
background model. The background model is learned adap-
tively as explained later in 2.2. This method is based on a
stable monotonic-change-invariant feature descriptor (Refer
[10] for details). This feature descriptor consists of point
pairs. In order to obtain invariance to Gaussian noise, the
points in a pair are chosen such that they have a certain
minimum difference between their intensities. In addition
to this, robustness to changes in the scale and localization
of the feature point is obtained by picking point pairs such
that moving the points a certain distance in their neigh-
borhood does not change the order of the intensities of the
pair. Therefore, the point pairs are relatively stable in their
intensity order with respect to both intensity noise and lo-
calization error. Further, we allow a point to repeat only a
certain number of times in the pairs in order to improve the
independence between the different point pairs.

2.1.1 Computation of Extremal Regions
The first step in our algorithm is the computation of ex-

tremal regions. Extremal regions are regions that have in-
tensities above or below a given threshold. Given that the
points in the point pairs must have a given difference of in-
tensity δI between them, we compute extremal regions with
two thresholds T1 and T2 such that T1 − T2 = δI :

R+ = Thresh+(I, T1)

R− = Thresh−(I, T2)

where Thresh+(I, T) is the set of all points in the Image
I that are above a given threshold T and Thresh−(I, T) is
the set of all points I below T . As should be obvious, all
points in R+ are greater than all points in R− by atleast an
intensity difference of δI .

2.1.2 Computation of Point Pairs
Given a pair of extremal regions R+ and R−, we compute

points that are as far as possible from the boundaries of these

Figure 1: An Example of pair extraction at different
levels. First column shows the extracted extremal
regions where the brighter gray is the “Min” ex-
tremal region, darker gray is the “Max” extremal
region and black are the boundary points. The
second and third columns show the extraction of
some points in the min and max regions respectively,
super-imposed on the original patch. Finally, the
last column shows the pairs formed at each level,
again super-imposed on the original patch. These
are combined by throwing away pairs having com-
mon points in order to obtain the final pairs shown
in Fig. 2.

Figure 2: An Example of pairs extracted in a patch.

449

regions using the distance transform. We use the one based
on the Euclidean distance measure[8]. Points that have high
distances from the boundaries are selected as possible can-
didates and points from R+ are matched with points from
R−. Once a pair is selected for a given region pair, we mark
these points as boundary points so that the points that are
selected next are those that have the largest distance not
only from the original boundaries but from the already se-
lected points as well. This procedure is repeated till we can-
not obtain points that have a certain minimum “distance”
from the boundaries. After obtaining the set of point pairs,
we select the most stable ones based on the “distance” value
associated with the points as per the distance transform.
The minimum of the distance values of the two points in
a pair is taken as the stability factor for that pair. Then,
using a greedy approach, we select the most stable point-
pairs one by one while taking care that any one point in the
patch does not have too many close-by points (maximum 3)
in the already existing point-pairs. This is done in order to
ensure some independence between the different point pairs
and to allow the pairs to spread out in the patch so as to
obtain discriminability. The output of this procedure is a
set of point pairs along with their stability factors. Features
which do not produce a certain minimum number of stable
pairs are discarded as being unreliable for matching. This
set of extracted point pairs, thus, forms the feature descrip-
tor for matching the patches of the two frames (current
frame and the background model). Fig. 1 shows the above
process on an image patch, where the different rows show
the computation of the extremal regions and point pairs at
different thresholds. These are combined in the end in order
to obtain the final point pairs shown in Fig. 2.

2.1.3 Matching
For each of the features obtained, we have a set of point-

pairs along with their stability factors {(p1i , p2i , si), i = 1 . . . n}.
For these point pairs, we test if the order of the pixels has
changed in the other patch. Then, we calculate a weighted
sum of the order flips, giving each point pair a weight that
depends on its stability factor. Since higher stability points
are very important for stable matching and should be given
a higher weight, we use the square of the stability factor (s2)
as the weight for a pair that has stability factor s. The final
weighted matching score is obtained using the pairs from
both the feature points as follows:

M =
Σn

i=1s
2
i sgn(Io(p

1
i)− Io(p

2
i))

Σn
i=1s

2
i

(1)

where Io(p) is the intensity of point p in the patch “other”
than the one in which the point pair was computed (i.e.
if the pair was computed in the first patch, then Io is the
intensity in the second patch and if the pair was computed in
the second patch, then Io is the intensity in the first patch).
sgn is the sign function:

sgn(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

(2)

We assume in Eq. 1 that the pair (p1i , p
2
i , si) is stored such

that the first point has higher intensity than the second in
the original patch in which this pair was computed.

2.1.4 Patch-Overlap Method

Figure 3: an object in the corner of the patches.

Figure 4: overlapped patches in an image.

The stable monotonic change invariant matching tech-
nique weighs points towards the center of the patch as more
stable. In such a case, if any object remains in the corner
of a patch as depicted in Fig. 3, there is a chance that
it is ignored being a less stable point. In order to solve
this problem and to achieve robustness in the background
subtraction, we define another patch that covers the corner
regions of four patches as shown in Fig. 4 and apply the
matching technique on this overlapping patch also.

The entire frame is, at first, divided into a grid of smaller
patches (say, 10x10). Then, a portion of width equal to
half of the size of the patch is excluded from the boundary
of the frame and rest of the area of the frame is divided
into another set of patches of the same size as before. The
new set of patches overlap on the first set of the patches as
shown in Fig.4. The individual patches are matched with the
existing background model as per the algorithm described
in the previous subsections.

2.1.5 Augmenting results with patch information
The overlapped region of two patches (here, of the size

5x5 as marked by green region in Fig.4) is declared as fore-
ground or background based on the result of matching for
each of the patches. It is decided as background, if and
only if both of the patches are backgrounds. If either of the
patches are foreground, then the overlapped region is de-
clared as foreground. Total stability measure of each patch
is calculated as the sum of the squares of stability factors of
individual pixels in the patch. If both the patches, patchi

and patchj have very less “total stability measure” (2.1), i.e.,
the patches are homogeneous, then the average value of in-
tensity and RGB values of the pixels in patchi of the current
frame is compared with the corresponding values of the same
patch in background image. If the difference exceeds certain
heuristically chosen threshold, then the overlapped regionij

is marked as“foreground”. On the other hand if either of the
two patches have significant total stability measure, then a
higher value of sum of order flips M (Eq. 1) in either patchi

or patchj marks the overlapped regionij as “foreground”.

450

Figure 5: Physical Memory layout of Tesla Proces-
sors.

2.2 Learning the Background
The background in any real-world scenario is not static;

it keeps changing with time. For example, change in illu-
mination and presence of shadows according to the time of
the day, addition or removal of movable objects like vehicles
which remain in the region of interest for a longer period
of time, rain, clouds etc. The background subtraction al-
gorithm that we have implemented is adaptive and keeps
learning and dynamically upgrading itself with time [18].
The pixels of the background model are updated periodi-
cally as follows:

bk = bk ∗ (1− α) + fg ∗ α (3)

where, α is the learning rate, bk is the pixel intensity of
the existing background model and fg is the pixel intensity of
the current frame. The advantage of the method of learning
and upgrading the background is that the existing model of
background is not destroyed when an object is allowed to
become a part of the background, if it remains stationary
for sufficiently longer duration. Later, if the object starts
moving, the previous background is quickly recovered.

3. GRAPHICS PROCESSING UNITS
A graphics processing unit or GPU is a specialized micro-

processor that offloads and accelerates 3D or 2D graphics
rendering. NVIDIA’s Tesla Architecture exposes the com-
putational Horse power of the NVIDIA’s GPU. Here, we
present an overview of the NVIDIA GPU’s hardware. GPUs
are designed such that more transistors are devoted to data
processing rather than data caching and flow control. GPU
is well-suited for problems expressed as data-parallel com-
putations with high arithmetic intensity1. Fig 5 shows the
general physical layout of NVIDIA GPUs. The Device has
its own Global Memory, which all the cores (Thread proces-
sors) can access. It contains N multiprocessors which have
M cores each. Cores share an instruction unit with other
cores in a multiprocessor. Each processor has its own lo-
cal memory, separate register set and all the M cores share
an on-chip memory called shared memory. NVIDIA Tesla
C1060[2] follows 10 series NVIDIA architecture and has 30
multiprocessors. Each multiprocessor has 8 cores, a double
precision unit and an on-chip shared memory.

1Arithmetic Intensity is defined as the ratio of arithmetic
operations to memory operations

Figure 6: (a) Coleased Global memory access to
avoiding redundant transactions. (b) Number of
threads in the warp less than warp-size/2 causes re-
dundant transactions.

3.1 CUDA: a General-Purpose Parallel Com-
puting Architecture

NVIDIA GPUs can be interfaced by CUDA, developed by
NVIDIA Corporation. CUDA is a scalable heterogeneous
serial-parallel programming model and a software environ-
ment for parallel computing on multicore CPUs and GPUs.

3.2 Performance Optimization
We use the following performance optimization[13] tech-

niques to overcome possible bottlenecks:

3.2.1 Maximizing parallel execution
Our aim is to increase the fraction of parallel code and

hence increase the speed-up of the implementation. We par-
allelize the computation to an extent to keep all GPU cores
busy.

3.2.2 Optimizing memory transfer
Device to Host memory bandwidth is much lower than De-

vice to Device memory bandwidth2. Hence, it is important
to minimize data transfer, even if that means running code
on GPU that does not demonstrate any relative speed-up.
Large transfer is preferred over many small ones. To hide the
transfer delays we have used concurrent kernel execution[4].

3.2.3 Optimizing memory usage
Global Memory Read/Write has highest latency (400-600

clock cycles) which is likely to be a performance bottleneck.
A multiprocessor partitions threads into warps3. When a
half-warp4 accesses a contiguous region in the global mem-
ory, the 16 individual transfers are combined into a single
transfer(fig 6.a). Note that even though one word is not re-
quested, all data in the segment are fetched in a 64 byte
transaction. Therefore the number of threads per block
should be in multiple of 16 whenever possible and the data
structure to be accessed should be designed so as to encour-
age coalesced memory access[3] and reduce redundant data
transferred(fig 6.b).

Each Multiprocessor has a Shared Memory associated with
it. Being on-chip, it is much faster than local and global

2Host⇔Device tranfers over PCI-ex16(4GB/s) vs
Device⇔Device (80GB/s) for C1060
3A warp is a group of 32 threads executed on a multipro-
cessor
4Half-warp can be first half or the second half of a warp

451

memory. Moreover it allows cooperation between a restricted
group of parallel threads (block), i.e., sharing memory ac-
cesses and sharing results to avoid redundant computation.
The image/patch data should first be loaded into the shared
memory and then processed upon if that reduces the global
memory access.

3.2.4 Optimizing instruction usage
Multiprocessors have a single instruction set (Refer Sec-

tion 3) and employs SIMT5 architecture. A warp executes
one common instruction at a time. Any flow control in-
struction (if, switch, do, for, while) may cause threads of
the same warp to diverge, making it serialized until they
converge, increasing the total number of instructions exe-
cuted for the warp. Hence, threads of a warp should agree
on their execution path as far as possible.

3.3 Implementation
Many foreground-background algorithms work on blocks

of pixels (patches). The following approach can be used
to implement them on GPU, parallelizing w.r.t. the blocks
and gaining significant speed up. Our implementation is de-
scribed in the following order. The subsection 3.3.1 explains
how CUDA scales on GPUs and introduces some related
terminologies. Subsection 3.3.2 describes the program flow
of the foreground background separation algorithm on GPU
and sections 3.3.4-3.3.7 explain how they are parallelized.

3.3.1 CUDA enabled on GPU
CUDA allows the programmer to define kernels6. CUDA

threads are grouped in blocks organized into a one dimen-
sional or two-dimensional grid. The CUDA architecture is
built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). When a CUDA program on the host
CPU invokes a kernel-grid, the blocks of the grid are enumer-
ated and distributed to multiprocessors with available exe-
cution capacity. The threads of a thread block execute con-
currently on one multiprocessor, and multiple thread blocks
can execute concurrently on one multiprocessor. As thread
blocks terminate, new blocks are launched on the vacated
multiprocessors.

3.3.2 Program Flow of the Implementation
Figure 7 gives an overview of the program flow of our

GPU implementation. The different kernels are Conversion
to grey, image to patch, Create feature, calculate measure,
create binary image. Conversion to grey converts the input
images into grey scale, image to patch creates the overlap
image and categorize both the original and overlap image
into patches(Section2.1.4), Create feature does the compu-
tation of the Extremal regions(Section 2.1.1) and point pairs
(Section 2.1.2), calculate measure calculates the total stabil-
ity measure and does the matching(Section 2.1.3), create
binary image creates binary image for the overlap regions.
The configuration arguments (grid-size,block-size) are shown

as <grid, size>. Each kernel reads image/patch informa-
tion from global device memory space and writes the result
back into the same. Threads in a block may make use of
the shared memory for the intermediate storage and coop-
eration (Refer Section 3.2.3). A copy command represents

5Single-Instruction Multiple-Thread
6Kernels are C functions that, when called, are executed N
times in parallel by N different CUDA threads

Figure 8: Timeline for a non-concurrent and a con-
current execution. No kernel will launched until the
data transfers in their respective streams complete

Host⇔Device memory transfers. Red arrows depict concur-
rent transfer and kernel execution. Synchronize command is
used to make sure all the data transfer and kernel execution
is synchronized before further execution.

3.3.3 Representation of the Image Structure
The image/patch information is represented as a struc-

ture of arrays (SoA) and not as array of structures (AoS).
The pictorial representation is shown in the fig 7. This rep-
resentation allows efficient memory coalescing (Refer Sec-
tion 3.2.3) as the data required by the threads, executing
a common instruction, will be lying in contigious memory
locations.

3.3.4 Achieving Concurrency in execution and data
transfer

Streams are used to have concurrency between the ker-
nel execution and Host ⇔ Device Asynchronous data trans-
fer[4]. A stream is a sequence of commands that execute in
order. Different streams, on the other hand, may execute
their commands out of order with respect to one another or
concurrently. The kernel for conversion to grey uses streams
and achieves concurrent transfer with execution. Number of
stream objects created is Wi, where Wi is the width of the
image in pixels. Each stream object executes a kernel which
runs for Hi number of threads, where Hi is the height of the
image in pixels. The following sample shows use of streams
to achieves concurrent transfer with execution of conversion
to grey.

for i = 0 to Wi do
create(stream[i]);
copy(Devicepointer,Hostpointer, size, stream[i]);
specify sequence of kernel launches each with Hi threads
destroy(stream[i]);
end for

Fig 8 compares the timeline of a non-concurrent and a con-
current execution respectively. Note that none of the ker-
nels will launch until the data transfers in their respective
streams complete.

3.3.5 Gathering Patch Information
Next task is to categorize image information according

to patches. For this we can parallelize w.r.t to the pixels
in the respective patch. We launch the kernel grid as 2-D
group (of blocks) of size (Wi/Wp,Hi/Wp) corresponding to
each patch and we declare each block as a 2-D group (of
threads) of size (Wp,Wp) corresponding to each pixel in the
patch. Here Wp corresponds to the size of the patch in
pixels. The figure 9 depicts the Thread batching process.
Each parallel thread makes coalesced access7 to the pixel

7Here coleased access is achieved by choosing Wp as 8 or 16

452

Figure 7: An overview of the memory management and program flow on the GPU.

Figure 9: Thread Batching. Both Grid and Block
are declared as 2-D.

information (rgb buffer and the grey buffer arrays in the
global memory). It is followed by a call to kernel which
spawns (Hi − Wp) number of threads, each copies the rgb
and grey information of (Wi−Wp) overlapping pixels. This
is a better alternative for Device ⇔ Device transfer than to
call the copy command from the Host code with the cores
idle. The patch information for the overlapped image is
collected in the same fashion as did for the original image.

3.3.6 Computation of extremal regions, point pairs
and Matching

Now we have information of patches for the original image
and the overlapped image. The total number of patches is

(
Wi

Wp
∗ Hi

Wp
) + ((

Wi

Wp
− 1) ∗ (Hi

Wp
− 1))

For the computation of the Extremal regions (Section 2.1.1),
Point pairs (Section 2.1.2) and then the Matching (Section
2.1.3), the processing is done for each patch which is inde-
pendent of the other patches. Therefore we can parallelize
the algorithm w.r.t. the patches. We declare blocks, each of
256 threads as the optimal value and each thread processes
one patch.

(Refer Section 3.2.3)

Figure 10: Parallelizing over overlapped regions.
Each thread in a block process for one respective
region (yellow).

3.3.7 Creating Binary Image
In order to create the binary image, we have to consider

the overlapped regions as shown in green in figure 4. There
are 4∗(Hi/Wp−1)∗(Wi/Wp−1) overlapped regions. We can
parallelize w.r.t. these regions, i.e., we can use each thread
corresponding to each overlapped region. As every region is
an overlap of two patches, we have every thread accessing
information of two patches. We have one patch shared by at
most 4 regions, in other words, we can have at most 4 threads
accessing the same patch-information(memory location) but
they all are writing on different memory locations(in the bi-
nary image buffer) therefore making the algorithm paral-
lelizable. Moreover as the accesses are shared, its profitable
to make use of the shared memory. Let us declare the grid
of (Hi/Wp − 1) blocks with (4 ∗ (Wi/Wp − 1)) threads each.
Each thread in a block processes for one region (shown in
yellow in Fig.10). For each block of threads we need informa-
tion about (2∗Wi/Wp) patches of the original image(shown
in red) and (Wi/Wp − 1) patches of the overlapping image
(shown in blue in Fig.12). This data is moved to the shared
memory which avoids re-accessing the global memory for
other overlapped regions, reducing global memory accesses
to around half. With the help of streams and paged locked
host memory, we can concurrently copy the binary image
data from the device to the host. Moreover CUDA allows
us to do heterogeneous programming making it possible to
read a new frame into the Host memory. Figure 12 shows the
timeline for the concurrent asynchronous copying compared
to serial execution and copying.

453

Figure 11: Results for foreground-background separation. Row1, Row2: indoor scene on the PETS database.
Row3: outdoor scene on a sunny day with presence of shadows and leaf-movements. Row4: outdoor scene
on a cloudy day with less illumination. (a)Input Image, background subtraction using (b) LTP technique
(c)LTP technique (d) using GMM technique (e)using monotonic change invariant method

Figure 12: Timeline for serial execution and copy
compared to concurrent asynchronous copy.

4. RESULTS
The algorithm was successfully implemented in the indoor

as well as outdoor environment where it gave significant per-
formance in various conditions such as bright scenes, scenes
with less illumination, moving shadows of the trees, fluctu-
ations in leaves and branches etc. The first row and 2nd
row in Fig11 show results taken from PETS dataset in the
indoor environment. The third row shows results of dif-
ferent background subtraction techniques on a sunny day
with significant shadows and leaf-movements. The 4th row
shows the results on a cloudy day with less illumination and
less shadows. The result was appreciable when compared to
various other techniques such as LTP technique [11], LBP
technique [14] [20] and GMM [18] as shown in Fig11.

Figure 13: Processing rate of GPU compared to
CPU

4.1 Performance Gains
The performance of the GPU implementation was evalu-

ated on a 2.00 GHz Intel(R) Xeon(R) running MS XP Pro
x64 with an NVIDIA Tesla C1060 GPU. An equivalent CPU
version of the algorithm was implemented on the same sys-
tem. The two implementations were tested using a variety
of video frame sizes, and a summary of typical results is

454

Figure 14: Performance gain from GPU implemen-
tation.

presented in Fig 13 and Fig 14. Although the parallelism
based on patches and overlapped regions are well defined,
many stages have branching conditions. Such aspects will
hinder the performance of parallel execution. In this work,
we made every effort to minimize the complexity of branch-
ing conditions making them more predictable. Fig 14 shows
that performance gain increases with increase in size of the
image. This is because for smaller images, the number of
patches/regions are not large enough to keep the multipro-
cessors busy, in other words the occupancy8 is less and the
time taken to launch the kernels is not justified to a great
extent. With the increase in the size of the image, fraction
of parallel code increases thus increasing the speed up (Refer
section 3.2.1).

5. CONCLUSION
In this paper, we described the foreground background

separation method using the order of intensities. This ap-
proach is also robust towards Gaussian noise and distortion
in spacial domain of pixels. It can be implemented quite
efficiently using the fast algorithms that are available for
extremal region and distance transform computation. It is
effective in various cases of fluctuations in background such
as shadows, weather change (clouds) and other features of
real world. This algorithm also provides promising results in
both indoor and outdoor environments. Since foreground-
background separation is used as a pre-processing stage in
many applications like tracking, object recognition etc., we
have implemented the foreground-background separation on
a GPU to achieve high throughput. We have achieved the
speed up of 25X for 960 X 720 image resolution using GPU
(NVIDIA Tesla C1060 Processor).

6. REFERENCES
[1] ATI stream computing user guide, version 1.4.0.a.

AMD, 2009.

[2] Board Specification- Tesla C1060 Computing Processor
Board January 2009. NVIDIA, 2009.

8Occupancy is the ratio of the number of active warps per
multiprocessor to the maximum number of possible active
warps

[3] NVIDIA CUDA Best Practices Guide Version 3.0
2/4/2010. NVIDIA, 2010.

[4] NVIDIA Programming Guide Version 3.0 2/20/2010.
NVIDIA, 2010.

[5] T. Ahonen, A. Hadid, and M. Pietikainen. Face
recognition with local binary patterns. In Computer
Vision, ECCV 2004, Lecture Notes in Computer
Science.

[6] D. Bhat and S. Nayar. Ordinal measures for image
correspondence. In PAMI.

[7] P. Carr. Gpu accelerated multimodal background
subtraction. In DICTA ’08: Proceedings of the 2008
Digital Image Computing: Techniques and
Applications, pages 279–286, Washington, DC, USA,
2008. IEEE Computer Society.

[8] R. Fabbri, L. da Fontoura Costa, J. C. Torelli, and
O. M. Bruno. 2d euclidean distance transform
algorithms: A comparative survey. ACM Computer
Survey, 40(1):1–44, February 2008.

[9] Griesser, A. D. Roeck, S. Neubeck, A. V. Gool, and
Luc. Gpu-based foreground-background segmentation
using an extended colinearity criterion. In 10th
international fall workshop on VMV, pages 319–326,
Erlangen, Germany, 2005. Proceedings 10th
international fall workshop on VMV.

[10] R. Gupta and A. Mittal. Smd: A locally stable
monotonic change invariant feature descriptor. In
Computer Vision - ECCV 2008.

[11] R. Gupta, H. Patil, and A. Mittal. Robust order-based
methods for feature description. In CVPR, June 2010.

[12] A. Hadid, M. Pietikäinen, and T. Ahonen. A
discriminative feature space for detecting and
recognizing faces. In CVPR.

[13] M. Harris. NVIDIA Optimizing CUDA. NVIDIA
Developer Technology, 2008.

[14] M. Heikkila, M. Pietikainen, and J. Heikkila. A
texture-based method for detecting moving objects. In
British Machine Vision Conference, 2004.

[15] G. Heusch, Y. Rodriguez, and S. Marcel. Local binary
patterns as an image preprocessing for face
authentication. In FGR.

[16] A. Mittal and V. Ramesh. An intensity-augmented
ordinal measure for visual correspondence. In CVPR.

[17] M. Singh, V. Parameswaran, and V. Ramesh. Order
consistent change detection via fast statistical
significance testing. In CVPR.

[18] C. Stauffer and W. Grimson. Adaptive background
mixture models for real-time tracking. In CVPR,
pages II: 246–252, June 1999.

[19] V. Takala, T. Ahonen, and M. Pietikainen.
Block-based methods for image retrieval using local
binary patterns. In SCIA.

[20] M. Yao and J. M. Odobez. Multi-layer background
subtraction based on color and texture. In CVPR,
2007.

[21] R. Zabih and J. Woodfill. Non-parametric local
transforms for computing visual correspondence. In
ECCV.

455

